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Tides in close binary systems

Going beyond the simple two-body problem with point-like masses, we assume that one of the bodies is extended with mass M, and radit
R,, While the other is assumed point-like with a mass M, ;

The gravitational potential of the mass M, and the centrifugal potential of the body of mass M, produce a distortion of the latter;
We assume a uniform rotation of the body of mass M, with an angular velocity Q;
The mean orbital motion is indicated with Q;

We choose a spherical polar reference frame (r, 8, #) with the polar axis along the spin axis of M, and the origin at its barycentre of M ;

The semimajor axis of the orbit is g, its eccentricity is e, and the inclination of the orbital plane with respect to the equatorial plane of M_ is




Tidal potential

* The potential of the body M, can be developed in a series in the reference frame associated
with the body M_; the terms of the series are:

* Auniform potential (=>no associated force);

* A potential depending on 1/d, where d is the instantaneous separation between the two
bodies (=> Keplerian motion);

* A potential depending on higher powers of 1/d, that is called the tidal potential V¥; it
produces a non-uniform acceleration that deforms body M_;

* In a non-rotating reference frame, we can develop the tidal potential as (see Ogilvie 2014):
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Table 1 Quadrupolar components of the tidal potential, correct to first order in eccentricity and

obliquity
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Description

Static tide

Asynchronous tide

Eccentricity tides
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If d /R, is sufficiently large, only the quadrupolar components ([=2) are important (see table above).
For a circular orbit, the static tide and the asynchronous tide are the important components.




Tidal frequency

Because Y /"(0, ¢) o« €™, the phase of each tidal component is arg A ,,,,, + m¢ — nQ,t. When
m # 0, the phase rotates with angular velocity #2, /7. The angular frequency of each component
measured in a nonrotating frame is @ = 7£2,, which may be called the tidal frequency in the inertial
frame. Of greater importance for the physical response of the fluid is the angular frequency

measured in a frame that rotates with the spin angular velocity Qs (spin frequency) of body 1,
@ = nS2, — mS2s, which may be called the tidal frequency in the fluid frame. When 2 # 0, the
difference between w and & is due to an angular Doppler shift. (In general, body 1 may rotate
differentially, in which case @ depends on position.)




o
Equilibrium tides and dynamic tides

* The equilibrium tide is an approximation to the tidal response of a fluid body
considering only the large-scale deformation of the body under the tidal
Eotential and assumin afphase lag between the tidal potential and the

ydrostatic (equilibriumc);de ormation;

* The dynamic tide includes corrections to the equilibrium tide, generally in the
form of internal waves as well as nonwave-like components with the purpose
of satisfying the ec?__luation of motion. The frequencies of the waves are the tidal
frequenciesin the

w = n2, — 7282,

uid frame, i.e.:

the case of a coplanar and circular orbit (e=0, i=0), we have n=m and [-m must be evi
or (R/a) << 1, the dominating component is the one with [=m =n = 2.



Equilibrium tide and tidal lag

Owing to the dissipation of the kinetic energy of the equilibrium tide inside
the body M, the longitude of the tidal bulge lags the longitude of the orbiting
body by a phase lag angle o. The tidal lag can also be expressed as a time lag

T =af|w.




The direction of tidal evolution

* If the body M, is rotating faster than the orbital motion (Q, > Q,),
the tidal lag is positive and the angular momentum is transferred
from the rotation of M, to the orbital motion, thus increasing the
orbital separation;

* On the other hand, if M, is rotating slower than the orbital motion
(Q, <Q,), the tidal lag is negative and the angular momentum is
drawn from the orbit to accelerate the spin of M_; in this case, the
orbital separation decreases.



The end point of tidal evolution

* If the total angular momentum (orbit + spin) L is constant and larger than a critical value L_,
then the system can reach a stable equilibrium characterized by:

e Acircular orbit (e = 0);
* Spin-orbit synchronization (Q, = Q,);
* Alignment of the spin and orbital angular momenta (i = 0);

* If L<L_, no stable equilibrium is possible and the body of mass M, will eventually collide with
that of mass M, (Hut 1980);

* If the total angular momentum L is decreasing in time because the body M, is a late-type star
losing angular momentum through a magnetized wind, the endpoint will be a collision of the
two bodies (see, e.qg., Damiani & Lanza 2015 for details).



