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ABSTRACT

Context. Recent observations of solar prominences show the presence of turbulent flows that may be caused by Kelvin-Helmholtz
instabilites (KHI). However, the observed flow velocities are below the classical threshold for the onset of KHI in fully ionized
plasmas.
Aims. We investigate the effect of partial ionization on the onset of KHI in dense and cool cylindrical magnetic flux tubes surrounded
by a hotter and lighter environment.
Methods. The linearized governing equations of a partially ionized two-fluid plasma were used to describe the behavior of small-
amplitude perturbations superimposed on a magnetic tube with longitudinal mass flow. A normal mode analysis was performed to
obtain the dispersion relation for linear incompressible waves. We focused on the appearance of unstable solutions and studied the
dependence of their growth rates on various physical parameters. We obtained an analytical approximation of the KHI linear growth
rate for slow flows and strong ion-neutral coupling. We applied this to solar prominence threads.
Results. The presence of a neutral component in a plasma may contribute to the onset of the KHI even for sub-Alfvénic longitudinal
shear flows. Collisions between ions and neutrals reduce the growth rates of the unstable perturbations, but cannot completely suppress
the instability.
Conclusions. Turbulent flows in solar prominences with sub-Alfvénic flow velocities may be interpreted as consequences of KHI in
partially ionized plasmas.
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1. Introduction

Recent observations of the solar atmosphere have shown the
presence of turbulent flows in quiescent prominences (see Berger
et al. 2010; Ryutova et al. 2010). These phenomena have been
interpreted in terms of the Rayleigh-Taylor instability (RTI) and
the Kelvin-Helmhotz instability (KHI). The latter is a well-
known hydrodynamic instability caused by a shear flow velocity
at the interface between two fluids (see Chandrasekhar 1961). A
great number of papers have been devoted to the study of this in-
stability in many astrophysical environments, such as Earth’s au-
rora (Hallinan & Davis 1970), protoplanetary disks (Michikoshi
& Inutsuka 2006), the magnetopause (Guo et al. 2010), or plan-
etary magnetospheres (Ogilvie & Fitzenreiter 1989). In solar
coronal plasmas this instability has been observed in coronal
mass ejections, for instance (Foullon et al. 2011).

Classical magnetohydrodynamic studies (see, e.g.,
Chandrasekhar 1961) have shown that as a result of the
effect of a magnetic field, fully ionized incompressible plasmas
are stable to small amplitude perturbations if the velocity of the
shear flow is sub-Alfvénic. Accordingly, the magnetohydrody-
namic KHI can only be triggered by super-Alfvénic shear flows.
Some turbulent flows detected in quiescent prominences exhibit
a behavior that resembles the nonlinear stage of the KHI, but the
measured velocities, lower than 30 km s−1 (Zirker et al. 1998;
Berger et al. 2010), are below the threshold, �100 km s−1 (see
Terradas et al. 2008), for triggering this instability. Therefore
it might appear as if these turbulences cannot be interpreted
as consequences of KH instabilities. However, the condition

mentioned in the previous lines only applies to fully ionized
plasmas, and quiescent prominences are not fully ionized, but
are partially ionized, that is, they are also composed of neutral
particles that do not feel the magnetic field and therefore ignore
its stabilizing effect. The existence of this neutral component
may modify the criterion for the appearance of the KHI,
allowing the onset of the instability even for sub-Alfvénic
velocities.

The KHI in partially ionized incompressible plasmas has
been studied, for example, by Watson et al. (2004) and Soler
et al. (2012), and it has been found that neutrals are unstable even
for sub-Alfvénic flows. Therefore, in the absence of certain sta-
bilizing factors such as surface tension, partially ionized incom-
pressible plasmas are always unstable in the presence of a veloc-
ity shear. But these results have been obtained for the case of a
Cartesian interface. However, the magnetic field in the solar at-
mosphere is better represented by means of flux tubes. Properties
of waves in a fully ionized magnetic flux tube have been inves-
tigated by Edwin & Roberts (1983) and Goossens et al. (2009),
for instance. The effect of partial ionization in a cylindrical ge-
ometry has been studied by Soler et al. (2009, 2013). However,
mass flow was not included in the works by Soler et al. (2009,
2013), but it is a necessary feature for the possible appearance
of a KHI. Hence, the logical step forward is to include this pre-
viously ignored effect.

In the present work we use a multifluid theory to examine
the influence of partial ionization on the onset of KHI in mag-
netic flux tubes cooler and denser than their environment. More
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Fig. 1. Sketch of the model.

precisely, we use a two-fluid approximation (see Priest 1982;
Zaqarashvili et al. 2011) that treats electrons and ions as a sin-
gle fluid that interacts with the other component of the plasma,
the neutral fluid, by means of collisions. We include a mass flow
in the longitudinal direction of the flux tube that has a discon-
tinuity at the interface that separates the two media of different
densities. To avoid further complexity in the model, we ignore
effects like the surface tension of the fluids and compressibil-
ity. Restricting ourselves to the linear regime, we superimpose
small-amplitude perturbations to the equilibrium state and derive
a dispersion relation for the incompressible waves generated by
these perturbations. This dispersion relation is a generalization
of the formulas found in Edwin & Roberts (1983) for the fully
ionized case.

