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Body 1: the body in
which the tide is raised

Body 2: the body that
raises the tide

1. INTRODUCTION
The orbital motion of a gravitating system of extended fluid bodies, such as stars and giant planets,
differs from that of a set of point masses. They are nonspherical as a result of both their rotation
and their tidal deformation due to the nonuniform gravitational attraction of their companions.
In a Newtonian system of two such bodies, the Keplerian orbital elements evolve in time. The
largest effects are nondissipative in character and include orbital precession. Of greater interest and
subtlety is the irreversible evolution of the size and shape of the orbit driven by dissipative processes.

The study of tides has a long and fascinating history (Cartwright 1999, Deparis et al. 2013). It
involves an interesting combination of celestial mechanics, which is nontrivial but can be explored
relatively easily, and fluid dynamics, which involves some deeper physical issues that are touched
on in this article. Indeed, this review is devoted to stars and giant planets, which are wholly
or predominantly fluid, rather than terrestrial bodies, which are predominantly solid, although
deformable. In other words, our interest is in fluid dynamics rather than solid mechanics, in which
the dissipative properties have a different nature. However, there is not a clean separation between
these areas. Neutron stars have solid crusts, giant planets may contain solid cores, and terrestrial
bodies may contain oceans and atmospheres with important tidal phenomena. In the case of Earth,
a fluid layer that is only 0.023% of the planet’s mass dominates the tidal dissipation.

Our focus is also on purely gravitational tides, which can be regarded as a subset of interactions
between neighboring astrophysical bodies. Thermal and magnetic tides are also possible, in which
one body affects the other in a way that is not spherically symmetric and may depend periodically
on time owing to the spin and orbital motion. As for gravitational tides, both wave-like and
nonwave-like disturbances may be generated.

A useful dimensionless parameter that can be taken as a simple estimate of the tidal deformation
of one body by another is the tidal amplitude parameter ε = (M 2/M 1)(R1/d )3, where M1 and M2

are the masses of the two bodies, R1 is the (mean) radius of body 1 and d is the orbital separation
(Figure 1). This is a measure of the ratio, at the surface of body 1, of the tidal gravity due to body
2, GM 2 R1/d 3, to the gravity of body 1 itself, GM 1/R2

1 ; it is also an estimate of the ratio of the
height of the tide compared with the radius of body 1.
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Figure 1
Geometry of tidal interaction. When considering the tide raised in body 1 by body 2, it is convenient to use
spherical polar coordinates (r, θ, φ) centered on body 1 and aligned with its rotation axis. $s and $o are the
spin and orbital angular velocity vectors, respectively. The figure represents the tidal bulge but not the
rotational bulge.
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Tidal potential:
the part of the
gravitational potential
due to body 2 that
deforms body 1

the equilibrium. Many longer-period systems with massive planets also have L > Lc but are not
expected to undergo significant tidal evolution.

All satellite systems of solar-system planets have L > Lc. For the giant planets, L ! Lc and
Lo " 3Ls; if a synchronously spinning satellite were placed in a circular orbit near the corotation
radius (synchronous orbit) of a giant planet, it would migrate away from that radius and the
planetary spin would not be greatly affected.

Tidal dissipation generates heat in astrophysical bodies, which in some cases may be important
for their structure and evolution. Apart from the well-known applications to the volcanic activity of
Jupiter’s moon Io and Saturn’s moon Enceladus, this effect has been investigated mainly for short-
period extrasolar planets undergoing tidal circularization, in an attempt to explain the unexpectedly
large radii of many transiting planets (e.g., Bodenheimer et al. 2001, Ibgui & Burrows 2009). In
fact, the orbital energy that must be dissipated to circularize a short-period planet can easily exceed
the planet’s internal binding energy, which suggests that rapid circularization, if possible, either
makes the planet very bright or threatens to destroy it. Gu et al. (2003) identified a tidal inflation
instability that may lead to the disruption of gas giants.

2. TIDAL DYNAMICS

2.1. Tidal Potential

Consider two bodies orbiting about their mutual center of mass. Let their masses be M1 and M2

and their centers of mass R1(t) and R2(t). Suppose that body 2 is a point mass or can be treated
as such for the purposes of determining the motion and tidal deformation of body 2. When its
gravitational potential −GM 2/|r − R2| is expanded in a Taylor series about r = R1, we obtain

− GM 2

|d|

[
1 + d · x

|d|2
+ 3(d · x)2 − |d|2|x|2

2|d|4
+ · · ·

]
= − GM 2

|d|

∞∑

l=0

|x|l

|d|l
Pl

(
d · x
|d||x|

)
, (2)

where d = R2 − R1 is the orbital separation, x = r − R1 is the position vector with respect to the
center of body 1, and Pl is the Legendre polynomial of degree l. The first term in this series is a
uniform potential and has no effect, whereas the second term gives rise to a uniform acceleration,
which causes the basic Keplerian orbital motion of body 1. The remaining part of the expansion
defines the tidal potential !, which gives rise to a nonuniform acceleration that deforms body 1. It
can also be represented using solid spherical harmonic functions of the second degree and higher,
i.e., rl Y m

l (θ, φ) with l ≥ 2 and |m| ≤ l , where (r, θ,φ) are spherical polar coordinates with their
origin at the center of body 1.

