Solar opacities, neutrinos, and asymptotic period spacing

Aldo Serenelli Institute of Space Sciences

ISSI – March 2019

Institute of Space Sciences

Opacities

Helioseismic probes and pp **n**s depend on "effective" opacity profiles: opacity models + composition details in F. Villante's talk

Status of opacity models in 2014 @ "A special Borexino Event"

Few percent differences in solar interiors Only theoretical calculations available

Opacities – Experimental result

First ever opacity measurement at conditions close to base of the solar convective

Opacities – Experimental result

First ever opacity measurement at conditions close to base of the solar convective

Solar opacities – intrinsic error

What is the true opacity error function? Linear, OP-OPAL, etc?

Linear model

Solar opacities – intrinsic error

Locally a gaussian function of mean μ

 $f(x) \sim N(m(x), C(x, x'))$ $\rho(x, x') = e^{-|x-x'|^2/(2L^2)}$

Correlation between two points L correlation length

Define sensible priors for L determine posterior from data

Use data to extract posteriors of all solar input parameters, including shape of opacity function

Solar opacities – test the models

		Linear					Gaussian process			
	GS98		AGSS09met		GS98		AGSS09met			
\vec{O}	n	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}\left(\sigma\right)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	p -value (σ)	
$Y_{\rm S} + R_{\rm CZ}$	2	0.9	0.5	6.5	2.1	0.7	0.35	6.9	2.2	
δc	30	58.0	3.2	76.1	4.5	35.6	1.2	40.2	1.6	
all v -fluxes	8	6.0	0.5	7.0	0.6	5.9	0.44	7.0	0.6	
global	40	65.0	2.7	94.2	4.7	45.1	1.1	57.1	2.1	

Solar opacities – test the models

		Linear					Gaussian process			
			GS98	AG	SS09met		GS98	AG	SS09met	
\vec{O}	n	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	
$Y_{\rm S} + R_{\rm CZ}$	2	0.9	0.5	6.5	2.1	0.7	0.35	6.9	2.2	
δc	30	58.0	3.2	76.1	4.5	35.6	1.2	40.2	1.6	
all ν -fluxes	8	6.0	0.5	7.0	0.6	5.9	0.44	7.0	0.6	
global	40	65.0	2.7	94.2	4.7	45.1	1.1	57.1	2.1	

Solar opacities – test the models

			Linear					Gaussian process			
				GS98	AG	SS09met		GS98	AG	SS09met	
	$ec{\mathscr{O}}$	n	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	$\mathscr{T}(\vec{\mathscr{O}})$	$\operatorname{p-value}(\sigma)$	
Ys	$r + R_{CZ}$	2	0.9	0.5	6.5	2.1	0.7	0.35	6.9	2.2	
	δc	30	58.0	3.2	76.1	4.5	35.6	1.2	40.2	1.6	
all	<i>v</i> -fluxes	8	6.0	0.5	7.0	0.6	5.9	0.44	7.0	0.6	
g	global	40	65.0	2.7	94.2	4.7	45.1	1.1	57.1	2.1	

	B16-AGSS09met/B16-GS98				
Data	LIN-OP	GP-OP			
v	-0.23	-0.27			
$+Y_S+R_{CZ}$	-1.6	-2.2			
+ sound speeds	-14.7	-4.1			

Solar opacities – what data tell us

$$\delta \kappa(T) = \delta \kappa_{\rm I}(T) + \delta \kappa_{\rm Z}(T)$$

$$\delta \kappa_{\rm Z}(T) \equiv \sum_i \frac{\partial \ln \kappa}{\partial \ln Z_i} \delta z_i$$

$$m_{ij} = \frac{\partial \log c_i}{\partial \log p_j}$$

	L_{\odot}	R_{\odot}	$(Z/X)_{\odot}$	constraints c _i
$lpha_{ m mlt}$	0.06	-0.19	0.06	
$Y_{ m ini}$	2.35	0.56	0.08	
$Z_{ m ini}$	-0.73	-0.14	1.11	

parameters p_j

$$m_{ij} = \frac{\partial \log c_i}{\partial \log p_j}$$

Z/X determines solar model composition $Z_{ini} \& Y_{ini}$ But it is in fact opacity (κ (Z) + Z)

Solar Neutrinos – experimental results

⁸B flux negligible for energetics (<0.01%)