This paper is organized as follows: in Sect. 2 we describe our
model and then present the basic governing equations. In Sect. 3
we derive the dispersion relation for linear incompressible waves
and obtain an analytical approximation to the unstable solution
for slow, sub-Alfvénic flows, and strong ion-neutral coupling.
In Sect. 4 we perform a parametric study of the solutions to the
dispersion relation and obtain the dependence of the KHI growth
rate on the model parameters. In Sect. 5 we apply the theory to a
solar prominence thread. Finally, we conclude in Sect. 6.

2. Model and equations

2.1. Equilibrium state

The equilibrium state is a partially ionized cylindrical magnetic
flux tube of radius a embedded in an unbounded medium. We
used cylindrical coordinates, namely r, ϕ, and z, for the radial,
azimuthal, and longitudinal coordinates, respectively. A sketch
of the model can be found in Fig. 1. The subscripts “0” and “ex”
denote quantities related to the internal and external plasma. The
densities of ions and neutrals are ρi and ρn and only depend on
the radial direction as

ρi(r) =

{
ρi,0 if r ≤ a,
ρi,ex if r > a, (1)

ρn(r) =

{
ρn,0 if r ≤ a,
ρn,ex if r > a. (2)

Hence, there is an abrupt jump in density between the internal
and external plasmas. We have chosen the particular case when
the internal plasma is denser than the external one. The magnetic
field, denoted by B, is constant and pointing along the flux tube
axis, with the same value in both media, that is, B0 = Bex. In
addition, we considered a longitudinal mass flow with constant
velocity denoted by U. The flow velocity is discontinuous at the
boundary of the flux tube.

2.2. Governing equations

We studied the behavior of a partially ionized plasma using a
two-fluid theory. We assumed that the plasma is composed of an
ionized fluid made of ions and electrons and of a neutral fluid
made of neutral particles. The two fluids interact by means of
ion-neutral collisions. The general two-fluid equations can be
found in Priest (1982), Zaqarashvili et al. (2011), and Khomenko
et al. (2014), for instance. Here, we restricted ourselves to the
linearized version of those equations, which describe the evo-
lution of small-amplitude perturbations. Hence, the set of two-
fluid equations that describe the behavior of linear incompress-
ible perturbations superimposed on the equilibrium state are

ρi

(
∂

∂t
+ U
∂

∂z

)
ui = −∇pie +

1
μ

(∇ × b) × B − ρnνni (ui − un) , (3)

ρn

(
∂

∂t
+ U
∂

∂z

)
un = −∇pn − ρnνni (un − ui) , (4)(

∂

∂t
+ U
∂

∂z

)
b = ∇ × (ui × B) , (5)

∇ · ui = ∇ · un = 0. (6)

In these equations, ui and un are the velocities of ions and neu-
trals, pie and pn are the pressure perturbations of ion-electrons
and neutrals, b is the magnetic field perturbation, μ is the mag-
netic permeability, γ is the adiabatic index, and νni is the neutral-
ion collision frequency. In addition, we defined the ionization
fraction as χ = ρn/ρi.

In the following calculations, we replaced the velocities of
ions and neutrals by their corresponding Lagrangian displace-
ments, ξi and ξn, given by

ui =
∂ξi

∂t
+ U
∂ξi

∂z
, (7)

un =
∂ξn

∂t
+ U
∂ξn

∂z
· (8)

In addition, we defined the total (thermal + magnetic) pressure
perturbation of the ionized fluid, P′, as

P′ = pie +
B · b
μ
= pie +

Bbz

μ
· (9)

3. Normal mode analysis

From here on, we followed the same procedure as in Soler et al.
(2013) and performed a normal mode analysis. Since the equilib-
rium is uniform in the azimuthal and longitudinal directions, we
expressed the perturbations as proportional to exp(imϕ + ikzz),
where m and kz are the azimuthal and longitudinal wavenum-
bers, respectively. We only retained the dependence of the per-
turbations on the radial direction. Furthermore, the temporal
dependence was set as exp(−iωt), where ω is the angular fre-
quency. By combining Eqs. (3)−(5), we derive a system of four
coupled equations for the radial components of the Lagrangian
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displacements, ξr,i and ξr,n, and the pressures, P′ and pn, namely

∂P′

∂r
= ρi

(
Ω2 − ω2

A + iχνniΩ
)
ξr,i − iρnνniΩξr,n, (10)

∂pn

∂r
= −iρnνniΩξr,i + ρnΩ(Ω + iνni)ξr,n, (11)