If body 1 is rotating, then for the purposes of computing the tidal deformation it is helpful
to choose the axis of the coordinate system to coincide with the rotation axis. Let the orbit have
semimajor axis a, eccentricity e, and inclination i with respect to the equatorial plane of body 1.
In celestial mechanics i is known as the obliquity of body 1 (with respect to the orbit of bodies 1
and 2). The periodic variation of the separation vector due to the basic Keplerian orbital motion
can be expressed through Fourier series, leading to an expansion of the complete tidal potential
in a nonrotating frame in the form (cf. Kaula 1961, Polfliet & Smeyers 1990)

! = Re
∞∑

l=2

l∑

m=0

∞∑

n=−∞

GM 2

a
Al,m,n(e, i )

( r
a

)l
Y m

l (θ, φ)e−in$ot . (3)

Here $o = (GM/a3)1/2 is the mean orbital angular velocity, which we refer to as the orbital
frequency (and is known as the mean motion in celestial mechanics). The dimensionless complex
coefficients Al,m,n depend in a complicated way on e and i. The integers l and m are the degree
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Table 1 Quadrupolar components of the tidal potential, correct to first order in eccentricity and
obliquity

l m n |A| Description
2 0 0

√
π
5

Static tide

2 2 2
√

6π
5

Asynchronous tide

2 0 1 3e
√

π
5

Eccentricity tides

2 2 1 1
2 e

√
6π
5

2 2 3 7
2 e

√
6π
5

2 1 0 i
√

6π
5

Obliquity tides

2 1 2 i
√

6π
5

Tidal component:
a single component of
the tidal potential
when it is decomposed
into spherical
harmonic functions
and Fourier-analyzed
in time

Inertial frame: a
nonrotating frame of
reference

Fluid frame: a frame
of reference rotating
with the spin angular
velocity of body 1

and order of the spherical harmonic, respectively, and m is also referred to as the azimuthal wave
number. The integer n labels temporal harmonics of the orbital motion.

In most applications the bodies are sufficiently well separated that the quadrupolar components
(l = 2) are strongly dominant. In the special case of a circular, coplanar orbit (e = i = 0), the
only terms present have n = m, and l − m must be even. In the case of a circular, inclined orbit
(e = 0), n is restricted to the range [−l, l ], and l − n must be even (e.g., Ogilvie 2013). For the
complete representation of an eccentric orbit, all values of n are required. However, if terms
smaller than O(e p ) can be neglected, then the largest value of |n| that needs to be considered is
l + p . Table 1 gives the amplitudes, but not the phases, of the quadrupolar components of the
tidal potential, correct to first order in e and i.

Because Y m
l (θ, φ) ∝ eimφ , the phase of each tidal component is arg Al,m,n + mφ − n$ot. When

m #= 0, the phase rotates with angular velocity n$o/m. The angular frequency of each component
measured in a nonrotating frame is ω = n$o, which may be called the tidal frequency in the inertial
frame. Of greater importance for the physical response of the fluid is the angular frequency
measured in a frame that rotates with the spin angular velocity $s (spin frequency) of body 1,
ω̂ = n$o − m$s, which may be called the tidal frequency in the fluid frame. When m #= 0, the
difference between ω and ω̂ is due to an angular Doppler shift. (In general, body 1 may rotate
differentially, in which case ω̂ depends on position.)

The tidal frequencies in the fluid frame are therefore integer linear combinations of the
spin and orbital frequencies; for the seven components listed in Table 1, these are plotted in
Figure 2. As is discussed in Section 3, the Coriolis force plays a dominant role in the wave-like
part of the tidal response when |ω̂/$s| < 2 (and may still play an important role outside this
interval), and it can be seen that all seven components typically have frequencies in this range,
unless the body is far from the synchronous state.

As the eccentricity is increased from 0 toward 1, the time-dependence of the tidal forcing
changes from a sinusoidal variation to one that is strongly peaked at the pericenter of the orbit.
This is a result of the sensitivity of the tidal force to the orbital separation. The above expansion
is still valid for large eccentricities, but a broad spectrum of frequencies is obtained (Figure 3). In
a highly eccentric orbit, the tidal interaction has an impulsive character, consisting of a series of
tidal encounters, each of which might be approximated as a parabolic orbit.
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If	  d	  /R1	  is	  sufficiently	  large,	  only	  the	  quadrupolar	  components	  (l=2)	  are	  important	  (see	  table	  above).	  	  
For	  a	  circular	  orbit,	  the	  static	  tide	  and	  the	  asynchronous	  tide	  are	  the	  important	  components.	  	  
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Table 1 Quadrupolar components of the tidal potential, correct to first order in eccentricity and
obliquity

l m n |A| Description
2 0 0

√
π
5

Static tide

2 2 2
√

6π
5

Asynchronous tide

2 0 1 3e
√

π
5

Eccentricity tides

2 2 1 1
2 e

√
6π
5

2 2 3 7
2 e

√
6π
5

2 1 0 i
√

6π
5

Obliquity tides

2 1 2 i
√

6π
5

Tidal component:
a single component of
the tidal potential
when it is decomposed
into spherical
harmonic functions
and Fourier-analyzed
in time

Inertial frame: a
nonrotating frame of
reference

Fluid frame: a frame
of reference rotating
with the spin angular
velocity of body 1

and order of the spherical harmonic, respectively, and m is also referred to as the azimuthal wave
number. The integer n labels temporal harmonics of the orbital motion.

