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 Helioseismic observations show that the radiative zone rotates
uniformly with both latitude and radius.

« The convection zone has strong differential rotation with latitudes and
almost uniform rotation with radius.
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» Observed differential rotation profile
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Linear shallow water MHD equations 1n rotating frame
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ABSTRACT
Apart from the eleven-vear solar cycle, another periodicity around 155-160 davs was discovered during solar cycle
21 in high-energy solar flares, and its presence in sunspot arcas and strong magnetic flux has been also reported.
This periodicity has an elusive and enigmatic character, since it usually appears only near the maxima of solar
cycles, and seems to be related with a periadic emergence of strong magnetic flux at the solar surface. Therefore, it
1s probably connecled with the tachocline, a thin layer located near the base ol the solar convection zone, where a
strong dynamo magnetic field 1s stored. We study the dynamics of Rossby waves in the tachocline in the presence
of a toroidal magnetic field and latitudinal differential rotation. Our analysis shows that the magnetic Rossby waves
are generally unstable and that the growth rates are sensitive to the magnetic field strength and to the latitudinal
differential rotation parameters. Variation of the differential rotation and the magnetic field strength throughout
the solar cycle enhance the growth rate of a particular harmonic in the upper part of the tachocline arcund the
maximum of the zolar cycle. This harmonic is symmetric with respect to the equator and has a period of 135-
160 days. A rupid increase of the wave amplitude could give rise to a magnetic flux emergence leading to observed
penodicities in solar activity indicators related w magnetic [ux.
Key words: Sun: oscillations — magnetic fields — magnetohydrodynamics (MHD) — waves
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Let us first consider 2D case neglecting h
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In this section, we derive the analytical instability bounds
using a well-known technique (Howard 1961; Drazin & Reid
1981; Watson 1981; Gilman & Fox 1997; Dahlburg et al. 1998;
Hughes & Tobias 2001).

We define a new function

V=(Q; —wi, ©=D2BH.
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Now, multiplying Equation (12) by H*, integrating from —1
to | and using the boundary conditions H(px = £1) = 0, we
gel
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The real and imaginary parts of Equation (13) with @ =
@, + I@; are
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and
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Unstable harmonics should have non-zero ;, therefore,

Equation (B2) requires
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The substitution of j_'leQdy, from this equation into
Equation (B 1) leads to the equation
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This equation will be satisfied if both integrals are zero, which
requires
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The first condition states that the instability takes place when
a)f + a);?‘ < Rz,
R} = [(s21® +541.™) — B 1 Tmax.
This means that the frequencies of unstable harmonics (actu-
ally phase speeds, while [requencies can be obtained by multi-

plying by m) lay inside the upper semicircle of complex w-planc
with center at the origin and radius R; (see Figure 1).

The second condition implies Howard semicircle theorem

1
f (Q — Qi) — Q) @1t < 0.
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After some algebra
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The Equations are two necessary conditions of instability. They
define two different semicircles in the complex w-plane, and the
instability occurs when the two semicircles overlap (see Hughes &
Tobias 2001 for the same statement in the rectangular case). If the
radius of one semicircle tends to zero, the instability disappears.



We use an unperturbed toroidal magnetic field, which changes sign
at the equator and vanish at poles (Gilman and Fox 1997)

B, = B, cos0 sin0

¢
For S, =S, = 0.13 and the typical values of the tachocline
QO =2.7%x10° s | Ro: 51010 cm, r=0.2 g cm3 , BO =10* G
the minimum period of the m=1 unstable mode is
Tmin & 105 days.

Theretfore only the magnetic Rossby modes with periods longer than
105 days may grow in time.

However, 1t only gives lower bound on the periods of unstable modes.

A more detailed analysis 1s required to reveal the spectrum of
unstable harmonics.



We expand ¥ and @ in infinite series of associated Legendre polynomials

oC 0
=) aPlw, ®=) bPW.

n=m

which satisfy the boundary conditions Y=0=0 at p==+1.

Using a recurrence relation of Legendre polynomials,
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we obtain algebraic equations as infinite series.