ρi

(
Ω̃2 − ω2

A

) 1
r

∂(rξr,i)
∂r

=

(
m2

r2
+ k2

z

) (
P′ + i

νni

Ω + iνni
pn

)
, (12)

ρnρi

(
Ω̃2 − ω2

A

) 1
r

∂(rξr,n)

∂r
= i

νni

Ω + iνni
ρn

(
m2

r2
+ k2

z

)
P′

−
(
m2

r2
+ k2

z

) ⎡⎢⎢⎢⎢⎢⎢⎣ ρnν
2
ni

(Ω + iνni)2
−
ρi

(
Ω̃2 − ω2

A

)
Ω(Ω + iνni)

⎤⎥⎥⎥⎥⎥⎥⎦ pn, (13)

where Ω = ω − Ukz is the Doppler-shifted frequency. Other pa-
rameters that appear in the equations are the square of the modi-
fied frequency, Ω̃2, and the square of the Alfvén frequency, ω2

A,
defined as

Ω̃2 = Ω2

(
1 +

iχνni

Ω+iνni

)
(14)

and

ω2
A = k2

z c2
A, (15)

where c2
A is the square of the Alfvén speed, computed as

c2
A =

B2

μρi
· (16)

Now we combined Eqs. (10)−(13) and obtained two uncoupled
equations for the pressures, namely

∂2P′

∂r2
+

1
r
∂P′

∂r
−

(
k2

z +
m2

r2

)
P′ = 0, (17)

∂2 pn

∂r2
+

1
r
∂pn

∂r
−

(
k2

z +
m2

r2

)
pn = 0, (18)

whose solutions are combinations of modified Bessel functions
of the first and second kind, Im(kzr) and Km(kzr), respectively.
We required the solutions to be regular at r = 0 and vanishing at
r → ∞. Hence,

P′(r) =

{
A1Im(kzr) if r ≤ a,
A2Km(kzr) if r > a, (19)

pn(r) =

{
A3Im(kzr) if r ≤ a,
A4Km(kzr) if r > a, (20)

where A1–A4 are arbitrary constants. In turn, the radial compo-
nents of the Lagrangian displacements of the two fluids are re-
lated to P′ and pn as

ξr,i =
1

ρi

(
Ω̃2 − ω2

A

) (
∂P′

∂r
+ i

νni

Ω + iνni

∂pn

∂r

)
, (21)

ξr,n =

⎛⎜⎜⎜⎜⎜⎜⎝ 1
ρnΩ (Ω + iνni)

− ν2ni

(Ω + iνni)2

1

ρi

(
Ω̃2 − ω2

A

) ⎞⎟⎟⎟⎟⎟⎟⎠ ∂pn

∂r

+i
νni

Ω + iνni

1

ρi

(
Ω̃2 − ω2

A

) ∂P′
∂r
· (22)

3.1. Dispersion relation and approximate KHI growth rate

To find the dispersion relation that describes the behavior of the
waves in this system, we need to impose that P′, pn, ξr,i and ξr,n
are continuous at r = a, that is, at the boundary of the tube. After
applying the boundary conditions, we obtain a system of alge-
braic equations for the constants A1–A4. The non-trivial solution
to the system provides the dispersion relation, namely[

I′m(kza)
Im(kza)

ρn,exΩex
(
Ωex + iνni,ex

) − K′m(kza)
Km(kza)

ρn,0Ω0
(
Ω0 + iνni,0

)]
×

[
I′m(kza)
Im(kza)

ρi,ex

(
Ω̃2

ex − ω2
A,ex

)
− K′m(kza)

Km(kza)
ρi,0

(
Ω̃2

0 − ω2
A,0

)]
+

I′m(kza)
Im(kza)

K′m(kza)
Km(kza)

ρn,0ρn,exΩ0Ωex(
Ω0 + iνni,0

) (
Ωex + iνni,ex

)
× [
νni,0

(
Ωex + iνni,ex

) − νni,ex
(
Ω0 + iνni,0

)]2
= 0, (23)

where the prime denotes the derivative of the modified Bessel
function with respect to its argument.

To simplify Eq. (23), we used the so-called thin tube (TT)
approximation, that is, we assumed kza � 1. We performed an
asymptotic expansion of the modified Bessel functions for small
arguments and m � 0 and only kept the first term in the expan-
sion. The resulting TT dispersion relation is[
ρi,0

(
Ω0

(
Ω0+iχ0νni,0

)−ω2
A,0

)
+ρi,ex

(
Ωex

(
Ωex+iχexνni,ex

)−ω2
A,ex

)]
× [
ρn,0Ω0

(
Ω0 + iνni,0

)
+ ρn,exΩex

(
Ωex + iνni,ex

)]
+

[
ρn,0Ω0νni,0 + ρn,exΩexνni,ex

]2
= 0, (24)

which is the same expression, with a slightly different nota-
tion, as Eq. (37) of Soler et al. (2012), obtained for the case of
a Cartesian interface. Hence, the geometrical effect associated
with the cylindrical magnetic tube disappears in the TT limit.