Physical processes of tidal dissipation

 According to Zahn (1977; 1989), in late-type stars, the dissipation of
the kinetic energy of the equilibrium tide is mainly produced by the
turbulent convection that acts on the tidal flow;

 The reason is that the frequencies of the p-mode v, in their convective

envelopes or of the g-modes v, in their radiative interiors are too

different from the typical tidal frequencies to excite a comparable
dynamic tide;

 Typically: 1/v_= 1-10 minutes; 1/v_. = 1-10 hours: while 1/w = 1-10 days.
p 1zl !



Love number

If a tidal potential component
Re[A(r/R)"Y;™ (8, ¢) exp(—iwt)]

is applied to a body of mean radius R and the resulting deformation of the body
generates an external gravitational potential perturbation

Re[B(R/r)'™'Y™ (8, ¢) exp(—iwt)],
then the complex dimensionless ratio

k" (w)=B/A

defines the potential Love number.




The tidal torque

* The tidal torque is responsible for the exchange of angular momentum
and kinetic energy between the two orbiting bodies, thus ruling the tidal
evolution of the system. The torque acting on the body M, is:
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The tidal quality factors Q and Q'

Typically Relk;”(w)] is a quantity of order unity, weakly dependent on m and w,
and can be well approximated by its hydrostatic value k;. For a homogeneous
body:

k; = ko™ = 3/[2(1 — 1)].

Then it is common to write

(k)" (w)] = ki/Q(w) = k™ /Q' (w),

where @ is the tidal quality factor and Q' the modified tidal quality factor. The
importance of () is given by its relationship with a. For a < 1 and [ = 2 , we
have:

a(w) =~ 1/Q(w).

The generally adopted parameterizations are summarized as follows:

k
ImkS(w)] =0 5 _ o= = koT®,
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where o0 = sgnw = +1.




Tidal quality factor and energy dissipation

energy stored in tidal distortion

Q

— 27TEO(% —Edt)_l,

energy dissipated in one cycle

E, is the maximum energy associated with the tidal distortion and the integral is extended over
one tidal period giving the energy lost during one complete cycle. Note that this formula
contains Q, not Q' that depends on the Love number k, (cf. Zahn 2008; Wilkins et al. 2017).




Tidal circularization of close stellar binary
systems in clusters of different ages

* The maximum period corresponding to a circular orbit of late-type stellar
binaries belonging to clusters of different ages (or a specific turnoff point in
their eccentricity distribution) has been used to estimate Q' (Meibom &
Methieu 2005; Milliman et al. 2014);

* Since Q' is a function of the tidal frequency, those values refer to some Q'(w)
averaged over system evolution;

* Ogilvie & Lin (2007) used Meibom & Mathieu’s observations to estimate the
average Q' in close binaries consisting of two solar-like stars;

* They find Q' = 10° (see plot on the next slide).
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(after Ogilvie & Lin 2007)




\pplication to systems with very hot Jupite

* Considering Q' = 10° also for the systems consisting of a solar-like star
and a very hot Jupiter (M, = (2-3) M, P, < 2 days), we find a

jup 1
remaining lifetime of only 30 100 Myr;

* This is at variance with the number of detected systems and with the
lower limits on Q" derived for some systems from transit timing (e.qg.
WASP-18; Wilkins et al. 2017);

* The orbital period distribution of the hot Jupiters suggests Q' = 107 for
solar-like stars (Jackson et al. 2008; 2009) giving a remaining lifetime of
VHJs of about 0.3-1.0 Gyr.



The model by Ogilvie & Lin (2007)

* To explain the difference between close stellar binaries and systems
consisting of a star and a hot Jupiter, Ogilvie & Lin (2007) considered
that the former are synchronized (i.e., Q. = Q,), while the latter are
generally not;

* Therefore, for the stellar binaries, the excitation of inertial waves is
possible in their convection zones and/or in their radiative interiors,
because their tidal frequencies verify:

o] < 290,

* This conditions is not verified in systems away from synchronism such as
most of the star-hot Jupiter systemes.




