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Rossby Waves – as seen by Rossby

Platzman 1968



Rossby and collaborators, 1939 





The picture is taken from above the  
South Pole, shows a number of mid  
latitude cyclones circling Antarctica. 

Palmen 1949



• Rossby waves may play a significant role in 
large-scale dynamics of Earth (and planetary) 
core, astrophysical discs, solar/stellar 
atmospheres/interiors, etc. 

• Solar/stellar atmospheres/interiors and 
planetary cores contain magnetic fields. 

• Therefore, the hydrodynamic Rossby wave 
theory should be modified in the presence of 
large-scale magnetic fields.  



Vorticity and magnetic field
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A dynamic variable of preeminent importance in  
rotating fluid dynamics is vorticity

For a fluid with uniform rotation,                   the  
vorticity is
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The vorticity vector is nondivergent 
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Momentum equation in fluid dynamics is

Taking its curl gives the vorticity equation 
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Electron and proton momentum equations
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Ohm’s law is obtained from the electron equation 
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and substituting into Maxwell equation
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one gets the induction equation
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Defining electric field as 



The vorticity equation is analogous to the induction equation  
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The term proportional to

is called the baroclinic term in the vorticity equation and 
Biermann battery term in the induction equation.
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If the fluid density is constant, or if the density is a function of only  
a pressure, then the baroclinic term vanishes
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and the vorticity and the induction equations become neglecting  
Lorentz force and Hall term
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Using the continuity equation 
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the vorticity and the induction equations in the ideal fluid become



λ
ρ

∇⋅=Π
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is conserved by each fluid element. 

The vorticity equation easily leads to the statement known as Ertel  
theorem: If λ is some conserved scalar quantity, then the potential  
vorticity 

The same theorem is valid for the magnetic field as 

λ
ρ
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b
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is conserved by each fluid element. 
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Sum of vorticity and induction equations gives  
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The vorticity of the fluid as observed from an inertial, nonrotating  
frame is called absolute vorticity

Ωωω 2+=a

and this quantity is conserved during the fluid motion on a rotating  
sphere. 

Rossby waves are produced from the conservation of 
absolute  vorticity. 

The vorticity of rotating sphere (e.g. Earth) is maximal at poles and  
tends to zero at the equator. 



• As an air parcel moves northward or southward over different 
latitudes, it experiences change in Earth vorticity.  

• In order to conserve the absolute vorticity, the air has to rotate to 
produce relative vorticity. 

• The rotation due to the relative vorticity bring the air back to 
where it was. 





Momentum equation in rotating frame (with angular velocity       ) 

Rossby waves (hydrodynamics)
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Ratio of convective and Coriolis terms is called a Rossby number   
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   is co-latitude,       is longitude, g is the acceleration, H is the  
layer thickness,         is the surface elevation,       is the angular  
frequency.

In 18th century, Laplace formulated his “tidal” equations   
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ϑsin2Ω=f is the Coriolis parameter. 

Rectangular coordinates: 

θϑ −= 090 is the latitude. 



gHc = is the surface gravity speed. 
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These equations can be cast into one equation  

If one neglects the surface elevation                or     0≈h 1<<
H
h

.02

2

2

2

=
∂

∂

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂

∂
+

∂

∂

∂

∂

x
u

y
f

u
yxt

y
y

This approximation eliminates surface gravity (or Poincare) waves 
and induces small change in Rossby wave dispersion relation.



At this point  came up Rossby with his         plane approximation −β

When spatial scales of considered process is less than sphere radius 
then one can expand the Coriolis parameter at a given latitude as 
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Fourier analysis of the form                                        leads to the 
dispersion relation of Rossby (or planetary) waves     
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If there is a constant zonal flow then the phase speed can be written as 
(Rossby 1939)   

Long wavelength waves propagate westward and short wavelength 
waves propagate eastward!  

It appears that the waves become stationary when   



β=1.6 10-11 m-1 s-1 at mid-latitudes. 

The ratio of Rossby wave and Earth rotation periods is around 6!   

The observed Rossby wave period on the Earth is 4-6 days  
(Yanai and Maruyama 1966, Wallace 1973, Madden 1979).  

For the wavelength of 10000 km, one gets the period of 5.6 days.  

Phase speed - 20 m/s.  



What does a Rossby wave look like? Recall that ψ is proportional to

the geopotential, or the pressure in the ocean. So a sinusoidal wave is a

sequence of high and low pressure anomalies. An example is shown in

Fig. (13). This wave has the structure:

ψ = cos(x− ωt)sin(y) (122)

(which also is a solution to the wave equation, as you can confirm). This

appears to be a grid of high and low pressure regions.
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Rossby wave, t=0
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Figure 13: A Rossby wave, with ψ = cos(x − ωt)sin(y). The red corresponds to high
pressure regions and the blue to low. The lower panel shows a “Hovmuller” diagram of
the phases at y = 4.5 as a function of time.