We considered the limit when the collision frequencies go
to zero, that is, when the two fluids are uncoupled and show a
completely independent behavior. If we neglect the terms associ-
ated with the ion-neutral collisions, we can recover from Eq. (24)
the dispersion relations for the classical hydrodynamic and mag-
netohydrodynamic KHI (Chandrasekhar 1961). In that case, the
dispersion relation for our model is given by[
ρi,0

(
Ω2

0 − ω2
A,0

)
+ρi,ex

(
Ω2

ex − ω2
A,ex

)] [
ρn,0Ω

2
0 + ρn,exΩ

2
ex

]
=0,

(25)

from which we can obtain separated solutions for the ionized and
the neutral plasma component. On the one hand, the solutions for
the neutral fluid are given by

ω = kz
ρn,0U0 + ρn,exUex

ρn,0 + ρn,ex
± ikz|U0 − Uex|

√
ρn,0ρn,ex

ρn,0+ρn,ex
, (26)

where the branch with a positive imaginary part implies that the
amplitudes of the perturbations grow with time. This growing so-
lution exists for any value of the shear flow velocity. Therefore,
the neutral fluid is always unstable in the presence of a shear
flow.

On the other hand, for the ionized component we have the
following solutions:

ω = kz
ρi,0U0 + ρi,exUex

ρi,0 + ρi,ex

± kz

⎡⎢⎢⎢⎢⎣ B2
0 + B2

ex

μ(ρi,0 + ρi,ex)
− (U0 − Uex)2 ρi,0ρi,ex

(ρi,0 + ρi,ex)2

⎤⎥⎥⎥⎥⎦1/2

, (27)
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from which it can be seen that the magnetohydrodynamic KHI
only appears when

|U0 − Uex| >
√

B2
0 + B2

ex

μ

ρi,0 + ρi,ex

ρi,0ρi,ex

=

√√(
ρi,0c2

A,0 + ρi,exc2
A,ex

) (
ρi,0 + ρi,ex

)
ρi,0ρi,ex

· (28)

This velocity threshold is caused by the effect of the longitudi-
nal magnetic field on the ionized fluid. The velocity threshold is
super-Alfvénic, which indicates that the typically observed flows
along prominence threads or spicules, for example, cannot trig-
ger a KHI if the plasma is fully ionized. This same criterion for
the velocity threshold can be found in other works devoted to
the study of waves in fully ionized plasmas with longitudinal
mass flows. For instance, Eq. (28) is equivalent (if we assume
cA,ex = 0) to Eq. (5) of Ryutova (1988).

In addition, according to Ryutova (1988) and Ryutova et al.
(2010), a fully ionized plasma may be subject to an explosive
instability if the shear flow velocity, ΔU, fulfills the following
condition:

cA,0

(
ρi,0

ρi,ex

)1/2

< ΔU < cA,0

(
ρi,0 + ρi,ex

ρi,ex

)1/2

· (29)

Therefore, taking into account the suggested existence of the ex-
plosive instability, three unstable branches would be expected to
appear in the set of solutions to the dispersion relation: the first
one, associated with the neutrals, would be present for any value
of the shear flow velocity; the second one, the explosive insta-
bility, would appear between the shear flow velocity thresholds
given by Eq. (29); and the third one, associated with the ions,
would follow the criterion of Eq. (28). (Note that if Bex � 0 but
Bex = B0, as in our model, the lower and upper limits of Eq. (29)
need to be multiplied by the factor

√
2).

We return to the coupled case. The full dispersion relation,
Eq. (23), must be solved numerically when ion-neutral colli-
sions are at work. However, it is possible to find an approxi-
mate solution when the ion-neutral coupling is strong and sub-
Alfvénic flows are considered. For simplicity, we also assumed
that the external flow velocity is zero, that is, Uex = 0. For
sub-Alfvénic flows, the only unstable solution we obtain from
the dispersion relation in the uncoupled case is that associated
with neutrals, Eq. (26), since the magnetic field is able to sta-
bilize ions, Eq. (27). Hence, we tried to find a correction to the
neutrals-related solution due to ion-neutral collisions. To do so,
we write ω = ω0 + iγ, where ω0 is the neutrals’ unstable solu-
tion given in Eq. (26) and γ is a small correction. We inserted
this expression for ω into the TT dispersion relation, Eq. (24),
and only kept up to first-order terms in γ and second-order terms
in U0. After some algebraic manipulations, we found a solution
for γ. We omit the details for the sake of simplicity. Finally, the
following approximate solution for the frequency was obtained,

ω ≈ kzU0ρn,0

ρn,0 + ρn,ex
+ i

2k2
z U2

0ρn,0ρn,ex

(ρn,0 + ρn,ex)(νni,0ρn,0 + νni,exρn,ex)
· (30)

The approximated growth rate, that is, the imaginary part of ω,
is quadratic in the flow velocity and inversely proportional to the
collision frequencies. Hence, if the same parameters are consid-
ered, the value of the growth rate is lower in the strongly coupled
case than in the uncoupled case (compare with Eq. (26)). This
means that ion-neutral collisions have a stabilizing effect.

