Few words on g-mode asymptotic

T. Corbard, J. Provost, L. Bigot

1 Asymptotic model Provost \& Berthomieu (1986)

Their Eq.(4a) writes:

$$
P_{n, l}=\frac{P_{0}}{\sqrt{l(l+1)}}\left[n+\frac{l}{2}-\frac{1}{4}-\theta\right]+\frac{P_{0}^{2}}{P_{n, l}} \frac{l(l+1) V_{1}+V_{2}}{l(l+1)}
$$

- Use Cowling approximation
- θ is not a constant but is function of the frequency and I
- V_{1} depends on the stratification near the center of the Sun
- V_{2} and θ depends predominantly on the stratification and mixing processes at the base of the convection zone
- Possible interplay between V_{2} and θ

Few words on g-mode asymptotic

T. Corbard, J. Provost, L. Bigot

1 Asymptotic model Provost \& Berthomieu (1986)

Their Eq.(4a) writes:

$$
P_{n, l}=\frac{P_{0}}{\sqrt{l(l+1)}}\left[n+\frac{l}{2}-\frac{1}{4}-\theta\right]+\frac{P_{0}^{2}}{P_{n, l}} \frac{l(l+1) V_{1}+V_{2}}{l(l+1)}
$$

- Use Cowling approximation

$$
L P \sim\left(|n|+\frac{1}{2} l+\alpha_{\mathrm{g}}\right) P_{0}-\left(A_{\mathrm{g}} L^{2}-B_{\mathrm{g}}\right) \frac{P_{0}^{2}}{P}+\ldots,
$$

Scherrer \& Gough

- θ is not a constant but is function of the frequency and I
- V_{1} depends on the stratification near the center of the Sun
- V_{2} and θ depends predominantly on the stratification and mixing processes at the base of the convection zone
- Possible interplay between V_{2} and θ

Few words on g-mode asymptotic

T. Corbard, J. Provost, L. Bigot

Fig. 2. Variation of θ relatively to $\left[\sigma^{2} / l(l+1)\right]^{1 / 3}$ for the standard solar model and for $l=1,4$ at first and second order relatively to σ, respectively curves (a) and (b). The dotted lines represent the asymptotic behavior (formula 8). The dashed vertical lines delimit the range of nondimensional frequencies corresponding approximately to modes of radial order $10 \leq$ $k \leq 35, \varphi_{0}=138, \varphi_{1}=-6.3$

Fig. 4. Relative variation of the periods relatively to the radial order k, measuring: (a) the numerical errors; (b) the effect of the perturbation of gravitational potential; (c) the importance of second order terms in asymptotic formula(10) $(\times l=1 ;+l=2 ; * l=3 ; \square l=4)$

g-mode asymptotic : observations

2 Fossat et al. (2017)

$$
\text { Assuming that } n \gg 1: \quad P_{l}=\frac{P_{0}}{\sqrt{l(l+1)}}
$$

$$
P_{n, l}=P_{n_{0}, l}+\left(n-n_{0}\right)\left(P_{l}-\frac{\alpha}{n n_{0}}\right)+\mathrm{O}\left(\frac{1}{n^{3}}\right) \quad \alpha=P_{l}\left(l(l+1) V_{1}+V_{2}\right)
$$

Fossat et al. 2017

$$
\alpha_{1}=1350 \mathrm{~s} \quad P_{1} \simeq 1443 \mathrm{~s} \Rightarrow 2 V_{1}+V 2 \simeq 0.94
$$

Fossat \& Schmider $2018-P_{n, 1}=P_{-22,1}+(|n|-22)\left(P_{1}-50 /|n|\right)$ for $n=-95 \ldots-23$.

$$
-P_{n, 2}=P_{-36,2}+(|n|-36)\left(P_{2}-4 /|n|\right) \text { for } n=-142 \ldots-37
$$

$$
\begin{aligned}
& \alpha_{1}=1100 \mathrm{~s} \\
& \alpha_{2}=144 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& V_{1} \simeq-0.147 \\
& V_{2} \simeq 1.06
\end{aligned}
$$

Asymptotic parameters from models

Two approaches:
(1) Fitting theoretical periods
=> model+oscillation code
(2) Directly from a model

Numerical frequencies : CESAM+GYRE

CESAM

$\mathrm{M}=1.988475000000 \mathrm{E}+33 \mathrm{~g}$
$\mathrm{R}=6.958842022607 \mathrm{E}+10 \mathrm{~cm}$
$\mathrm{L}=3.822689401918 \mathrm{E}+33 \mathrm{erg} / \mathrm{s}$
Teff $=5774.2 \mathrm{~K}$
$Y=0.2423$
Z/X=0.0244
Age $=4.57 \mathrm{~Gy}$
Base of $c z=0.712$
$\mathrm{P} 0=35.34 \mathrm{~min}$
OPAL,
MLT Böhm-Vitesse (alpha=2.16),
diffusion Michaud-Proffitt,
NACRE for nuclear reactions, MARCS atmosphere, no rotation, no overshoot.