The whole wave in this case is propagating westward. Thus if we take a

cut at a certain latitude, here y = 4.5, and plot ψ(x, 4.5, t), we get the plot

54

Courtesy to Lacasce

The  red  corresponds  to 
high pressure regions and 
the  blue  to  low.  The 
lower  panel  shows  a 
“Hovmuller”  diagram  of 
the phases at y = 4.5 as a 
function of time. 



Fourier analysis with                                   leads to the equation 
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where                 ,  m is the toroidal wave number and  
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When the spatial scale of considered process is longer than the sphere 
radius then one should use the spherical coordinates 
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then the equation is associated Legendre differential equation, those 
typical solutions are associated Legendre polynomials 
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where n-m is a number of nodes along the latitude.

It defines the dispersion relation for spherical Rossby waves (Haurwitz 
1940, Longuet-Higgins  1968, Papaloizou and Pringle 1978)
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First consideration of magnetic field effects on Rossby waves was  
done by Hide (1966). 

Rossby waves (magnetohydrodynamics)

He considered incompressible 2D MHD approximation with  
uniform 2D magnetic field.

Then  Gilman (2000) wrote MHD shallow water equations for  
nearly horizontal magnetic field
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Here B and u are horizontal magnetic field and velocity, H is the 
thickness of the layer, g is the reduced gravity.



The divergence-free condition for magnetic fields is now written as

( ) 0HB =⋅∇

This states simply that at every point the magnetic flux  
associated with the horizontal magnetic field, which are  
independent with height, is conserved. 

The total magnetic field is made up of horizontal fields  
independent of the vertical together with a small vertical field  
that is, like the vertical velocity, a linear function of height,  
being zero at the bottom and maximum at the top. 



Linear equations in x-y plane

xB is the unperturbed horizontal magnetic field.  
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At a given latitude we can expand the Coriolis parameter as 

Away from the equator                     then we get 0fy <<β
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This equation gives the dispersion relation (Zaqarashvili et al. 2007)

          is surface gravity speed. 00 gHC =

πρ4
x

A
Bv =          is the Alfvén speed. 



Low frequency branch (magnetic Rossby  waves): 
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Higher frequency branch (Poincaré waves): 

Hide (1966) considered only x-y plane and obtained:   
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The dispersion relation has two solutions: fast (high-frequency) and 
slow (low-frequency) magnetic Rossby waves. 

The magnetic field splits the ordinary HD Rossby waves into fast and 
slow magnetic Rossby modes!

HD Rossby waves  
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No rotation: 222~
xAkv=ω Alfvén waves  

No magnetic field:  

Low-frequency solution corresponds to slow magnetic Rossby waves   
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High-frequency solution corresponds to fast magnetic Rossby waves. 



Zaqarashvili et al. 2007, A&A

Solid lines: fast and slow modes 

Triangles: HD Rossby waves 

Dashed lines: Alfvén waves 
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0H is the thickness of the layer. 
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Linear MHD equations in rotating frame (spherical coordinates)  



where µ=cosθ and m is the toroidal wave number. 
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then the equation is associated Legendre differential equation, those 
typical solutions are associated Legendre polynomials 
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It defines the dispersion relation for spherical magnetic Rossby waves 

(Zaqarashvili et al. 2007)

The magnetic field causes the splitting of ordinary HD mode into the  
fast and slow magnetic Rossby waves.
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Zaqarashvili et al. 2007

Solid line: slow mode 
Dashed line: fast mode  
Dotted line: HD Rossby waves



The solution is presented in terms of  spheroidal wave functions                                                                                                  

For                  Fourier analysis with                                   leads to  
the complicated second order equation, which for the magnetic field  
profile                                                      was solved analytically. 
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and the dispersion relation of magnetic Rossby waves  is  
(Zaqarashvili et al. 2009)                                                                                                   
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Hence, the dispersion relation of magnetic Rossby waves depends on  
the magnetic field structure.                                                                                                   



In this case the governing equation is transformed into Weber 
equation, which has the solution in terms of Hermite polynomials.                                                                                                  
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The dispersion relation for magnetic Rossby waves is (Zaqarashvili  
et al. 2009)                                                                                                   
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The solution is concentrated near the equator and hence it describes 
equatorially trapped waves.                                                                                                  



➢  Rossby waves arise due to the conservation of absolute vorticity 
and govern the large scale dynamics on rotating spheres. 

➢  Horizontal magnetic field splits HD Rossby waves into fast and 
slow modes. 

➢ The magnetic field and differential rotation may lead to the 
instability of magnetic Rossby waves in solar/stellar interiors and in 
astrophysical discs. 

➢  Rossby waves can be important to explain solar/stellar activity 
variations. 

  
➢   Observed and theoretical periods can be used to probe the dynamo 

layers of the Sun and solar-like stars. 

Final remarks 