4. Exploring the parameter space

Because of its complexity, Eq. (23) must be solved numerically.
In this section we study the dependence of the solutions of the
dispersion relation with respect to various physical parameters.
We also compare the full results with the analytical approxima-
tion shown in the previous section.

Throughout this section we use dimensionless parameters.
Unless otherwise stated, we use ρi,0/ρi,ex = 2, ρn,0/ρn,ex = 2,
cA,0 = 1 and kza = 0.1. For simplicity, we assumed that the col-
lision frequency has the same value in both internal and exter-
nal plasmas, so we dropped the subscripts from νni. In addition,
we now focus on the kink mode, the only mode that causes dis-
placements of the axis of the cylinder, so we used m = 1. All
frequencies were normalized with respect to the kink frequency,
ωk, which is the frequency of the kink wave in the TT limit in
the fully ionized case (see, e.g., Ryutov & Ryutova 1976; Spruit
1981). The kink frequency is given by

ωk = kz

√
ρi,0c2

A,0 + ρi,exc2
A,ex

ρi,0 + ρi,ex
· (31)

To begin with, we studied the dependence of the solutions of
the dispersion relation with respect to the shear flow velocity.
Hence, we took ΔU ≡ U0 − Uex as a free variable. We con-
sidered three different values for the collision frequency, which
allowed us to investigate the behavior of the solutions depending
on the strength of the ion-neutral coupling. Figure 2 displays the
real and imaginary parts of the frequency as functions of the nor-
malized shear flow velocity for a) weak coupling (νni/ωk = 0.1),
b) intermediate coupling (νni/ωk = 1); and c) strong coupling
(νni/ωk = 10). The red symbols represent the solutions obtained
numerically from the complete dispersion relation, Eq. (23). The
full numerical results are compared with the analytical solutions
in the strongly coupled limit (shown as blue solid lines) and in
the uncoupled case (shown as blue dashed lines). In addition,
the classical shear flow velocity threshold for the KHI in a fully
ionized fluid (Eq. (28)) is denoted by the vertical dotted lines.
The upper panels of Fig. 2 display the real part of the frequency.
We observe a very similar behavior for the three studied cases.
Initially, when the shear flow velocity is zero, we find two solu-
tions with nonzero ωR. These solutions are associated with the
ionized fluid and correspond to the usual kink magnetohydro-
dynamic wave found in fully ionized tubes (Edwin & Roberts
1983). The solution with ωR > 0 is the forward-propagating
kink wave, while the solution with ωR < 0 is the backward-
propagating kink wave. A third solution with ωR > 0 emerges
when the shear flow velocity increases from zero. The new solu-
tion is associated with the neutral component of the plasma in the
sense that this solution only appears in the presence of neutrals.
However, note that such simple associations between solutions
and fluids cannot be made when the coupling is high and ions
and neutrals behave as a single fluid. As the flow velocity con-
tinues to increase, the three solutions converge for a critical flow
velocity that depends on the collision frequency. The stronger
the ion-neutral coupling, the lower the critical flow. From that
point on, the real part of the frequency is proportional to ΔU and
is well described by the real part of Eq. (26) or, equivalently,
Eq. (30).

The lower panels of Fig. 2 display the imaginary part of the
frequency. The differences between the panels are much more re-
markable than before, meaning that the value of the collision fre-
quency has a strong effect on the imaginary part of the frequency.
The shaded zone denotes the region of instability, ωI > 0. In this
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Fig. 2. Upper panels: ωR/ωk as a function of the normalized shear flow velocity, ΔU/cA,0, for kza = 0.1, m = 1, and three different collision
frequencies (a) νni/ωk = 0.1; b) νni/ωk = 1 and c) νni/ωk = 10). Lower panels: ωI/ωk as a function of ΔU/cA,0 for the same set of parameters
as above. The red symbols represent the solutions of the full dispersion relation, i.e., Eq. (23); the blue solid lines correspond to the analytical
approximation given by Eq. (30), and the blue dashed lines show the unstable branch of the neutral fluid when there is no coupling (Eq. (26)).