Numerical frequencies : CESAM+GYRE

CESAM

$\mathrm{M}=1.988475000000 \mathrm{E}+33 \mathrm{~g}$
$\mathrm{R}=6.958842022607 \mathrm{E}+10 \mathrm{~cm}$
$\mathrm{L}=3.822689401918 \mathrm{E}+33 \mathrm{erg} / \mathrm{s}$
Teff $=5774.2 \mathrm{~K}$
$Y=0.2423$
$Z / X=0.0244$
Age $=4.57 \mathrm{~Gy}$
Base of $\mathrm{cz}=0.712$
$\mathrm{P} 0=35.34 \mathrm{~min}$
OPAL,
MLT Böhm-Vitesse (alpha=2.16),
diffusion Michaud-Proffitt,
NACRE for nuclear reactions, MARCS atmosphere,
no rotation, no overshoot.
L. Bigot

Fitting the 2d order asymptotic to numerical frequencies

g-mode asymptotic : observations

2 Fossat et al. (2017)

$$
\begin{aligned}
& \text { Assuming that } n \gg 1: \quad P_{l}=\frac{P_{0}}{\sqrt{l(l+1)}} \\
& P_{n, l}=P_{n_{0}, l}+\left(n-n_{0}\right)\left(P_{l}-\frac{\alpha}{n n_{0}}\right)+\mathrm{O}\left(\frac{1}{n^{3}}\right) \quad \alpha=P_{l}\left(l(l+1) V_{1}+V_{2}\right)
\end{aligned}
$$

Fossat et al. 2017

$$
\alpha_{1}=1350 \mathrm{~s} \quad P_{1} \simeq 1443 \mathrm{~s} \Rightarrow 2 V_{1}+V 2 \simeq 0.94
$$

Fossat \& Schmider 2018

$$
\begin{align*}
\alpha_{1} & =1100 \mathrm{~s} \\
\alpha_{2} & =144 \mathrm{~s}
\end{align*}
$$

$$
\begin{aligned}
& V_{1} \simeq-0.147 \\
& V_{2} \simeq 1.06
\end{aligned}
$$

Comparision Numeric / Asymptotic

Comparision Numeric / Asymptotic

Asymptotic parameters from models

Two approaches:
(1) Fitting theoretical periods
=> model+oscillation code
(2) Directly from a model
=> compute $\mathrm{V}_{1}, \mathrm{~V}_{2}$ directly as a function of the model quantities

$$
P_{n, l}=\frac{P_{0}}{\sqrt{l(l+1)}}\left[n+\frac{l}{2}-\frac{1}{4}-\theta\right]+\frac{P_{0}^{2}}{P_{n, l}} \frac{l(l+1) V_{1}+V_{2}}{l(l+1)}
$$

$$
P_{0}=2 \pi^{2}\left(\int_{0}^{R} \frac{N}{r} \mathrm{~d} r\right)^{-1}: \begin{aligned}
& -35.355 \mathrm{mn} \\
& \begin{array}{l}
\text { Lower bound of } \\
\text { previous histogram }
\end{array}
\end{aligned}
$$

V_{1}

$$
\begin{gathered}
V_{1}=\frac{1}{P_{0}} \lim _{\epsilon \rightarrow 0}\left(\int_{\epsilon}^{r_{c}} \frac{\mathrm{~d} r}{N r}-\frac{1}{N(\epsilon)}\right) \\
\int_{\epsilon}^{r_{1}} \frac{\mathrm{~d} r}{N r}=\int_{\epsilon}^{r_{1}} \frac{\mathrm{~d} r}{\alpha r^{2}}=-\frac{1}{\alpha r_{1}}+\frac{1}{\alpha \epsilon}=-\frac{1}{N\left(r_{1}\right)}+\frac{1}{N(\epsilon)} \\
V_{1}=\frac{1}{P_{0}}\left(\int_{r_{1}}^{r_{c}} \frac{\mathrm{~d} r}{N r}-\frac{1}{N\left(r_{1}\right)}\right) \quad r_{1}: \text { first point of the model }
\end{gathered}
$$

$$
V_{1}=\frac{1}{P_{0}}\left(\int_{r_{1}}^{r_{c}} \frac{\mathrm{~d} r}{N r}-\frac{1}{N\left(r_{1}\right)}\right)
$$

construction $\mathrm{V} 1=\left[\operatorname{int}_{r_{\text {min }}}{ }^{{ }^{\mathrm{c}} \mathrm{c}}(\mathrm{d} x /(x \mathrm{~N}))-1 / \mathrm{N}\left(r_{\text {min }}\right)\right] / P_{0}$

