
Rayleigh–Taylor instability in partially ionized 
prominence plasma 

E. Khomenko, A. Díaz, A. de Vicente, M. Collados & M. Luna  

Departamento de Astrofísica, Universidad de La Laguna and 
Instituto de Astrofísica de Canarias (IAC),  

La Laguna, Tenerife (Spain). 

Main Astronomical Observatory, NAS, Kiev, (Ukraine) 

http://www.iac.es/proyecto/spia/ 



Elena Khomenko 

Observations of instabilities 

HINODE observations of quiescent solar prominence 

Berger et al. 2008 
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Linear theory of magnetic RTI 

Linear growth rate (Chandrasekhar 1961) 

Critical wavelength below which instability is 
completely suppressed 
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Magnetic RTI in partially ionized plasma 

Multi-fluid: Díaz et al. (2012), Soler et al. (2012) 

Single-fluid: Díaz, Khomenko & Collados (2013) 

Prominence material is only partially ionized 

Deviations from classical MHD are expected 

No critical wavelength, plasma always unstable 

Single-fluid vs multi-fluid approach 

Only linear theory has been developed so far 

Θ=90o 

Θ=89o 

Θ=89º  + AD 
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Single-fluid quasi-MHD equations 

Ohmic term Hall term Ambipolar term 

Mass conservation 

Momentum conservation 

Energy conservation 

Assumes strong collision coupling between the species 
+ Generalized Ohm’s law: 
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T ≈ 5000 K; ρ ≈ 3×10-13   g cm-3 

Neutral fraction ρn/ρ ≈ 0.9 

Simulation setup 

See Hillier et al (2011, 2012) for 3D MHD simulations 
of RTI in Kippenhahn-Schlüter prominence model 

B0 = 10 G 

β = 0.025 

Cold prominence 

Hot corona 
T ≈ 400.000 K; ρ ≈ 4×10-15   g cm-3 

Neutral fraction ρn/ρ = 0 

• Multi-mode perturbation of the interface 

• Spatial resolution of 1 km 

• Generalized Ohm’s law (ambipolar term “on”) 
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θ= 89.9º to the perturbation plane 

B

MHD AD 
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θ = 89º; λc = 38 km θ = 89.5º;; λc = 9.5 km 

B0 inclined away from normal to the plane 

AD AD 
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θ = 87; λc = 340 km θ = 88º;; λc = 155 km 

B0 inclined away from normal to the plane 

AD AD 
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3D field lines 
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Growth rate of RTI modes 

Small-scales appear first:  
faster linear growth rate 

Large-scales dominate later:  

non-linear bubble interaction 

Small-scales are suppressed by magnetic 
tension force 

Field compression additionally increases λC 

see Jun et al. (1995) 
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Velocity distribution in ~linear regime, θ=89º 

“ambipolar” model has slightly larger velocities in the linear regime 
neutrals make plasma more unstable 
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Velocity distribution in non-linear regime, θ=90º 

Asymmetric up- and down- flow distribution, ±10-20 km s-1 

“ambipolar” model has more extreme velocities 
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Similar mode growth rate in “ambipolar” and “mhd” models 
No critical wavelength λc 

Growth rate of RTI modes, θ=90° 

Power (ambipolar) / Power (mhd) 
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“ambipolar” model shows larger growth rate at small scales, 
compared to “mhd” model 

Change of behavior at λ~λc=30 km  
. 

Growth rate of RTI modes, θ=89° 

Power (ambipolar) / Power (mhd) 
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Growth rate of RTI modes, θ=88° 

“ambipolar” model shows larger growth rate at small scales, 
compared to “mhd” model 

Change of behavior at λ~λc=100 km  
. 

Power (ambipolar) / Power (mhd) 
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Chromospheric material is more than 30% hotter in the 
“ambipolar” model (Joule heating due to current dissipation) 

Temperature difference “mhd” vs “ambipolar” 

B=10 G, θ=89º 
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Diffusion velocity 

Gradients of partial pressures Currents 

Negative values: neutrals fall faster than ions by a few km s-1 

Inclination θ=89º 
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Diffusion velocity 

Gradients of partial pressures Currents 

Negative values: neutrals fall faster than ions by a few km s-1 

Inclination θ=90º 
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Ion-neutral momentum 
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Summary 

Ambipolar vs MHD differences: 

• Small scales grow faster with ambipolar term “on”; 

• Larger speeds of bubbles in with ambipolar term “on”; 

• Measurable diffusion velocities of the orders of a few km s-1; 

• Temperature of bubbles is up to 30% different. 

General dynamics 

• Asymmetric velocity distribution; up flows are faster; 

• Upflowing bubbles are more apparent in density images; 

• Drops falling at constant speed ~3-5 km s-1. 