In most applications the bodies are sufficiently well separated that the quadrupolar components
(l = 2) are strongly dominant. In the special case of a circular, coplanar orbit (e = i = 0), the
only terms present have n = m, and l − m must be even. In the case of a circular, inclined orbit
(e = 0), n is restricted to the range [−l, l ], and l − n must be even (e.g., Ogilvie 2013). For the
complete representation of an eccentric orbit, all values of n are required. However, if terms
smaller than O(e p ) can be neglected, then the largest value of |n| that needs to be considered is
l + p . Table 1 gives the amplitudes, but not the phases, of the quadrupolar components of the
tidal potential, correct to first order in e and i.

Because Y m
l (θ, φ) ∝ eimφ , the phase of each tidal component is arg Al,m,n + mφ − n$ot. When

m #= 0, the phase rotates with angular velocity n$o/m. The angular frequency of each component
measured in a nonrotating frame is ω = n$o, which may be called the tidal frequency in the inertial
frame. Of greater importance for the physical response of the fluid is the angular frequency
measured in a frame that rotates with the spin angular velocity $s (spin frequency) of body 1,
ω̂ = n$o − m$s, which may be called the tidal frequency in the fluid frame. When m #= 0, the
difference between ω and ω̂ is due to an angular Doppler shift. (In general, body 1 may rotate
differentially, in which case ω̂ depends on position.)

The tidal frequencies in the fluid frame are therefore integer linear combinations of the
spin and orbital frequencies; for the seven components listed in Table 1, these are plotted in
Figure 2. As is discussed in Section 3, the Coriolis force plays a dominant role in the wave-like
part of the tidal response when |ω̂/$s| < 2 (and may still play an important role outside this
interval), and it can be seen that all seven components typically have frequencies in this range,
unless the body is far from the synchronous state.

As the eccentricity is increased from 0 toward 1, the time-dependence of the tidal forcing
changes from a sinusoidal variation to one that is strongly peaked at the pericenter of the orbit.
This is a result of the sensitivity of the tidal force to the orbital separation. The above expansion
is still valid for large eccentricities, but a broad spectrum of frequencies is obtained (Figure 3). In
a highly eccentric orbit, the tidal interaction has an impulsive character, consisting of a series of
tidal encounters, each of which might be approximated as a parabolic orbit.
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Table 1 Quadrupolar components of the tidal potential, correct to first order in eccentricity and
obliquity

l m n |A| Description
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√
6π
5

2 2 3 7
2 e

√
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harmonic functions
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Inertial frame: a
nonrotating frame of
reference

Fluid frame: a frame
of reference rotating
with the spin angular
velocity of body 1

and order of the spherical harmonic, respectively, and m is also referred to as the azimuthal wave
number. The integer n labels temporal harmonics of the orbital motion.

In most applications the bodies are sufficiently well separated that the quadrupolar components
(l = 2) are strongly dominant. In the special case of a circular, coplanar orbit (e = i = 0), the
only terms present have n = m, and l − m must be even. In the case of a circular, inclined orbit
(e = 0), n is restricted to the range [−l, l ], and l − n must be even (e.g., Ogilvie 2013). For the
complete representation of an eccentric orbit, all values of n are required. However, if terms
smaller than O(e p ) can be neglected, then the largest value of |n| that needs to be considered is
l + p . Table 1 gives the amplitudes, but not the phases, of the quadrupolar components of the
tidal potential, correct to first order in e and i.

Because Y m
l (θ, φ) ∝ eimφ , the phase of each tidal component is arg Al,m,n + mφ − n$ot. When

m #= 0, the phase rotates with angular velocity n$o/m. The angular frequency of each component
measured in a nonrotating frame is ω = n$o, which may be called the tidal frequency in the inertial
frame. Of greater importance for the physical response of the fluid is the angular frequency
measured in a frame that rotates with the spin angular velocity $s (spin frequency) of body 1,
ω̂ = n$o − m$s, which may be called the tidal frequency in the fluid frame. When m #= 0, the
difference between ω and ω̂ is due to an angular Doppler shift. (In general, body 1 may rotate
differentially, in which case ω̂ depends on position.)

The tidal frequencies in the fluid frame are therefore integer linear combinations of the
spin and orbital frequencies; for the seven components listed in Table 1, these are plotted in
Figure 2. As is discussed in Section 3, the Coriolis force plays a dominant role in the wave-like
part of the tidal response when |ω̂/$s| < 2 (and may still play an important role outside this
interval), and it can be seen that all seven components typically have frequencies in this range,
unless the body is far from the synchronous state.