Other fluxes more relevant: ⁷Be, pep, pp

Detector: organic liquid scintillator high light output very low energy threshold ~ 100keV initial target: ⁷Be

Extreme technical difficulty:

- many sources of background from radioactive nuclei
- high radiopurity needed
- scintillator produces its own background: ¹¹C, ¹⁴C

Data taking for more than 10 years - Observed neutrino spectrum (published 2 weeks ago) – Caccinaga et al. 2018 (Borexino Collaboration)

Signal shown in red – measured spectrum in black

 ν fluxes: Solar models vs. Borexino

No oscillations included – pure measurement

Table 2 | Borexino experimental solar-neutrino results

Solar neutrino	Rate (counts per day per 100 t)	Flux (cm ^{-2} s ^{-1})	Flux–SSM predictions (cm $^{-2}$ s $^{-1}$)
рр	$134\!\pm\!10^{+6}_{-10}$	$(6.1\!\pm\!0.5^{+0.3}_{-0.5})\times10^{10}$	$\begin{array}{ll} 5.98(1.0\pm0.006)\times10^{10} & (\text{HZ}) \\ 6.03(1.0\pm0.005)\times10^{10} & (\text{LZ}) \end{array}$
⁷ Be	$48.3 \!\pm\! 1.1_{-0.7}^{+0.4}$	$(4.99 {\pm} 0.11 {}^{+0.06}_{-0.08}) \times 10^9$	$\begin{array}{ll} 4.93(1.0\pm0.06)\times10^9 & (\text{HZ}) \\ 4.50(1.0\pm0.06)\times10^9 & (\text{LZ}) \end{array}$
рер (HZ)	$2.43 \!\pm\! 0.36 \substack{+0.15 \\ -0.22}$	$(1.27\!\pm\!0.19^{+0.08}_{-0.12})\times10^8$	$\begin{array}{ll} 1.44(1.0\pm0.01)\times10^8 & (\text{HZ}) \\ 1.46(1.0\pm0.009)\times10^8 & (\text{LZ}) \end{array}$
pep (LZ)	$2.65 \!\pm\! 0.36 \substack{+0.15 \\ -0.24}$	$(1.39 {\pm} 0.19 {}^{+0.08}_{-0.13}) \times 10^8$	$\begin{array}{ll} 1.44(1.0\pm0.01)\times10^8 & (\text{HZ}) \\ 1.46(1.0\pm0.009)\times10^8 & (\text{LZ}) \end{array}$
⁸ B _{HER-I}	$0.136\substack{+0.013+0.003\\-0.013-0.003}$	$(5.77^{+0.56}_{-0.56}{}^{+0.15}_{-0.15})\times10^6$	$\begin{array}{lll} 5.46(1.0\pm0.12)\times10^6 & (\text{HZ}) \\ 4.50(1.0\pm0.12)\times10^6 & (\text{LZ}) \end{array}$
⁸ B _{HER-II}	$0.087\substack{+0.080+0.005\\-0.010-0.005}$	$(5.56^{+0.52}_{-0.64}{}^{+0.33}_{-0.33})\times10^{6}$	$\begin{array}{lll} 5.46(1.0\pm0.12)\times10^6 & (\text{HZ}) \\ 4.50(1.0\pm0.12)\times10^6 & (\text{LZ}) \end{array}$
⁸ B _{HER}	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39}_{-0.41}{}^{+0.03}_{-0.03})\times10^{6}$	$\begin{array}{lll} 5.46(1.0\pm0.12)\times10^6 & (\text{HZ}) \\ 4.50(1.0\pm0.12)\times10^6 & (\text{LZ}) \end{array}$
CNO	<8.1 (95% C.L.)	${<}7.9 \times 10^8$ (95% C.L.)	$\begin{array}{ll} 4.88(1.0\pm0.11)\times10^8 & (\text{HZ}) \\ 3.51(1.0\pm0.10)\times10^8 & (\text{LZ}) \end{array}$
hep	<0.002 (90% C.L.)	${<}2.2 \times 10^5$ (90% C.L.)	$\begin{array}{ll} 7.98(1.0\pm0.30)\times10^3 & (\text{HZ}) \\ 8.25(1.0\pm0.12)\times10^3 & (\text{LZ}) \end{array}$

experimental fluxes after oscillations

No luminosity constraint – purely experimental result

$$rac{L_{
m pp-chain}}{L_{\odot}} = 1.03^{+0.08}_{-0.07} \, [^{+0.21}_{-0.18}] \qquad ext{and} \qquad rac{L_{
m CNO}}{L_{\odot}} = 0.008^{+0.005}_{-0.004} \, [^{+0.014}_{-0.007}]$$

$$\frac{L_{\odot}(\text{neutrino-inferred})}{L_{\odot}} = 1.04 \begin{bmatrix} +0.07\\ -0.08 \end{bmatrix} \begin{bmatrix} +0.20\\ -0.18 \end{bmatrix}.$$

