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Rossby Waves — as seen by Rossby
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Rossby and collaborators, 1939
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The picture is taken from above the
Palmen 1949 South Pole, shows a number of mid
latitude cyclones circling Antarctica.



 Rossby waves may play a significant role in
large-scale dynamics of Earth (and planetary)
core, astrophysical discs, solar/stellar
atmospheres/interiors, etc.

* Solar/stellar atmospheres/interiors and
planetary cores contain magnetic fields.

* Therefore, the hydrodynamic Rossby wave
theory should be modified in the presence of
large-scale magnetic fields.



Vorticity and magnetic field

A dynamic variable of preeminent importance in
rotating fluid dynamics 1s vorticity

=V XU

The vorticity vector 1s nondivergent
V-o=0.

For a fluid with uniform rotation, u_ = Qr, the
vorticity 1s

(m ) 29) 2Q.



Momentum equation in fluid dynamics 1s

1 1
a_u_ u°V)1 =—-—Vp+VAu. + — jxb
ot P cP

Taking 1ts curl gives the vorticity equation
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mcn,

+VA® +V X

a—(D—Vx(uxo)) Vx(vp jxb
P

ot




Electron and proton momentum equations

]
P, au, _ -Vp, —ene(E +—u, xb) -, (u, —u,),
dt C
. ]
P, au, =-Vp, +eni(E+—ui xb) +o,.(u, —u,)
dt C

Ohm’s law 1s obtained from the electron equation

1 1 . 1
E+—u xb+—Vp, = ?8’2 j+
C en, en cen,

e

jxb

j=—en, (“e — ul.) current density



Defining electric field as

1 1 . |
E=-—uxb-—Vp_ + %8’2 ]+ : ixb
C en, en, cen,
and substituting into Maxwell equation
VxE——lQE
c ot
one gets the induction equation
ob \% |
——Vx(uxb)+—Vx A +NAb.—Vx —Jxb
ot e 0 en,



8_(0+qu (0) V).l oV u- Vx(vp)+VAO)-+Vx | ixb
P

ot mcn,

The vorticity equation 1s analogous to the induction equation

ab
at

¥ u’V))=(b-V)1—bV-u+@Vx(Vp)+nAb. -V
e p

The term proportional to

Vx(Vp)b%(Vprp)
p p

1s called the baroclinic term 1n the vorticity equation and
Biermann battery term in the induction equation.



If the fluid density is constant, or if the density is a function of only
a pressure, then the baroclinic term vanishes

] ] d
— (VpxVp)=—(VpxVp )= =0
P P dp

and the vorticity and the induction equations become neglecting
Lorentz force and Hall term

aa_(;)-l_ u-V)D = (0)'V)J—O)V'll +VA®,

Z_TJ, u-V)b = (b-Vu-bV-u+nAb.



Using the continuity equation

E+ pV-u=0
Dt

the vorticity and the induction equations in the 1deal fluid become

als)] (P

alo) (P




The vorticity equation easily leads to the statement known as Ertel
theorem: If A is some conserved scalar quantity, then the potential
vorticity

n=2.v
0

is conserved by each fluid element.

The same theorem 1s valid for the magnetic field as

M, =2

Top

is conserved by each fluid element.



a_w_|_ uV),Q) = (Q)V)l—(DVU—VX(E) +VA®. +V x
Y

ixb
ot )

mcn,
t

@+(u-v)) - (b-v)u-bv-u+@Vx(@)+nAb.—Vxl—ij
ot e 0 €n,

Sum of vorticity and induction equations gives

0!;3 +wve,=(Q, - Vu-Q,V-u
dQ,

=(Q,-V
=@V

mc :
QB =b+—@ 1S conserved.

e



The vorticity of the fluid as observed from an inertial, nonrotating
frame 1s called absolute vorticity

O =+20

and this quantity is conserved during the fluid motion on a rotating
sphere.

The vorticity of rotating sphere (e.g. Earth) 1s maximal at poles and
tends to zero at the equator.

Rossby waves are produced from the conservation of
absolute vorticity.



 As an air parcel moves northward or southward over different
latitudes, 1t experiences change in Earth vorticity.

* In order to conserve the absolute vorticity, the air has to rotate to
produce relative vorticity.

* The rotation due to the relative vorticity bring the air back to
where 1t was.




Waves are strongly developed. The When the waves are pinched off,
cold air occupies troughs of low pressure. they form cyclones of cold air.

Copyright © AN, Strahler



Rossby waves (hydrodynamics)

Momentum equation in rotating frame (with angular velocity ())

a—u+(u'V).l = _in—Zqu+g,
ot P

where— Zpﬂ X W 1s the Coriolis force.

Ratio of convective and Coriolis terms 1s called a Rossby number

U

Ro=—
LE2

When Ro0 << 1then the rotation effects are significant.



