Fragile detection of solar g-modes

Hannah Schunker Jesper Schou, Patrick Gaulme, Laurent Gizon

Fossat+2017: super exciting result

I am interested in understanding the solar dynamo

Rotation - in particular radial differential rotation is important

Apply this method to other Sun-like stars

My goal was to understand the method and determine what is critical in order to apply the same principles to other stars

Schou+ 1998

Overview

- 1. Reproducing Fossat et al. 2017
- 2. Sensitivity to parameters
 - i. Fitting function to measure RTTT
 - ii. Smoothing of AC
 - iii. Start time of data series
 - iv. Cadence of RTTT measurements
 - v. Overlap of data segments
- 3. MC parameter study

Observations

Global Oscillations at Low Frequencies (GOLF) onboard ESA/NASA's Solar and Heliospheric Observatory (SOHO)

16.5 years, 80 second cadence Garcia et al. 2005

Measure changes to the round-trip traveltime (RTTT) of the *p*-modes over this 16 years of observations
Divide the data series into segments 8 hours long, with a 4 hour cadence (36130)
Zero-pad up to 10⁶ seconds (278 hours)

Compute the FT of each 8-hour padded segment Compute the mean 8-hour PS Fit a Gaussian between 1.5 - 5 mHz

Reproducing Fossat For each 8 hour segment, FT and filter for lowfrequency *p*-modes Normalise by the Gaussian fit Shift to zero frequency, zero pad 125 mHz, FT

regular spacing of the *p*-modes with same harmonic degree

Fig. 3. Example of one of the 34612 GOLF power spectra, limited to the range 2.32–3.74 mHz and divided by the envelope of the mean spectrum of Fig. 2.

 Measure the RTTT by least-squares fitting a quadratic function (4 hours 3 minutes) for each 8 hour segment

Compare average temporal power spectrum

Average temporal power spectrum

4 hours 3 minutes

16.5 year long series of the RTTT at a 4 hour cadence (clipped at +/- 240s)

 Perturbations should vary at the frequency of the density perturbations to the core caused by the g-modes

 Power spectrum should show the frequency at which the RTTT changes due to density perturbations of the core caused by g-modes

•Low frequency range looks similar. No sign of SOHO orbit or solar cycle

Fig. 8. Enlargement of the lowest frequency range of Fig. 7. The arrows indicate the frequencies of the solar cycle and of the one-year orbit.

•Autocorrelate the power spectrum •Peaks should correspond to rotational splittings; $\Omega_g = 1286 \text{ nHz}$, $2.9 \times \Omega_p$

displayed is bin number 7, i.e., 0.013 μ Hz. The vertical lines are at 210,

630, and 1260 nHz.

Qualitative reproduction

Testing the Sensitivity

Numerous subjectively chosen parameters

- amount of data used (full 16.5 years)
- cadence of the RTTT (4 hrs)
- length of the segments (8 hrs)
- amount of zero-padding (lots)
- normalisation (Gaussian)
- frequency band (2.32-3.74 mHz)
- width to fit (800 seconds)
- fitting function to measure RTTT (quadratic)
- smoothing (6 pixels ~ 11 micro Hz)

- ...

Overview

- 1. Reproducing Fossat et al. 2017
- 2. Sensitivity to parameters
 - i. Fitting function to measure RTTT
 - ii. Smoothing of AC
 - iii. Start time of data series
 - iv. Cadence of RTTT measurements
 - v. Overlap of data segments
- 3. MC parameter study

•Measure the RTTT by fitting a quadratic function (4 hours 3 minutes)

Measure the RTTT by fitting a quadratic function (4 hours 3 minutes)

•Try other fitting functions

Try fitting other functions Clip at +/- 240s

•Try fitting other functions

Overview

- 1. Reproducing Fossat et al. 2017
- 2. Sensitivity to parameters
 - i. Fitting function to measure RTTT
 - ii. Smoothing of power spectrum
 - iii. Start time of data series
 - iv. Cadence of RTTT measurements
 - v. Overlap of data segments
- 3. MC parameter study

Power spectrum

Box-car smoothing 6 pixels (11 µHz)

Auto-correlation

Smoothing is key to obtaining the significance

Required because the modes are not strictly equally spaced (asymptotic)

Overview

- 1. Reproducing Fossat et al. 2017
- 2. Sensitivity to parameters
 - i. Fitting function to measure RTTT
 - ii. Smoothing of AC
 - iii. Start time of data series
 - iv. Cadence of RTTT measurements
 - v. Overlap of data segments
- 3. MC parameter study

Removed 2 hours from beginning of 16.5 year data series

Repeated exactly the same original analysis

Schunker+ 2018

Overview

- 1. Reproducing Fossat et al. 2017
- 2. Sensitivity to parameters
 - i. Fitting function to measure RTTT
 - ii. Smoothing of AC
 - iii. Start time of data series
 - iv. Cadence of RTTT measurements
 - v. Overlap of data segments
- 3. MC parameter study

Test: cadence of RTTT measurements

Original segments 8 hrs long with a 4 hr cadence Now we try 10 hrs long with a 5 hr cadence

 Scaled the clipping of RTTT fluctuations by the ratio to the rms of the nominal case

Test: offset and cadence

Test: offset and cadence

Overview

- 1. Reproducing Fossat et al. 2017
- 2. Sensitivity to parameters
 - i. Fitting function to measure RTTT
 - ii. Smoothing of AC
 - iii. Start time of data series
 - iv. Cadence of RTTT measurements
 - v. Overlap of data segments
- 3. MC parameter study

No overlapping segments - 8 hr segment lengths and an 8 hr cadence No offset

No overlapping segments –> different noise properties No offset

Qualitative reproduction of *Fossat*+ 2017 4 hour cadence, 8 hour segment length

8 hour cadence, 8 hour segment length, NO OVERLAP

Power spectrum looks similar

Note: Nyquist is now halved

Power spectrum looks similar

Note: Nyquist is now halved

Original'
8 hr segment
length,
4 hr cadence,
AC
5.5-35µHz

Original' 8 hr segment
length,
4 hr cadence,
AC
5.5-17µHz

Original'
8 hr segment
length,
4 hr cadence,
AC
5.5-17µHz

'No overlap' 8 hr segment
length,
8 hr cadence,
AC
5.5-17µHz

Original'
8 hr segment
length,
4 hr cadence,
AC
5.5-17µHz

No overlap' 8 hr segment
length,
8 hr cadence,
AC
5.5-17µHz

Summary

- 1. Qualitatively reproduce Fig. 10 Fossat et al. 2017
- 2. Detection is sensitive to a number of parameters in the analysis method
 - i. Fitting function to measure RTTT
 - ii. Smoothing of AC
 - iii. Start time of data series
 - iv. Cadence of RTTT measurements (5 hrs; $4.3\Omega_p$)
 - v. Overlap of the segments to measure RTTT

Conclusion:

- easily broken fragile detection
- start time dependence extremely worrying

Further Tests of Robustness

- 1. Independent instrument confirmation *MDI, HMI, BiSON, GONG*
- 2. Explore physical assumptions Assume: $\ell = 2$ $\Omega_g = 458 \text{ nHz}$
- 3. Other stars with *g*-, *p*-, and mixed modes *Kepler*