With luminosity constraint – L_{\odot} = L_{nuc}

$$\frac{L_{\rm pp-chain}}{L_{\odot}} = 0.991^{+0.005}_{-0.004} \left[^{+0.008}_{-0.013} \right] \quad \Longleftrightarrow \quad \frac{L_{\rm CNO}}{L_{\odot}} = 0.009^{+0.004}_{-0.005} \left[^{+0.013}_{-0.008} \right]$$

Bergstrom et al. 2016

Opacities – new calculations

Old generation

- OPAL Iglesias et al. 1996
- Opacity Project (OP) Badnell et al. 2005

New generation

- > OPAS Blancard et al. 2012 now available Mondet et al. 2015 (only for AGSS09 composition)
- Los Alamos (OPLIB) Colgan et al. 2016 This is the most complete set from new generation

New opacities lead to some variations in sound speed profiles but nothing too dramatic

New OPLIB opacities lead to indecisive results for helioseismic probes

not all agree (disagree) with high(low) Z solar models

ISSI - 2019

pp-chain neutrinos and Π_1

pp-chain neutrinos and Π_1

ISSI - 2019

pp-chain neutrinos and Π_1

CNO fluxes

Core temperature fixed by 8B (very sensitive)

 ϵ_{CNO} measured by neutrinos -- > determine X_{CNO}

CNO in Borexino

Difficulty: ²¹⁰Bi background

One way: determine ²¹⁰Bi by measuring ²¹⁰Po

Strategy towards CNO measurement

- Main route: using ²¹⁰Bi-²¹⁰Po temporal evolution to measure "support term" for ²¹⁰Po (secular equilibrium in ²¹⁰Pb sub-chain)
 206
- Option: further purification of the LS by water extraction to reduce ²¹⁰Bi

Instabilities observed in the temporal evolution of the ²¹⁰Po (making impossible precision ²¹⁰Bi) evaluation of the were found to be the result of the temperature instabilities the of surrounding

Hardware solution for thermal stabilization : thermal insulation of the external tank

²¹⁰Po in std FV

Hemishell Analysis

day 1300: insulation (summer 2015)

emi-shell #27

Hemi-shell #26

CNO sensitivity

Depends on both ²¹⁰Bi and pep-neutrino rates. We assume that ²¹⁰Bi will be measured (10-20%) and pep-rate can be constrained by constraining pp/pep ratio in the fit.

v(CNO) median p-value (LZ/HZ hypothesis)

Solar opacities – what data tell us

Power-law dependences

#	S11	S33	S34	Se7	S17	Shep	S114	S116
рр	0.101	0.034	-0.066	0.000	0.000	0.000	-0.006	-0.000
рер	-0.222	0.049	-0.095	0.000	0.000	0.000	-0.010	0.000
hep	-0.104	-0.463	-0.081	0.000	0.000	1.000	-0.006	-0.000
Be7	-1.035	-0.440	0.874	0.002	-0.001	0.000	-0.001	0.000
B8	-2.665	-0.419	0.831	-0.998	1.028	0.000	0.007	0.000
N13	-2.114	0.030	-0.061	0.001	0.000	0.000	0.762	0.001
015	-2.916	0.023	-0.050	0.001	0.000	0.000	1.051	0.001
F17	-3.072	0.021	-0.046	0.001	0.000	0.000	0.007	1.158
Ys	0.131	-0.005	0.010	0.000	0.000	0.000	0.001	0.000
RCZ	-0.059	0.002	-0.004	0.000	0.000	0.000	-0.000	-0.000