In 18t century, Laplace formulated his “tidal” equations

ou
— +2QcosOu, =- 5 o
ot Rsin0 dg
My _2Q cosbu =—§%,
ot Y RO

ou
ah+ H 0 (sinOu, )+ —*
dt Rsin0O |00 o

9 1s co-latitude,
layer thickness,
frequency.

0

? 0

H

¢ 1s longitude, g 1s the acceleration, H 1s the
h 1s the surface elevation, Q 1s the angular



Rectangular coordinates:

_

y=78 ox

Guy _ —g%
ot oy

%+i(Hu )+i(Hu ) 0.
Jdf  ox

f =2QsinD is the Coriolis parameter.

I =90" -0 is the latitude.



These equations can be cast into one equation

i 2 2\ ] ou
0 1 , 7 0 8 Nu, - af du, _0
ot ox” 8y dy ox

gH  1s the surface gravity speed.

If one neglects the surface elevation /1 =( or % << 1
o (9> o of du,

SN A
Jdf \ dx~ oy dy ax

This approximation eliminates surface gravity (or Poincare) waves
and induces small change in Rossby wave dispersion relation.



At this point came up Rossby with his p — plane approximation

When spatial scales of considered process 1s less than sphere radius
then one can expand the Coriolis parameter at a given latitude as

f=1+By,

_of 2Q
dy R
0 ( 9°  9° ou

+ U, + = = 0.
ot | ox’ ayz) ¢ ﬁax

cos = const.

§




Fourier analysis of the form exp(-iof + ik, x+ik y) leads to the
dispersion relation of Rossby (or planetary) waves

ki +k;

Rossby waves always propagate in the opposite direction of rotation!

& =

For purely toroidal propagation ¢y = — E
k
@ B

X

2 2°
k. ke

X

Phase speed V,, =

Long wavelength waves propagate faster!

OO ki —k; 2k k,
Group speed V, = -p

ok, ok, |~ (k2 wk2) (k2 +k2)



If there 1s a constant zonal flow then the phase speed can be written as
(Rossby 1939)

BL*
472’

It appears that the waves become stationary when

_ g Bl _ _ U
L2
C = U(l — L82)1

Long wavelength waves propagate westward and short wavelength
waves propagate eastward!

c = {7




£=1.6 10-1 m-! s-! at mid-latitudes.

For the wavelength of 10000 km, one gets the period of 5.6 days.
Phase speed - 20 m/s.

The observed Rossby wave period on the Earth 1s 4-6 days
(Yanai and Maruyama 1966, Wallace 1973, Madden 1979).

The ratio of Rossby wave and Earth rotation periods is around 6!
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Rossby wave, t=0

Hovmuller diagram, y=4.5
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When the spatial scale of considered process i1s longer than the sphere
radius then one should use the spherical coordinates

d d
%—Zﬁcosﬁucp = —%%,

u |

+ +2QcosOu, =— : P :

ot PRSINO J@
d ou
—(sinOu, )J+ ——=0

o (sinBu, )+ =

Fourier analysis with exp(—iw? + ime) leads to the equation

m* 2mQ

0 J -~
a(l_uz)au_l ty =0,

where u = cosO , m is the toroidal wave number and %, = sin6u,.




If %—n(n+1)

0}
then the equation 1s associated Legendre differential equation, those

typical solutions are associated Legendre polynomials
=P (cos@ )

where n-m 1s a number of nodes along the latitude.

It defines the dispersion relation for spherical Rossby waves (Haurwitz
1940, Longuet-Higgins 1968, Papaloizou and Pringle 1978)

2mg2
n(n + 1).
® 2Q
m ) nn+1)

®

Vo



Rossby waves (magnetohydrodynamics)

First consideration of magnetic field effects on Rossby waves was
done by Hide (1966).

He considered incompressible 2D MHD approximation with

uniform 2D magnetic field.

Then Gilman (2000) wrote MHD shallow water equations for
nearly horizontal magnetic field

N u-Vu+B-VB-gVH + fuxz

ot
E= -u-VB+B-Vu
ot
H
a—=—V~Hu
ot

Here B and u are horizontal magnetic field and velocity, H is the
thickness of the layer, g 1s the reduced gravity.



The divergence-free condition for magnetic fields 1s now written as
V-(HB)=0

This states simply that at every point the magnetic flux
associated with the horizontal magnetic field, which are
independent with height, is conserved.

The total magnetic field is made up of horizontal fields
independent of the vertical together with a small vertical field
that 1s, like the vertical velocity, a linear function of height,
being zero at the bottom and maximum at the top.



Linear equations in x-y plane

u, B_ db, oh
~ fu, = —g—

ot 4tp Ox 0x
ou B db oh
_r + ux — X y _ g_
ot 4rtp ox dy
db, . Ju,

ot " ox
9, _p oy

ot " Ox

oh 0 u
—+ H, e A )

ot ox  dy

B, is the unperturbed horizontal magnetic field.



azuy (u_z_kz 27 ~ ® f k. af
R e e fOy 0
V 0 o W w’ VA y

C, =+/gH, 1s surface gravity speed.

