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Overview

2

! Recap on study of QPPs in solar flares from a single 
long-lived active region 

! How to deal with time derivative data 
! Outline of sample of flares with significant QPPs 
! Comparison with Inglis et al. 2016 
! Checking for relationships between the QPP period 

and flare or active region properties



Recap: solar flare QPP study
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! 181 GOES class flares from a 
single (very) active region 

! 137 C-class, 38 M-class, 6 X-
class 

! Observations from GOES, 
EVE, RHESSI, Fermi, Vernov, 
NoRH 

! How many have QPPs? 
! Do QPP properties relate to 

the evolution of the active 
region properties?
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Recap: examples
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! Solar flare observed by Nobeyama Radioheliograph 

! Power spectrum confidence levels calculated according to Pugh et al. 2017a/b 

! Left: Correlation time series of part of a flare 

! Right: Periodogram with a peak above 99% confidence level, at a period of 
~10 seconds
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Recap: examples
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! Solar flare observed by Nobeyama Radioheliograph 

! Left: Correlation time series of part of the flare 

! Middle: Periodogram with a broad peak below the 95% confidence level 

! Right: Rebinned periodogram (with n=3), where the peak is now above 
the 95% confidence level, at a period of ~15 seconds
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A note on time derivative data
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! Fourier power spectrum of time derivative data look quite 
different to that of the regular data! 

! Discrete Fourier transform:   
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A note on time derivative data
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! For a function x(t) that can be differentiated analytically: 

! So power spectrum would have an extra ω2 term compared to 
non-differentiated function 

! No analytical derivative for data with random noise, so use a 
numerical derivative. Typically a 3-point finite difference is used: 

! Then the Fourier transform is (see Pugh et al. 2017b for derivation): 

! Hence there is a sin2ω multiplying term for the power spectrum

F
dx(t)
dt

⎛
⎝⎜

⎞
⎠⎟
= iωF(x(t))

F( !x) = i
h
sin(ω )F(x)

!xn =
xn+1 − xn−1
2h



A note on time derivative data
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! If the power spectrum is divided by the sin2ω multiplying term then 
confidence levels can be calculated as normal 

! Slight problem: ω goes from 0 to π between the lowest and highest 
frequencies, so sin2ω ➝ 0 towards the first and last points 

! So remove first and last few points of the power spectrum before 
proceeding
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A note on time derivative data
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! Why bother? 

! Neupert effect: flare SXR 
derivative strongly correlates 
with HXR/microwave 
emission, where QPPs tend 
to be seen well 

! GOES provides near 
continuous SXR observations, 
with little noise and a suitable 
time cadence for QPPs

! Taking the derivative suppresses the approx linear rise of SXR 
flux in impulsive phase, in a non-subjective way
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The set of flares with significant QPPs
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! Out of 181 flares: 37 with 
periodic signal above 95% 
global confidence level 
(20% of sample) 

! Right: histogram of 
periods, with mean period 
of 20+16-9 seconds 
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The set of flares with significant QPPs
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! Seven of these flares 
have the same QPP 
signal detected 
above the 95% 
confidence level in 
data from two 
different instruments 

! Right: 27 s period 
detected in both 
GOES/XRS and 
EVE/ESP light curves
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Comparison with Inglis et al. 2016
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! Most results consistent with Inglis et al. 2016, who used a different method 

! They find a significant peak in 30% of flare power spectra, compared to 20% 
in this study 

! Similar log-normal distribution of the periods, but theirs peaks at around 12 s 

! 44 flares included in both samples: 

‣ We find the same periods in 6 flares (13 if the selection criteria of Inglis et 
al. are relaxed) 

‣ Find no evidence of QPPs in 24 of the flares 

‣ We identify a different period in data from the same instrument for 1 flare, 
and from different instruments for 1 more flare 

‣ 3 flares where Inglis et al. identify a period and this study does not, and 2 
flares for the opposite case



Relation to active region (AR) properties?
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! AR properties as a function of time determined from SDO/HMI line-of-sight 
magnetograms (following similar method to Higgins et al. 2011, accounting 
for line-of-sight effects) 

! No correlation between the QPP period and AR area (left), bipole separation 
distance (middle), or field strength (right) 

! Probably because only part of the AR produces the flares! 

! Next step: estimate size of flare sites from AIA, Hinode/XRT, RHESSI, etc 
data
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Relation to flare properties?
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! QPP periods plotted against flare amplitude, flare duration, 
and the duration of the QPP signal 

! Period vs flare duration correlation: observational bias? 

! Period vs QPP signal duration: can’t detect long-period 
short-duration QPP signals, but should be able to detect 
short-period long-duration signals
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Summary
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! Adapted the method described by Vaughan 2005 to test for the 
presence of QPPs in flares, which accounts for data uncertainties 
and power-law power spectra, and avoids detrending 

! Applied the method to a sample of solar flares from a single 
active region 

! 20% of flares have a periodic signal above the 95% global 
confidence level in the power spectra 

! No correlation of QPP periods with AR properties measured at 
the photosphere 

! Need to try measuring sizes of flaring sites using spatially resolved 
X-ray/radio observations