Power-law dependences

age	diff	lumi	opacA	opacB
-0.085	-0.013	0.773	-0.084	-0.019
-0.003	-0.018	0.999	-0.270	-0.001
-0.125	-0.039	0.149	-0.395	-0.107
0.753	0.132	3.466	1.332	0.380
1.319	0.278	6.966	2.863	0.658
0.863	0.345	4.446	1.592	0.314
1.328	0.395	5.960	2.220	0.456
1.424	0.418	6.401	2.427	0.503
-0.195	-0.077	0.351	0.608	0.255
-0.081	-0.018	-0.016	0.008	-0.079

Power-law dependences

С	Ν	0	Ne	Mg	Si	S	Ar	Fe	
-0.007	-0.001	-0.005	-0.005	-0.003	-0.009	-0.006	-0.001	-0.019	рр
-0.014	-0.002	-0.011	-0.005	-0.003	-0.012	-0.013	-0.004	-0.060	рер
-0.008	-0.002	-0.024	-0.018	-0.016	-0.036	-0.027	-0.006	-0.066	hep
-0.000	0.002	0.057	0.053	0.052	0.106	0.075	0.018	0.209	be7
0.022	0.007	0.128	0.102	0.092	0.198	0.138	0.034	0.498	b8
0.864	0.154	0.073	0.051	0.047	0.110	0.078	0.020	0.272	n13
0.819	0.209	0.104	0.075	0.068	0.153	0.107	0.027	0.388	o15
0.026	0.007	1.112	0.082	0.074	0.167	0.116	0.029	0.424	f17
-0.008	-0.001	0.019	0.032	0.032	0.062	0.042	0.010	0.084	уs
-0.003	-0.003	-0.024	-0.012	-0.004	0.003	0.005	0.001	-0.008	rcz

Solar neutrino	Rate (counts per day per 100 t)	Flux (cm ⁻² s ⁻¹)	Flux–SSM predictions (cm ⁻² s ⁻¹)
рр	$134\!\pm\!10^{+6}_{-10}$	(6.1±0.5 $^{+0.3}_{-0.5}$) × 10 ¹⁰	$\begin{array}{ll} 5.98(1.0\pm0.006)\times10^{10} & (\text{HZ}) \\ 6.03(1.0\pm0.005)\times10^{10} & (\text{LZ}) \end{array}$
⁷ Be	$48.3\!\pm\!1.1^{+0.4}_{-0.7}$	$(4.99 {\pm} 0.11 {}^{+0.06}_{-0.08}) \times 10^9$	$\begin{array}{ll} 4.93(1.0\pm0.06)\times10^9 & (\text{HZ}) \\ 4.50(1.0\pm0.06)\times10^9 & (\text{LZ}) \end{array}$
рер (HZ)	$2.43\!\pm\!0.36^{+0.15}_{-0.22}$	$(1.27{\pm}0.19{}^{+0.08}_{-0.12})\times10^8$	$\begin{array}{ll} 1.44(1.0\pm0.01)\times10^8 & (\text{HZ}) \\ 1.46(1.0\pm0.009)\times10^8 & (\text{LZ}) \end{array}$
pep (LZ)	$2.65\!\pm\!0.36^{+0.15}_{-0.24}$	$(1.39 {\pm} 0.19 {}^{+0.08}_{-0.13}) \times 10^8$	$\begin{array}{ll} 1.44(1.0\pm0.01)\times10^8 & (\text{HZ}) \\ 1.46(1.0\pm0.009)\times10^8 & (\text{LZ}) \end{array}$
⁸ B _{HER-I}	$0.136\substack{+0.013+0.003\\-0.013-0.003}$	$(5.77^{+0.56+0.15}_{-0.56-0.15})\times10^{6}$	$\begin{array}{ll} 5.46(1.0\pm0.12)\times10^6 & (HZ) \\ 4.50(1.0\pm0.12)\times10^6 & (LZ) \end{array}$
⁸ B _{HER-II}	$0.087\substack{+0.080+0.005\\-0.010-0.005}$	$(5.56^{+0.52}_{-0.64}{}^{+0.33}_{-0.33})\times10^{6}$	$\begin{array}{lll} 5.46(1.0\pm0.12)\times10^6 & (HZ) \\ 4.50(1.0\pm0.12)\times10^6 & (LZ) \end{array}$
⁸ B _{HER}	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39}_{-0.41}{}^{+0.03}_{-0.03})\times10^{6}$	$\begin{array}{ll} 5.46(1.0\pm0.12)\times10^6 & (HZ) \\ 4.50(1.0\pm0.12)\times10^6 & (LZ) \end{array}$
CNO	<8.1 (95% C.L.)	${<}7.9 \times 10^8$ (95% C.L.)	$\begin{array}{ll} 4.88(1.0\pm0.11)\times10^8 & (\text{HZ}) \\ 3.51(1.0\pm0.10)\times10^8 & (\text{LZ}) \end{array}$
hep	<0.002 (90% C.L.)	<2.2×10 ⁵ (90% C.L.)	$\begin{array}{ll} 7.98(1.0\pm0.30)\times10^3 & (\text{HZ}) \\ 8.25(1.0\pm0.12)\times10^3 & (\text{LZ}) \end{array}$