V= \/ﬁ is the Alfvén speed.

At a given latitude we can expand the Coriolis parameter as

202
f = fz) + ﬁya B = :
RO
Away from the equator Py <<  then we get
aZM (02 2V124 (02f2 kow
p |GG TG ) 0 -k

This equation gives the dispersion relation (Zagarashvili et al. 2007)

uy=0.

o' - RV + [+ Gl + kb7 - Cok o + kv + Gkl + k. ) 0.



For v, << (C, this equation has two different branches

Higher frequency branch (Poincaré waves):

0 = f2+C22 + )

Low frequency branch (magnetic Rossby waves):

(x)2+k2kxﬁk W — vAk2 0
+

X Y

Hide (1966) considered only x-y plane and obtained:

0+ kzkﬁlz & —v*(kcos® +/sind ) = 0.
+



The dispersion relation has two solutions: fast (high-frequency) and
slow (low-frequency) magnetic Rossby waves.

High-frequency solution corresponds to fast magnetic Rossby waves.

Low-frequency solution corresponds to slow magnetic Rossby waves
2 (7.2 2
RS,

6)) .

s

The magnetic field splits the ordinary HD Rossby waves into fast and
slow magnetic Rossby modes!

kB
2 2
g k. +k,

No rotation: W’ = vjkj Alfvén waves

HD Rossby waves

No magnetic field: @ = —
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Linear MHD equations 1n rotating frame (spherical coordinates)

B =(0,B,,0),B, =smnb5B,
ob B,
%—ngo cosOu, +E5ino oh __By %% +2 cos0b, =0
ot R 00 4mpR I 4tpR
du,, 0b
+ & 5ino oh __ By %% -2 5, cosBh, =0
ot R o 4rch o 4tpR
ou
sin” 0 o H % sin6 0t +H° * =0
or | R 90 R ¢
by _ B, du, _
ot R 0o

ob. B .
? + Ysin0O ity =0
ot R 00

H, 1s the thickness of the layer.



For h— (0  Fourier analysis with exp(—im? + im(p) leads to

'i(l_uz)a om’ 2mQR@ +2m’v; |-

2 2~2
-u R’®* —m*V’

where u=cos0 and m 1s the toroidal wave number.

2mQ, R’w +2m* V
If = n(n + 1)
RZ 2 . 2VA2

then the equation 1s associated Legendre differential equation, those
typical solutions are associated Legendre polynomials

Uy, = P" (cos9)



It defines the dispersion relation for spherical magnetic Rossby waves

(Zaqarashvili et 511. 2007)
Q) 2m o B.m’ 2—n(n+1)
S + + > > =
Q] nh+1)Q, wpQR> n(m+1)

0.

The magnetic field causes the splitting of ordinary HD mode into the
fast and slow magnetic Rossby waves.

In nonmagnetic case it transforms into HD Rossby wave solution

2mQ,
n(n + 1)°

For slow magnetic Rossby waves
B, 2- n(n + 1)
"upQR* 2

W =-

0 =-mS2

Period of particular harmonics depend on the magnetic field strength.
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For } = () Fourier analysis with exp(—io? + imq) leads to
the complicated second order equation, which for the magnetic field
profile B =(0,B,,0),B, =sin6 cosbB; was solved analytically.

4Q°R? e
1) &= <<1  (strongly stable stratification)
gH,
The solution is presented in terms of spheroidal wave functions

=S (8 , cosﬁ)

and the dispersion relation of magnetic Rossby waves 1s

(Zagarashvili et al. 2009)
2

(oo) 2m B m 1

— | +
Q, ] nln+1)Q, 4np£22R2 n(n +1)
Hence, the dispersion relation of magnetic Rossby waves depends on

the magnetic field structure.



2 2
) 4Q°R

£ = >>1  (weakly stable stratification)
gH,

In this case the governing equation 1s transformed into Weber
equation, which has the solution in terms of Hermite polynomials.

The solution 1s concentrated near the equator and hence it describes
equatorially trapped waves.

The dispersion relation for magnetic Rossby waves 1s (Zagarashvili
et al. 2009)

2

o) 2m o B m’ 1 _
Q, (2\/ +1)\/§ Q, 4npQ’R’ (2\/ +1)\/§

0.



> Rossby waves arise due to the conservation of absolute vorticity
and govern the large scale dynamics on rotating spheres.

> Horizontal magnetic field splits HD Rossby waves into fast and
slow modes.

> The magnetic field and differential rotation may lead to the
instability of magnetic Rossby waves in solar/stellar interiors and in
astrophysical discs.

> Rossby waves can be important to explain solar/stellar activity
variations.

> Observed and theoretical periods can be used to probe the dynamo
layers of the Sun and solar-like stars.