case, perturbations exponentially grow with time (in the opposite
case perturbations are damped). We observe that for low shear
flow velocities there is only one unstable solution, correspond-
ing to that originally associated with the neutral component of
the plasma. A second unstable branch (originally associated with
ions) appears for higher flow velocities above the classical super-
Alfvénic threshold (Eq. (28)). Importantly, the only instability
present for slow, sub-Alfvénic speeds is that originally associ-
ated with the neutral component of the plasma regardless of the
collisional coupling between ions and neutrals. Ion-neutral col-
lisions reduce the growth rate of that instability to a great extent,
but collisions are not able to completely suppress the instabil-
ity (Watson et al. 2004; Soler et al. 2012). We overplot with a
blue solid line the analytical approximation to the growth rate
(Eq. (30)). The approximation shows that the growth rate is di-
rectly proportional to the square of the shear flow velocity and
inversely proportional to the ion-neutral collision frequency. As
expected, the approximation agrees well with the numerical re-
sults for low shear flow velocities. For weak coupling, the ap-
proximation is reasonably good for flow velocities up to 40%
the internal Alfvén speed. When the collision frequency is in-
creased, the range of agreement between the numerical results
and the approximation is greatly extended to super-Alfvénic
speeds. Finally, note that the stable solution in the left panel
that is absent from the other two panels (see the lowest curve).
The reason for this absence is that for high collision frequen-
cies this solution moves beyond the vertical scale used in the
plots. We are not interested in this solution because it is always
stable.

The explosive instability described by Ryutova (1988) would
for our set of parameters appear in the range 2 < ΔU/cA,0 <√

6 (when νni = 0; the existence of collisions between ions and

neutrals would modify this criterion). The lower panels of Fig. 2
show that the only solution with a positive imaginary part of the
angular frequency is the one associated with the neutrals. Thus,
we observe no evidence of the explosive instability. The only
additional remarkable feature in that range is found in the upper
panels of the same figure: the real part of the angular frequency
of one of the solutions associated with ions changes from being
negative to being positive, meaning a change in the direction of
the wave propagation.

To investigate in more detail the effect of ion-neutral colli-
sions on the instability for slow flows, we performed the fol-
lowing study. We fixed the shear flow velocity to ΔU/cA,0 = 1
and computed the frequencies as a function of the ion-neutral
collision frequency, νni. The chosen flow velocity is below
the classical threshold for the KHI in fully ionized plasmas
(Chandrasekhar 1961), so that only the neutral component is un-
stable in this configuration. The results are displayed in Fig. 3,
where the solutions originally associated with ions are shown as
red diamonds and those originally associated with neutrals are
plotted with blue crosses. There is always one unstable solution
for any value of νni, but its growth rate decreases when the col-
lision frequency increases. The growth rate is reduced because
neutrals feel indirectly, through the collisions with ions, the sta-
bilizing effect of the magnetic field. In addition, as discussed be-
fore, the analytical approximation for the growth rate, Eq. (30),
agrees well with the numerical results for high values of the col-
lision frequencies, as is consistent with the assumptions behind
the approximation. For the real part of the frequency, we note
that the frequency of solutions associated with ions decreases
until it reaches a plateau for νni/ωk > 1 (Soler et al. 2013), while
the frequency of the solution associated with the neutrals stays
constant all over the range.
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Fig. 3. a) ωR/ωk and b) ωI/ωk for the kink mode (m = 1) as a function
of νni/ωk, with ΔU/cA,0 = 1 and kza = 0.1. The red diamonds are the
solutions originally associated with the ions when there is no coupling,
while the blue crosses are the solutions for neutrals. The solid line is
the analytical approximation given by Eq. (30). In b) the shaded area
denotes the region of instability.

For the sake of completeness, we also studied the behavior
of the solutions depending on m. The mode with m = 0 is known
as the sausage mode and produces expansions and contractions
of the plasma tube, without displacing its axis (Edwin & Roberts
1983). Modes with m > 1 are known as fluting modes (Edwin
& Roberts 1983). As can be seen in Eq. (24), the TT limit is in-
dependent of the value of m for m � 0; this fact implies that in
the range of applicability of that approximation there will not be
substantial variations in the behavior of the different modes. To
observe some dissimilarities, we need to choose parameters be-
yond the TT case. We therefore kept the values of the parameters
used in the previous section, but changed the dimensionless lon-
gitudinal wavenumber to a higher value, namely, kza = 2, and
took νni/ωk = 1. The results show that there are minor differ-
ences for each solution: the solutions weakly depend on m and,
for large m, they become independent of this parameter.

We also repeated the calculations made in this section for
higher values of the longitudinal wavenumber, kz. We did not in-
clude the results here because they are not significantly different
from what we have already explained. When kz is increased, the
system moves away from the regime of the TT approximation,
but this only produces a slight variation in the real part of the
normalized angular frequencies, while the imaginary part, that
is, the growth rates, remains almost unaltered.