The dispersion relation for the infinite number of harmonics can be
obtained when the infinite determinant of the system is set to zero.



In order to solve the determinant, we truncate the series at n = 75 and
solve the resulting polynomial in ® numerically. The frequencies of
different harmonics can be real or complex giving the stable or unstable
character of a particular harmonic.
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Figure 4. Dependence of real (lower panel) and imaginary (upper panel) parts
of the frequency of the most unstable symmetric harmonic on the magnetic field
strength for three different combinations of differential rotation paramcters. The
blue, green, and red lines correspond to (59 = 0.13, 55 = 0.1), (s, = 0.11, 54 =
0.1), and (s = 0.11, 54 = 0.12) respectively.
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Each combination of the differential rotation parameters (s, ,s,) and the

magnetic field strength favors a particular harmonic, which has stronger
growth rate compared to other unstable harmonics.

Therefore, this harmonic may quickly dominate over the others and may
lead to a detectable oscillation.

Frequencies of symmetric unstable modes are in the range 0.16—0.18
Q,, which yield the periods of 150— 170 days.

Variation of differential rotation rate and the magnetic field strength
through the solar cycle and from cycle to cycle may lead to the
appearance of the periodicity only at particular times, which normally
coincides to the cycle maxima.
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ABSTRACT

Quasi-menmal oscillations (QBOs) are frequently observed in solar activity indices. However, no clear physical
mechanism for the observed variations has been suggested so far. Here, we study the stability of magnetic Rosshy
waves in the solar tachocline using the shallow water magnewhydrodynamic approximation. Our analysis shows
that the combination of typical differential rotation and a torcidal magnetic field with a swength of 210° G
triggers the wnstability of the m = 1 magnetc Rossby wave haunonic with a pertod of ~2 years. T'his hasmome
is antisymmetric with respect to the equator and its period (and growth rate) depends on the differential rotation
parameters and magnetic field strength. The oscillations may cause a periodic magnetic flux emergence at the solar
surtace and consequently may lead to the observed QBO in solar activity features, The period of QBOs may change
throughout a cycle, and from cycle to cycle, dee to varniations of the mean magnetic hield and differential rotation
in the tachocline.

Key words: magnetic fields — magnetohydredynamics (MIID) - Sun: oscillations - waves
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Now let us take layer thickness to be finite. Then after repeating of the

same procedure we have the similar results € = Q%R% /(g Hp)
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The unstable harmonics are mostly symmetric (asterisks) with respect to
the equator for a magnetic field strength <104 G.

They become mostly antisymmetric (circles) for a strength >10° G.

A magnetic field strength between 104 and 105 G yields unstable
harmonics for both symmetries.

Equipartition between the magnetic energy and the kinetic energy of
differential rotation occurs at ~5 x 104 G for s2 =s4 =0.11.

When the magnetic field strength 1s smaller, then the differential rotation
1s the main energy source for instability and this obviously yields the
symmetric harmonics as the differential rotation 1s symmetric around the
equator.

When the magnetic field is stronger, then the magnetic energy 1s the
main source for the instability and the wunstable harmonics are
antisymmetric as the magnetic field is antisymmetric with respect to the
equator.



Asterisks (circles) denote symmetric (antisymmetric) harmonics.
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The oscillation period does not depend significantly on the reduced gravity.
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Period depends on the differential rotation parameters significantly and
takes the values between 400 and 700 days. The period becomes shorter for
stronger differential rotation.
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The frequencies and growth rates of unstable harmonics depend on the
combination of the differential rotation parameters and the magnetic
field strength.

The unstable harmonics are either symmetric or anti-symmetric with
respect to the equator.

The latitudinal differential rotation 1s mainly responsible for the growth
of symmetric harmonics.

The anti-symmetric toroidal magnetic field favors the growth of anti-
symmetric harmonics.

A magnetic field with a strength of 10* G leads to the oscillations with
shorter periods (150-170 days).

A stronger magnetic field of 10° G leads to the oscillations with longer
periods (1-2.5 yrs).