As the eccentricity is increased from 0 toward 1, the time-dependence of the tidal forcing
changes from a sinusoidal variation to one that is strongly peaked at the pericenter of the orbit.
This is a result of the sensitivity of the tidal force to the orbital separation. The above expansion
is still valid for large eccentricities, but a broad spectrum of frequencies is obtained (Figure 3). In
a highly eccentric orbit, the tidal interaction has an impulsive character, consisting of a series of
tidal encounters, each of which might be approximated as a parabolic orbit.
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In	  the	  case	  of	  a	  coplanar	  and	  circular	  orbit	  (e=0,	  i=0),	  we	  have	  n=m	  and	  l-‐m	  must	  be	  even.	  
For	  (R1/a)	  <<	  1,	  	  the	  dominating	  component	  is	  the	  one	  with	  l	  =	  m	  =	  n	  =	  2.	  	  
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system, the faster its dynamical evolution. But it also depends on the efficiency of
the physical processes that are responsible for the dissipation of the kinetic energy.

Provided these dissipation processes are well enough understood, the observed
properties of a binary system can deliver important information on its evolutionary
state, on its past history, and even on the conditions of its formation. The first
step is thus to identify these physical processes, and it is surprising that this has
not been seriously undertaken until the mid-sixties, while tidal theory as such had
already reached a high degree of sophistication, starting with the pioneering work
of Darwin (1879). In his classical treatise, Kopal (1959) states from the onset
that he is interested only in “dynamical phenomena which are likely to manifest
observable consequences in time intervals of the order of 10 or 100 years, and if
so, tidal friction can be safely ignored”.

But stars live much longer than that, and this is why we shall consider here
changes in the properties of binary systems that occur over their evolutionary time
scale, and in particular the circularization of their orbits, which is both easy to
observe and easy to interpret. We shall deal mainly with binary stars, although
much of what follows may be applied also to star-planet systems.

2 The equilibrium tide

Fig. 1. Tidal torque. When the considered star rotates faster than the orbital motion

(Ω > ω), its mass distribution is shifted by an angle α from the line joining the centers
of the two components, due to the dissipation of kinetic energy. Since the forces applied

to the tidal bulges are not equal (f1 > f2), a torque is exerted on the star, which tends
to synchronize its rotation with the orbital motion (Ω → ω).

We begin with the most simple concept: that of the equilibrium tide, where
one assumes that the star is in hydrostatic equilibrium, and that, in the absence
of dissipation mechanisms, it would adjust instantaneously to the perturbing force
exerted by its companion.

Owing to the dissipation of the kinetic energy of the equilibrium tide inside
the body M

1

, the longitude of the tidal bulge lags the longitude of the orbiting
body by a phase lag angle ↵. The tidal lag can also be expressed as a time lag

⌧ ⌘ ↵/|!̂|.

If a tidal potential component

Re[A(r/R)lY m
l (✓,�) exp(�i!t)]

is applied to a body of mean radius R and the resulting deformation of the body
generates an external gravitational potential perturbation

Re[B(R/r)l+1Y m
l (✓,�) exp(�i!t)],

then the complex dimensionless ratio

kml (!) ⌘ B/A

defines the potential Love number.

Typically Re[kml (!)] is a quantity of order unity, weakly dependent on m and !,
and can be well approximated by its hydrostatic value kl. For a homogeneous
body:

kl = khoml = 3/[2(l � 1)].

Then it is common to write

Im[kml ] = kl/Q = khoml /Q0,

where Q is the tidal quality factor and Q0 the modified tidal quality factor. The
importance of Q is given by its relationship with ↵. For ↵ ⌧ 1 and l = 2 , we
have:

↵ = 1/Q

.

1

M1	  
M2	  

Ω0	  Ωs	  









If a tidal potential component

Re[A(r/R)

lY m
l (✓,�) exp(�i!t)]

is applied to a body of mean radius R and the resulting deformation of the body

generates an external gravitational potential perturbation

Re[B(R/r)l+1Y m
l (✓,�) exp(�i!t)],

then the complex dimensionless ratio

kml (!) ⌘ B/A

defines the potential Love number.

1
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Figure 2
Tidal forcing frequencies for the seven lowest-order components listed in Table 1, labeled by l, m, n. The
vertical axis is the ratio of the tidal frequency in the fluid frame to the spin frequency, whereas the horizontal
axis is the ratio of the orbital frequency to the spin frequency. Each line has slope n and y-intercept −m. The
dotted horizontal lines indicate the frequency range of inertial waves in a uniformly rotating body (see
Section 3.5 below), whereas the dashed vertical line indicates the synchronous state.