5. Application to solar prominence threads

In this section we perform a specific application to solar promi-
nence plasmas. We solved the full dispersion relation, Eq. (23),
with values representative of a quiescent prominence. Therefore,
the internal medium represents a prominence thread with densi-
ties of ions and neutrals such that ρi,0 + ρn,0 = 10−9 kg m−3,
a temperature of T0 = 7000 K and radius of a = 100 km;
the external medium is composed of inter-thread plasma with
ρi,ex + ρn,ex = 2 × 10−10 kg m−3 and Tex = 35 000 K, which
corresponds to the regime of prominence-corona transition re-
gion (PCTR). Densities and temperatures were chosen for the
equilibrium condition of the total pressure (thermal plus mag-
netic) to be fulfilled, that is, the total pressure is the same in both
media. The magnetic fields are B0 = Bex = 10 G. We focused
on the kink mode, so we took m = 1. The neutral-ion collision
frequencies depend on the temperatures and densities and were
computed using the following expression (see Braginskii 1965)

νni =
ρi

2mp

√
16kBT
πmp

σin, (32)

where mp is the proton mass, kB is the Boltzmann constant,
σin ≈ 5×10−19 m2 is the collisional cross section for a hydrogen
plasma.

Figure 4 displays the most unstable solution of Eq. (23) as a
function of the shear flow velocity for three different values of
the ionization fraction: the red dashed lines represent the fully
ionized case (χ = 0), the blue crosses represent a partially ion-
ized situation (χ = 4), and the black diamonds depict a weakly
ionized case (χ = 100). The left panel shows the results for a
wavelength λ = 100 km, which corresponds to a longitudinal
wavenumber kz = 2π/λ = 2π × 10−5 m−1. In the right panel the
wavelength used is λ = 1000 km, so kz = 2π × 10−6 m−1. The
shaded zone of Fig. 4 denotes a range of typical velocities (from
10 km s−1 to 30 km s−1) that have been measured in quiescent
prominences (Zirker et al. 1998; Berger et al. 2010). The limits
of this zone could slightly vary depending on the observations
that are chosen as reference, but this variation is not significant
for our analysis. We see that for a fully ionized case the instabil-
ity only appears for shear flow velocities far from the detected
values. In contrast, the cases with a neutral component show in-
stabilities for the entire range of velocities. Hence, partial ion-
ization may explain the occurrence of KHI in solar prominence
plasmas even when the observed flows are below the classical
threshold.

If we compare the two panels in Fig. 4, we note that in the
right panel the growth rates are lower than in the left. More pre-
cisely, they are about one order of magnitude smaller when the
shear flow velocities are high. Since the wavenumber in the right
panel is one order of magnitude smaller than in the left panfel,
this behavior agrees with Eq. (26). On the other hand, when the
velocities are low, the growth rates on the right are two orders
of magnitude smaller, which is consistent with what it is derived
from Eq. (30).

In addition, in Fig. 4 we overplot with solid lines the ap-
proximate analytical solutions given by the imaginary part of
Eq. (30). The growth rates obtained from the analytical approx-
imation are within the same order of magnitude; thus, Eq. (30)
may be used to calculate estimates of the growth rates of KHI in
a real prominence thread without the need of solving the much
more complex full dispersion relation.

Our analysis has demonstrated that KHI may be present
in quiescent prominences as a result of the effect of partial
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Fig. 4. Application to solar prominence threads. Growth rates as functions of the shear flow velocity for the following set of parameters: ρi,0+ρn,0 =
10−9 kg m−3, ρi,ex + ρn,ex = 2 × 10−10 kg m−3, B0 = Bex = 10−3 T, a = 100 km, T0 = 7000 K and Tex = 35 000 K; in the left panel the wavenumber
is kz = 2π/λ = 2π× 10−5 m−1 and in the right panel it is kz = 2π× 10−6 m−1. The red dashed lines correspond to a fully ionized plasma (χ = 0), the
blue crosses to a partially ionized case (χ = 4), and the black diamonds to a weakly ionized case (χ = 100). The solid lines represent the solutions
given by the analytical approximation in Eq. (30). The shaded zone denotes the region of flow velocity values that have been frequently measured
in solar prominences.

ionization. However, we are not yet allowed to state that this
magnetohydrodynamic instability may explain the observed tur-
bulent flows. Before we may do this, it is necessary to check
whether the growth rates given by the theory are consistent with
an instability that can be actually observed. Estimated lifetimes
of prominence threads are about 20 minutes (Lin et al. 2005).
For the region of highest observed velocities we computed the
following growth times of the instability (τ ≡ 1/ωI): a) λ =
100 km⇒ τ ∼ 100 s for the weakly ionized case (χ = 100) and
τ ∼ 1000 s for χ = 4; b) λ = 1000 km ⇒ τ ∼ 104 s (∼2.8 h) for
χ = 100 and τ ∼ 105 s (∼28 h) for χ = 4. The growth times ob-
tained for λ = 1000 km are longer than the typical lifetime of a
thread; therefore, an instability originated by a perturbation with
this wavelength cannot be the cause of the observed turbulent
flows. Conversely, the growth times for the shortest wavelength
are of the same order of magnitude or lower than the detected
lifetimes. This means that during the life of a prominence thread
there is enough time for the development of a KHI caused by a
perturbation with that wavelength.