Q' according to the model of O&L

Q’ for a Sun-like star with a spin period of 10 days. Left: Q" from the dissipation of inertial waves in the
convection zone (solid line); Right: the same as on the left, but for the dissipation of the Hough waves in
the radiative interior. The dotted lines indicate the effect by increasing the effective viscosity by a factor
of 10, while the dashed lines give the effect omitting the Coriolis force (after Ogilvie & Lin 2007).




Effect of the stellar rotation

he same as the previous figure, but for a rotation period of 3 days. Q' scal
ith the square of the stellar spin frequency (Ogilvie 2013; 2014).




Inertial waves and stellar activity

' In principle, if there is a magnetic field in the convection zone or the radiative
|nter|o)r of a star, inertial waves are modified by the Lorentz force (magneto-inertial
waves);

' Magneto-inertial waves are characterized by oscillations of the magnetic field;

' The modulation of the field intensity could produce a modulation of the stellar
activity;

 Since Rieger-like cycles have been associated with those waves, it could be of
interest to compare the frequencies of Rieger cycles with the tidal frequencies in
the fluid frame of their stars when they belong to binary systems.



Comparison with the observations (l)

In the case of UX Ari, the deviation of the stellar rotation from the orbital period is very small and
ill-determined by the migrating phase of the minima of the light curves (AarumUlvas & Henry
2003);

Using the linear decrease of the phases of the minima of the light curve with respect to the orbital
phase in 1986-1990, we find: P,y = P..oc /2 = 4.32 yr = 1578 days for the quadrupole frequency
(l=m=2; see inset below);

migr

The Rieger cycle has a period of Py e, = 294 £ 9 days;
There is no simple commensurability: Py, / Pgieger = 5-37 % 0.16.

27
Piiae

on the other hand ) .

Therefore,




Comparison with the observations (Il)

* In the case of CoRoT-2, the Rieger period is Pg;.... = 28.9 £ 4.8 days; adopting
the rotation period of the active longitudes of the star, P, = 4.522 days, while
P, = 1.743 days; therefore, we have: P, . = 1.418 days (Lanza et al. 2009);

* Therefore, in the case of CoRoT-2, we find: Py o, / Piige = 20.4 £ 3.4;

* However, a physical connection would imply that the component of the tidal
potential with [=20 and m=n=20 be responsible for the excitation of the waves
producing the Rieger cycle.




Comparison with the observations (llI)

* In the case of Kepler-17, PRieger = 47-1 % 4.5 days, while P, =12.01+1.9
daysand P, =1.486 days; this yields P4, =0.847 £ 0.016 days
(Bonomo & Lanza 2012);

* Therefore, we find: Pgiege, / Pyige = 55-6 £ 5.3;

* Also in this case, no simple commensurability is found.



Conclusions

* Inertial waves in the components of close binary systems are of great importance to
understand their tidal evolution;

* They could account for the difference between tidal dissipation in close stellar binary systems
and in systems consisting of a late-type star and a hot Jupiter (Ogilvie & Lin 2007);

* They could also account for the distribution of the obliquity of the orbits of exoplanets vs. the
stellar effective temperature (Albrecht et al. 2012; Esposito et al. 2017), according to a model
proposed by Lai (2012);

* The possibility of Rieger-like cycles induced by tidal inertial waves in close binary systems
seems to be not supported by the presently available observations, but the number of
investigated systems is very small.



Additional material




Rossiter-MclLaughlin effect

The Rossiter-McLaughlin (RM) effect is an anomaly of the stellar radial velocity detected during transits;

The angle between the projections on the plane of the sky of the spin axis and the normal to the orbital plane (projecte
obliquity A) can be measured by exploiting the RM effect;

This provides complementary information on the inclination of the stellar spin axis to the line of sight in the case of transiting
systems.
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Obliquity in close-by planetary systems
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Upper panel: Obliquity of the planetary orbit projected onto the plane of the sky A vs. stellar effective temperature T
lower panel: Stellar projected angular velocity vs. effective temperature. The mass of the planet in Jupiter masses
indicated by the different symbols as specified in the inset (after Esposito et al. 2017, A&A accepted [paper Xl of th
Italian GAPS collaboration]).