Potential Love
number:
a complex-valued,
dimensionless,
frequency-dependent
response function
relating the self-
gravitational
perturbation of a body
to the applied tidal
potential

Tidal power: the rate
of transfer of energy
from the orbit to
body 1

2.2. Tidal Torque, Power, and Dissipation
If the tidal amplitude parameter ε is sufficiently small, the tidal response of a body can be
determined using linear theory, as discussed in Section 3 below. In this approach, the tidal
disturbance is treated as a small perturbation of a basic state, which is usually assumed to be
steady and axisymmetric. To each component of the tidal potential there is an independent and
linearly related response, which can be quantified using a response function. If a tidal potential
component Re[A(r/R)l Y m

l (θ,φ)e−iωt] is applied to a body of nominal (e.g., mean or equatorial)
radius R, and the resulting deformation of the body generates an external gravitational potential
perturbation Re[B(R/r)l+1Y m

l (θ,φ)e−iωt] (possibly in addition to other components that are
orthogonal to the applied one), then the complex dimensionless ratio km

l (ω) = B/A defines the
potential Love number (named after A.E.H. Love). This is the most useful response function,
because it is only through gravity that the tidal communication between the two bodies occurs.
Of particular interest is the imaginary part Im[km

l (ω)], which quantifies the part of the response
that is out of phase with the tidal forcing and is associated with transfers of energy and angular
momentum.

Let the tidal power P and the tidal torque T be defined as the rates of transfer of energy and of
the axial component of angular momentum from the orbit to the body (measured in the inertial
frame, and averaged in time in the case of m = 0). It can be shown (e.g., Ogilvie 2013) that
P = ωT and T = mT , where

T = (2l + 1)R|A|2

8πG
Im[km

l (ω)]. (4)
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Owing to the dissipation of the kinetic energy of the equilibrium tide inside
the body M

1

, the longitude of the tidal bulge lags the longitude of the orbiting
body by a phase lag angle ↵. The tidal lag can also be expressed as a time lag

⌧ ⌘ ↵/|!̂|.

If a tidal potential component

Re[A(r/R)lY m
l (✓,�) exp(�i!t)]

is applied to a body of mean radius R and the resulting deformation of the body
generates an external gravitational potential perturbation

Re[B(R/r)l+1Y m
l (✓,�) exp(�i!t)],

then the complex dimensionless ratio

kml (!) ⌘ B/A

defines the potential Love number.

Typically Re[kml (!)] is a quantity of order unity, weakly dependent on m and !,
and can be well approximated by its hydrostatic value kl. For a homogeneous
body:

kl = khoml = 3/[2(l � 1)].

Then it is common to write

Im[kml (!)] = kl/Q(!) = khoml /Q0(!),

where Q is the tidal quality factor and Q0 the modified tidal quality factor. The
importance of Q is given by its relationship with ↵. For ↵ ⌧ 1 and l = 2 , we
have:

↵(!) ' 1/Q(!).

The generally adopted parameterizations are summarized as follows:

Im[km
2

(!)] = �
3

2Q0 = �
k
2

Q
= k

2

⌧ !̂,

where � = sgn !̂ = ±1.
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Figure 2. MCMC posterior probability distributions for the linear and quadratic parameters of the quadratic fit, q (proportional
to -1/Q’), and p (orbital period), with 5th, 50th, and 95th percentiles marked by the dashed lines. We leave the less important
intercept term off of this corner plot, for clarity. Overplotted in red are the best-fit values from the least-squares polynomial fit
(minimizing χ2). The two methods agree on the value of the period and they both find only an upper limit for the magnitude
of the quadratic term (corresponding to a lower limit on Q’, see top axis of the q plot.

the discussion of these predictions as they apply to WASP-18, and then calculate a constraint on the Q’ of WASP-18.

5.1. Tidal Dissipation in G vs. F Stars

Tides raised within a central star by a planetary companion are dissipated within the star and angular momentum
is transferred between the stellar spin and planetary orbit in the process (e.g. Ogilvie 2014). For short-period
planets (orbiting sub-synchronously rotating stars), like WASP-18b, that also have approximately circular orbits, tidal
dissipation in the star causes the planet to lose angular momentum and spiral inward, because the tidal bulge raised
in the star lags the planet when the planet’s orbital period is less than the star’s rotational period (i.e. Porb < Prot).
This is the opposite of the Earth-Moon system, in which the Moon recedes from the Earth because the bulge leads
the Moon (since Porb >Prot). The rate of change of the orbit depends on the efficiency of tidal dissipation within the
host star; this is where stellar structure becomes important.
The tide in the star is often decomposed into two contributions: an equilibrium tide and a dynamical tide (e.g.

Zahn 1977). Dissipation of both components is expected to become less efficient in stars slightly more massive than
the Sun (i.e. F stars). While we often generalize Sun-like stars (typically defined as 0.5M! ! M∗ ! 1.3 M!) to have
radiative cores and convective envelopes and more massive stars to have the opposite, development of convective cores
and radiative envelopes is actually a continuum. WASP-18, for example, is a 1.2-M! F6 star, and, according to MESA
stellar structure models (Paxton et al. 2011), should have a convective core within the innermost 6% of the stellar
radius, and a convective envelope in the outer 15%; it is therefore intermediate between an solar-mass and high-mass
star. For tidal dissipation, therefore, an F star like WASP-18 is not ”sun-like.”
We quantify the efficiency of tidal dissipation using the tidal quality factor, Q, defined as (Goldreich 1963):