In addition, the analytical approximation we have derived in
Sect. 3.1, that is, Eq. (30), may be a useful tool in the field of
prominence seismology (Ballester 2014). We introduce a new
parameter ν̄, called mean collision frequency of the plasma, that
is defined through the following relation

1
ν̄
=

2ρn,0ρn,ex(
ρn,0 + ρn,ex

) (
ρn,0νni,0 + ρn,exνni,ex

) · (33)

Thus, the imaginary part of Eq. (30) can be now written as

γKHI =
k2

z U2
0

ν̄
=

1
ν̄

4π2

λ2
U2

0 ⇒ ν̄ =
4π2

λ2

U2
0

γKHI
· (34)

Values of the three parameters that appear in the right-hand side
of Eq. (34), namely the flow velocity, the perturbation wave-
length, and the KHI growth rate, could be estimated from obser-
vations. Consequently, through this formula, we could estimate
the coupling degree between the two components of the plasma.

6. Conclusions

Although they may not embrace all the physics of the consid-
ered system, simple models like the one developed in this paper
allow focusing on a particular effect and facilitate interpreting
the results.

Here, we have studied how the existence of a neutral com-
ponent in a plasma affects the propagation of waves and the pos-
sible occurrence of KHI in a cylindrical magnetic flux tube. We
used a two-fluid theory to obtain the dispersion relation for lin-
ear incompressible waves. Then, we studied the dependence of
the solutions on several physical parameters, namely the shear
flow velocity, the collision frequency between ions and neutrals,
the longitudinal wavenumber, and the azimuthal wavenumber.
We have found that perturbations at an interface separating two
partially ionized plasmas are unstable for any velocity shear,
contrary to what occurs in fully ionized plasmas, in which the
effect of the magnetic field only allows the onset of the KHI
for super-Alfvénic shear flows. Perturbations with large longi-
tudinal wavenumbers have higher growth rates than those with
lower values of that parameter. The two constituent fluids of the
plasma, that is, neutral and ionized, are coupled through colli-
sions. This coupling exerts a significant influence: increasing the
ion-neutral collision frequency reduces the growth rates of the
unstable perturbations, although it is not possible to avoid the on-
set of the KHI. These results are consistent with previous works
like the ones developed in simpler configurations by Watson
et al. (2004) and Soler et al. (2012), for example. Equation (23)
of the present paper reduces to Eq. (37) of Soler et al. (2012) or
Eq. (26) of Watson et al. (2004) in the TT limit, that is, when the
product of the longitudinal wavenumber by the radius of the tube
is much lower than one. Moreover, in the absence of an equilib-
rium flow and when the densities of neutrals go to zero, we can
recover from our dispersion relation the incompressible limit of
Eq. (8a) of Edwin & Roberts (1983), corresponding to a fully
ionized cylindrical flux tube.

We have also found that the solutions of the dispersion re-
lation slightly depend on the azimuthal wavenumber. Modes
with a higher azimuthal wavenumber are more unstable, but this
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variation is only appreciable beyond the TT limit and has not a
great significance.

Then, we applied our model to a thread of a quiescent promi-
nence by choosing values for the densities and temperatures typ-
ical of those coronal features and solving the dispersion relation
for several degrees of ionization and wavelengths. We concluded
that for a certain combination of parameters, the turbulent flows
detected in quiescent prominences may be interpreted as conse-
quences of KHI in partially ionized plasmas. The growth rates
of the instability increase when the ionization fraction increases,
that is, when the relative densities of neutrals increase.

Furthermore, we have provided an analytical approximation
of the KHI growth rates for slow shear flows and strong ion-
neutral collisional coupling. This formula, Eq. (30), is easier to
handle than the full dispersion relation and thus easier to inter-
pret: growth rates of the KHI show a quadratic dependence on
the longitudinal wavenumber and the shear flow velocity and are
inversely proportional to the ion-neutral collision frequency. The
analytical approximation may be useful in the field of promi-
nence seismology. From it we can define a mean collision fre-
quency, ν̄ (given by Eq. (33)), that provides an estimate of the
coupling degree of the plasmas. Values of this parameter may be
computed from observational data.

And even though we have used a model where the magnetic
field is equal in both media, the conclusions extracted from its
analysis may also be valid when the magnetic field inside the
flux tube differs from that outside.

For the sake of simplicity, we ignored effects like gravity,
compressibility, or surface tension. We also chose a particular
alignment between the mass flow and the magnetic field: they
are parallel, a configuration that gives a higher stability to the
system. In future investigations the model used here can be im-
proved by including these effects, which may have affect the
KHI. Moreover, we only focused on the linear phase of the insta-
bility, while the nonlinear regime would likewise be of interest.
Moreover, we assumed that the plasma is only composed of hy-
drogen, while more elements with several states of ionization
are involved, of course. A much more complex model that in-
corporates various of these refinements would be needed to fully
understand the KHI in prominences, but such a model could not
be studied analytically, and numerical simulations would be re-
quired. Our paper is an improvement from previous investiga-
tions, but there is space for much future work in this field.
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