V_{2}

$$
\begin{gather*}
V_{2}=\frac{1}{P_{0}} \lim _{\epsilon \rightarrow 0}\left(\int_{0}^{r_{c}-\epsilon}\left[\frac{1}{4}\left(\frac{\rho^{\prime}}{\rho}\right)^{2}-\frac{1}{2}\left(\frac{\rho^{\prime}}{\rho}\right)^{\prime}+A^{\prime}-\frac{1}{16}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{2}+\frac{1}{4}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{\prime}\right] \frac{\mathrm{d} r}{\varphi^{\frac{1}{2}}}+\frac{5}{24} \frac{1}{u\left(r_{c}-\epsilon\right)}\right) \\
\varphi=\frac{N^{2}}{r^{2}} ; \quad A=\frac{\rho^{\prime}}{\rho}-\frac{p^{\prime}}{\Gamma p}=-\frac{N^{2}}{g} ; \quad u\left(r_{c}-\epsilon\right)=\frac{3}{2} \int_{r_{c}-\epsilon}^{r_{c}} \varphi^{\frac{1}{2}} \mathrm{~d} r \tag{2}\\
V_{2}=V_{2}^{1}+V_{2}^{2} \tag{3}\\
V_{2}^{1}=\frac{1}{P_{0}}\left(\int_{0}^{r_{c}} \frac{r \mathrm{~d} r}{N}\left[\frac{1}{4}\left(\frac{\rho^{\prime}}{\rho}\right)^{2}-\frac{1}{2}\left(\frac{\rho^{\prime}}{\rho}\right)^{\prime}+A^{\prime}\right]\right) \tag{4}\\
V_{2}^{2}=\frac{1}{P_{0}} \lim _{\epsilon \rightarrow 0}\left(\int_{0}^{r_{c}-\epsilon}\left[-\frac{1}{16}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{2}+\frac{1}{4}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{\prime}\right] \frac{\mathrm{d} r}{\varphi^{\frac{1}{2}}}+\frac{5}{24} \frac{1}{u\left(r_{c}-\epsilon\right)}\right) \tag{5}
\end{gather*}
$$

$$
\begin{gather*}
V_{2}^{2}=\frac{1}{P_{0}} \lim _{\epsilon \rightarrow 0}\left(\int_{0}^{r_{c}-\epsilon}\left[-\frac{1}{16}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{2}+\frac{1}{4}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{\prime}\right] \frac{\mathrm{d} r}{\varphi^{\frac{1}{2}}}+\frac{5}{24} \frac{1}{u\left(r_{c}-\epsilon\right)}\right) \tag{5}\\
\frac{1}{4} \int_{0}^{r_{c}-\epsilon}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{\prime} \varphi^{-\frac{1}{2}} \mathrm{~d} r=\frac{1}{4}\left[\frac{\varphi^{\prime}}{\varphi^{\frac{3}{2}}}\right]_{0}^{r_{c}-\epsilon}+\frac{1}{8} \int_{0}^{r_{c}-\epsilon}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{2} \frac{\mathrm{~d} r}{\varphi^{\frac{1}{2}}} \tag{6}\\
{\left[\frac{\varphi^{\prime}}{\varphi^{\frac{3}{2}}}\right]_{r=0}=0} \tag{7}\\
V_{2}^{2}=\frac{1}{P_{0}} \lim _{\epsilon \rightarrow 0}\left(\frac{1}{16} \int_{0}^{r_{c}-\epsilon}\left(\frac{\varphi^{\prime}}{\varphi}\right)^{2} \frac{\mathrm{~d} r}{\varphi^{\frac{1}{2}}}+\frac{1}{4}\left(\frac{\varphi^{\prime}}{\varphi^{\frac{3}{2}}}\right)_{r_{c}-\epsilon}^{24}+\frac{5}{2} \frac{1}{u\left(r_{c}-\epsilon\right)}\right) \tag{8}\\
\varphi(r) \underset{r \rightarrow r_{c}}{\simeq} \varphi_{1}\left(r_{c}-r\right) ; \quad \varphi^{\prime}=-\varphi_{1} ; \quad \frac{\varphi^{\prime}}{\varphi}=-\frac{1}{r_{c}-r} \tag{9}
\end{gather*}
$$

$$
V_{2}^{2}=\frac{1}{P_{0}}\left(\frac{1}{16} \int_{0}^{r_{\max }} \frac{\varphi^{\prime 2}}{\varphi^{\frac{5}{2}}} \mathrm{~d} r-\frac{1}{24 \varphi\left(r_{\max }\right)\left(r_{c}-r_{\max }\right)}\right) \quad \quad \begin{aligned}
& r_{\max }: \text { first point below the } \\
& \text { convective zone }
\end{aligned}
$$

$$
V_{2}^{1}=\frac{1}{P_{0}}\left(\int_{0}^{r_{c}} \frac{r \mathrm{~d} r}{N}\left[\frac{1}{4}\left(\frac{\rho^{\prime}}{\rho}\right)^{2}-\frac{1}{2}\left(\frac{\rho^{\prime}}{\rho}\right)^{\prime}+A^{\prime}\right]\right)
$$

somv2(full); somv2_2-1/24(dashed) su

$$
V_{2}^{2}=\frac{1}{P_{0}}\left(\frac{1}{16} \int_{0}^{r_{\max }} \frac{\varphi^{\prime 2}}{\varphi^{\frac{5}{2}}} \mathrm{~d} r-\frac{1}{24 \varphi\left(r_{\max }\right)\left(r_{c}-r_{\max }\right)}\right)
$$

1000 points CESAM model

10000 points CESAM model

Numerical errors (for a given model)

difference GYRE - NOSC