Table 2 | Borexino experimental solar-neutrino results

	[
		Normal Orc	lering (best fit)			
		bfp $\pm 1\sigma$	3σ range			
	$\sin^2 \theta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$			
	$ heta_{12}/^{\circ}$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$			
ovporimontal fluxos	$\sin^2 \theta_{23}$	$0.441^{+0.027}_{-0.021}$	$0.385 \rightarrow 0.635$			1
experimentar nuxes	$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50\substack{+0.19 \\ -0.17}$	$7.03 \rightarrow 8.09$
for oscillations	$\sin^2 \theta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \rightarrow 0.02392$	$\Delta m_{3\ell}^2$	$+2524^{+0.039}$	$+2407 \rightarrow +2643$
	$\theta_{13}/^{\circ}$	$8.46^{+0.15}_{-0.15}$	$7.99 \rightarrow 8.90$	10^{-3} eV^2		12.101 / 12.010

Esteban et al. 2017

ISSI – 2019

SSM – the problem

Sound speed relative difference Density relative difference 0.015 0.08 GS98 AGSS09met Inversion unc. 0.06 0.010 0.04 δρ/ρ ôc∕c 0.005 0.02 0.000 Solar model unc. 0.00 -0.005 -0.02 0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 8.0 1.0 0.0 R/R_{sun} R/R_{sun}

	GS98	AGSS09	Helios.
(Z/X_{\odot})	0.0229	0.0178	
$R_{ m CZ}/R_{\odot}$	0.712	0.723	0.713 ± 0.001
$Y_{\rm S}$	0.2429	0.2319	0.2485 ± 0.0034
$\langle \delta c/c \rangle$	0.0009	0.0037	
$\langle \delta \rho / \rho \rangle$	0.011	0.040	

SSM – the problem

Core structure as seen by frequency separation ratios

SSM – B16 models

Small changes in helioseismic probes

SSM: the need for CN(O)

New opacity calculations do not alter state-of-the-art or complicate matters more

Most robust way to break the opacity < -- > composition degeneracy is through CNO ns

Discriminating power can improve if model information is added (Haxton et al. 2008) Next talk by F. Villante

g-modes detection (finally?)

g-modes probe inner regions – but strongly damped in the surface – tiny amplitudes & high background

direct searches for g-modes have failed (despite claims in Garcia et al. 2007)

Fossat et al. 2017 use new method: long term modulations in p-mode spectrum

Claim detections of more than 200 g-modes of angular degree I = 1, 2

g-modes detection (finally?)

Two important claims in Fossat et al. 2017

1) Asymptotic period spacings for I= 1, 2

$$\Pi_{\ell} = \frac{2\pi^2}{\sqrt{\ell(\ell+1)}} \left[\int_0^{R_{CZ}} N \frac{dr}{r} \right]^{-1} \qquad \qquad N = g \left(\frac{1}{\Gamma_1} \frac{d\log p}{dr} - \frac{d\log \rho}{dr} \right)$$

Fossat et al. $P_1 = 1443.1 \pm 0.5s - P_2 = 832.8 \pm 0.7s$

GS98 SSMs: $P_1 = 1525 - 1540 \text{ s} - P_2 = 880 - 890 \text{ s}$

AGSS09 SSMs: $P_1 = 1535 - 1560 \text{ s} - P_2 = 886 - 900 \text{ s}$

Rotational splitting -- > solar core rotation ~ x3 faster than intermediate regions
 Maybe some impact for chemical mixing in the core – but in direction of lowering **n**-fluxes

CN n fluxes

Discriminates compositions to better than ~ 3-S before adding CN experimental error