Q ≡
energy stored in tidal distortion

energy dissipated in one cycle
= 2πE0(

∮

−Ėdt)−1, (1)

where E0 is the maximum energy stored in the tidal bulge and Ė, intrinsically negative, is the energy dissipated in
one tidal period. We use the modified Q (i.e. Q’) convention throughout this Letter:

Q
′

∗,0 ≡
3Q

2k2
, (2)

where k2 is the tidal Love number. Q’ is almost certainly not a single constant number for all stars (even of the same





where (r, !, ") are spherical polar coordinates in a nonrotating
frame of reference centered on the star, ! is the frequency in that
frame, and ! is an amplitude. The tidal frequency experienced
by the star is

!̂ ¼ !" m"; ð3Þ

where " is its spin frequency.3 Q 0 is a function of l, m, and !̂,
but it can be assumed to be independent of! if linear theory ap-
plies. In practice l = 2 is dominant, and the azimuthal wave-
number m can be restricted to 0, 1, or 2.

Although the potential applications of tides are very broad,
we are concerned here with two problems connected with obser-
vations: the circularization of close binary stars and the inward
migration of hot Jupiters. In a binary star with mean motion
n > 0, tidal dissipation leads to an evolution of the semimajor
axis a and eccentricity e at the rates
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where we neglect fractional corrections of second order in ec-
centricity and obliquity.4 HereM and R denote stellar mass and
radius, and Q0

i;m;!̂ is the value of Q
0 of star i for l = 2, azimuthal

wavenumberm, and tidal frequency !̂. For two identical stars that
are already synchronized ("1 = "2 = n), eccentricity is damped
on the circularization timescale
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where P is the orbital period and $̄ is the mean density ($̄' &
1.41 g cm"3). The timescale for synchronization is indeed much
shorter. Equation (6) assumes a common value ofQ0 for the var-
ious tidal components, but this assumption may not be so impor-

tant, because the !̂ = 3n " 2" component dominates unless it
has a much larger value of Q 0.

The relative contribution of the tide in star 2 is
(Q0

1/Q
0
2)(M1/M2)

2(R2/R1)
5. For late-type stars R / M 4/5 ap-

proximately, giving a ratio of (Q0
1/Q

0
2)(M2/M1)

2. The tide in the
secondary star is therefore less important if its Q 0 is the same.

Figure 1 reproduces the observational data from the study of
Meibom & Mathieu (2005). Although the trend is not particu-
larly clear, it is roughly consistent with the frequently quoted
value Q 0 & 106.

To determine the rate of inward migration of a hot Jupiter, we
consider a synchronized planet of mass Mp in a circular orbit
around a star of mass M(, in which case
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The inspiral time for a planet into a star similar to the Sun (as-
suming Q0

( to be independent of frequency) is
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The extrasolar planet of shortest orbital period found to date
is OGLE-TR 56b, with P = 1.21 days. It orbits a star of mass
1.04 M' whose age is estimated to be 3 ) 1 Gyr (Sasselov
2003). If the value Q0 & 106 appropriate for binary stars is em-
ployed in this context, the inspiral time is only about 0.036 Gyr.

The observations raise two basic problems for theorists. First,
an efficient dissipation mechanism must be found to explain a
Q0 as small as 106 for the binary circularization problem. Second,
the same mechanism must not operate so efficiently in the hot-
Jupiter problem, unless we are extremely fortunate to observe
OGLE-TR 56b and others like it.

3 We restrict our attention to uniformly rotating stars. By ‘‘frequency’’ we
always mean angular frequency.

4 Under the assumption that 1/Q 0 / j!̂j, eq. (5) reproduces the result of
Darwin (1880) that eccentricity is excited for "/n > 18/11 and is damped other-
wise. Note that the discontinuities in eqs. (4) and (5) do not occur in practice,
because 1/Q0 must vanish as !̂ tends to zero in the case of a uniformly rotating
body.

Fig. 1.—Circularization period vs. age for the stellar clusters and popula-
tions listed byMeibom&Mathieu (2005). The curves show the period for which
the circularization timescale (eq. [6]) is equal to the age for various values of Q0.
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Owing to the dissipation of the kinetic energy of the equilibrium tide inside
the body M

1

, the longitude of the tidal bulge lags the longitude of the orbiting
body by a phase lag angle ↵. The tidal lag can also be expressed as a time lag

⌧ ⌘ ↵/|!̂|.

If a tidal potential component

Re[A(r/R)lY m
l (✓,�) exp(�i!t)]

is applied to a body of mean radius R and the resulting deformation of the body
generates an external gravitational potential perturbation

Re[B(R/r)l+1Y m
l (✓,�) exp(�i!t)],

then the complex dimensionless ratio

kml (!) ⌘ B/A

defines the potential Love number.

Typically Re[kml (!)] is a quantity of order unity, weakly dependent on m and !,
and can be well approximated by its hydrostatic value kl. For a homogeneous
body:

kl = khoml = 3/[2(l � 1)].

Then it is common to write

Im[kml (!)] = kl/Q(!) = khoml /Q0(!),

where Q is the tidal quality factor and Q0 the modified tidal quality factor. The
importance of Q is given by its relationship with ↵. For ↵ ⌧ 1 and l = 2 , we
have:

↵(!) ' 1/Q(!).

The generally adopted parameterizations are summarized as follows:

Im[km
2

(!)] = �
3

2Q0 = �
k
2

Q
= k

2

⌧ !̂,

where � = sgn !̂ = ±1.

|!̂|  2⌦
s

1

•  This	   conditions	   is	   not	   verified	   in	   systems	   away	   from	   synchronism	   such	   as	  
most	  of	  the	  star-‐hot	  Jupiter	  systems.	  	  



equations are converted into a large algebraic system byGalerkin
projection onto normalized associated Legendre polynomials
(i.e., spherical harmonics) in ! and Chebyshev collocation in r.
The linear system is solved by a standard method for block
tridiagonal matrices, and the total viscous dissipation rate is cal-
culated. We adopt stress-free impermeable boundary conditions
on the dynamical tide at the upper and lower limits of the convec-
tive zone, as explained in Paper I.

2.3. Hough Waves in the Radiative Zone

We determine algebraically the excitation of Hough waves in
the radiative zone as in Paper I. They are excited at the interface
between the radiative and convective zones, partly by tidal forc-
ing in that region and partly by the pressure of the inertial waves
acting at the interface. Following Goodman & Dickson (1998),
the model assumes that N 2 vanishes in the convective zone and
increases initially linearly with distance into the radiative zone.
We assume that the waves are not reflected coherently from the
center of the star and calculate the resulting energy flux. This is
converted into a dissipation rate as described in Paper I. The be-
havior of waves near the center of the star in the limit j!̂j3 j!j
is discussed in the Appendix, where, in a slight refinement of
the calculation ofGoodman&Dickson (1998),we estimate the con-
ditions under which the waves become nonlinear.

3. RESULTS

3.1. Inertial Waves

In the left half of Figure 3, we plot, as a function of the tidal
frequency, the value ofQ0 resulting from the viscous dissipation
of inertial waves in the convective zone of the Sun with a spin
period of 10 days. Only the most important azimuthal wave-
number,m = 2, is considered. Also shown for comparison is the
viscous dissipation rate of the irrotational disturbance generated
in the convective zone when the Coriolis force is omitted. For
frequencies j!̂j < 2j!j the dissipation is greatly enhanced by the

excitation of inertial waves, but outside this range the Coriolis
force has little net effect.
Where the dissipation rate is significantly enhanced, it is rel-

atively insensitive to the viscosity, as found in Paper I. Elsewhere
the dissipation rate is directly proportional to the viscosity. The
value of Q0 obtained when the Coriolis force is omitted is larger
than that found by Terquem et al. (1998). This is partly because
of the contribution of g-mode resonances to their average value,
but mainly because their viscosity is larger than ours by a factor
of approximately 4"2.
The numerical convergence of these results was verified by

repeating the calculation with double the resolution in each di-
rection. It was found adequate in most cases to truncate the
Legendre and Chebyshev polynomial bases at an order of 100.

3.2. Hough Waves

Also shown in Figure 3 is the same information for Hough
waves excited at the interface between the radiative and con-
vective zones. Inclusion of the Coriolis force can either increase
or decrease the dissipation rate.
When the Coriolis force is neglected, our results should agree

with those of Goodman&Dickson (1998).We find their numer-
ical parameter #c to equal !1.19 rather than !0.64, which we
verified by numerically integrating their equation (3). Altogether,
we findQ0 " 3.9 ; 108[Ptide/(10 days)]

8/3 when spin is neglected.
We also obtain their equation (15) but with (M1 þM2)/M1 raised
to the power!5/3 instead ofþ11/6. This discrepancy suggests
that they may have overestimated the circularization rate by a
factor of 27/2.

3.3. Higher Tidal Frequencies

In Figure 4, we plot similar results over a wider range of tidal
frequencies. As expected, the Coriolis force is unimportant when
j!̂j3 j!j. As found by Goodman & Dickson (1998), Hough
waves (or gravity waves, in this regime) provide efficient tidal

Fig. 3.—Dissipation rate, parameterized as a value of Q 0, as a function of tidal frequency. These results refer to tidal forcing by the l = m = 2 solid harmonic in a
model of the Sun with a spin period of 10 days. Left, Q0 from the viscous dissipation of inertial waves in the convective zone; right, Q0 from the excitation of Hough
waves in the radiative zone. The dashed lines show the effect of omitting the Coriolis force. In this figure only, the dotted lines show the result of artificially
increasing the effective viscosity by a factor of 10.
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Q’	  for	  a	  Sun-‐like	  star	  with	  a	  spin	  period	  of	  10	  days.	  Left:	  Q’	  from	  the	  dissipation	  of	  inertial	  waves	  in	  the	  
convection	  zone	  (solid	  line);	  Right:	  the	  same	  as	  on	  the	  left,	  but	  for	  the	  dissipation	  of	  the	  Hough	  waves	  in	  
the	  radiative	  interior.	  The	  dotted	  lines	  indicate	  the	  effect	  by	  increasing	  the	  effective	  viscosity	  by	  a	  factor	  
of	  10,	  while	  the	  dashed	  lines	  give	  the	  effect	  omitting	  the	  Coriolis	  force	  (after	  Ogilvie	  &	  Lin	  2007).	  	  



and spin period 10 days. Although the details are different, the
qualitative behavior and the range of values of Q0 obtained are
similar to the case of the Sun.

3.6. Summary

In the frequency range j!̂j < 2j!j, tidal dissipation in the
convective zones of solar-type stars is substantially enhanced
through the excitation of inertial waves when the full Coriolis
force is included. HereQ 0 can be decreased by up to 4 orders of
magnitude and has a complicated dependence on tidal frequency.
TypicallyQ 0 / !!2 for a fixed ratio !̂/!. Values as small as106

can be achieved if the star spins more rapidly than the Sun.
If the Hough waves excited at the interface between the ra-

diative and convective zones do not reflect coherently from the
center of the star as a result of their nonlinearity, they provide
another means of dissipation at all frequencies. The resulting

value of Q0 scales generally with j!̂j!8/3, although this is mod-
ified, especially in the range j!̂j < 2j!j, by the inclusion of the
Coriolis force. Values as small as 106 can be achieved if the tidal
period is as short as 1 day. The estimates in the Appendix sug-
gest that in the case of the present Sun, Hough waves become
nonlinear in eccentric binaries but probably not in the hosts of
hot Jupiters. Nonlinearity is less likely in stars that are younger
or less massive than the Sun but more likely in older stars.

4. COMPARISON WITH OBSERVED SYSTEMS

4.1. Tidally Induced Orbital Migration

4.1.1. Close-in Gas Giant Planets around G Dwarfs

One immediate application of the present analysis is to the
orbital migration of close-in extrasolar planets. In his study of
OGLE-TR 56b, Sasselov (2003) computed the orbital decay

Fig. 6.—Same as Fig. 3, but for a spin period of 3 days. Note the different vertical scale.

Fig. 7.—Same as Fig. 3, but for a star of mass 0.5 M" and age 5 Gyr.

OGILVIE & LIN1186 Vol. 661
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Fig. 7. V light curves from 1971/1972 to 2001/2002. Our new data starts in 1987/1988. The 1991/1992 season is missing due to too few
measurements to provide a reliable light curve. The plotting symbols are the same as in Fig. 1, and the solid curves represent cubic spline fits
to the data.

3.4. V light curves from 1971/1972 to 2001/2002

In Fig. 7, we have plotted the V magnitudes from each individ-
ual season against orbital phase, together with a cubic spline fit
to the data.

The 1974/1975 season marks the beginning of about five
years of virtually flat V light curves. Flat light curves sug-
gest that the spots are rather evenly distributed over the stellar
surface, yielding very little brightness contrast as the star ro-
tates. The fact that the mean light level over these five years
is considerably fainter than the maximum light level in sea-
sons of high brightness contrast suggests that the star is not
unspotted even though the brightness varies little with orbital
phase. In the 1981/1982 season the brightness contrast starts
to increase. Maximum contrast is reached in 1983/1984 and
1984/1985, after which it starts to decrease. Although the con-
trast decreases steadily, the light curve is not flat until six years
later, in 1990/1991. Two years after this, the contrast is high
again, and this time it lasts for five to six years. The last three
observing seasons (1999/2000, 2000/2001 and 2001/2002)

display low brightness contrast, suggesting that the spots are
once again evenly distributed. The contrast variations seem to
agree quite well with the 12-year period of the variations in the
peak-to-peak V amplitude (see Fig. 2 and Table 4).

A very strong UV flare occured on UX Ari on 1995
November 19 (Dupree & Brickhouse 1996). Henry & Hall
(1997) reported that this flare was detectable in the B and
V magnitude light curves, using data from the 1995/1996 ob-
serving season presented in this paper. Henry & Hall also re-
ported that UX Ari underwent a rather sudden spot redistribu-
tion during this season, causing the spread in the V magnitude
light curve around ' = 0.4.

3.5. Phase of Vmin
From the cubic spline fits to the V light curves in Fig. 7 we
have determined the orbital phase of minimum light of those
seasons where the V amplitude was large enough to allow an
accurate determination. We have also determined the di↵er-
ence in orbital phase of minimum light between one season

1040 V. Aarum Ulvås and G. W. Henry: BV photometry of UX Ari in the period 1987–2002

Fig. 7. continued.

Fig. 8. The orbital phase of minimum light as function of equinox.

period 1987.87–2002.23 have been presented. All the new
measurements are available electronically together with all
the previously published V measurements that have been
analyzed.

– The mean V magnitude and the peak-to-peak V amplitude
exhibit a long period of about 25 years and a shorter pe-
riod of about 12 years. The 25-year period indicates an
activity cycle, and the 12-year period seems to be related
to the rearrangement of spots and thus the di↵erential rota-
tion of UX Ari.

– The total flux of the UX Ari system becomes bluer as it be-
comes fainter. The cause of this e↵ect remains unresolved
but will be addressed in a separate publication.

– V light curves for 7 previously unpublished observing sea-
sons have been presented.
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