

Nonlinear Evolution of "Shallow-water" Instability in Solar Tachocline

Mausumi Dikpati (HAO/NCAR)

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

The Solar Tachocline

Brown et al. 1989
Goode et al. 1991
Tomczyk, Chou & Thompson 1995
Kosovichev 1996
Basu 1997
Charbonneau et al. 1997
Corbard et al. 1998

Thompson et al. (2003)

- There exists a thin layer (<0.04R), called "tachocline", which straddles convection zone base (0.7R)
- Tachocline contains strong radial differential rotation along with latitudinal differential rotation at the top that declines to solid rotation at the bottom of tachocline

Global HD/MHD Instabilities in Solar Tachocline

Extensive studies in 2D, 3D and Shallow-water models of solar tachocline indicate the existence of global HD/MHD instabilities in tachocline with low longitudinal wave numbers

(Arlt, Cally, Charbonneau, Dikpati, Dziembowski, Garaud, Gilman, Kosovichev, Miesch, Rempel, Ruediger)

What is MHD Shallow Water

System?

- Spherical Shell of fluid with outer boundary that can deform
- Horizontal flow, fields in shell are independent of radius
- Vertical flow, field linear functions of radius, zero at inner boundary
- Magnetohydrostatic force balance
- Horizontal gradient of total pressure is proportional to the horizontal gradient of shell thickness

Pedlosky , Longuet & Higgins 1970; Gilman, 2000; Dikpati & Gilman 2001; Dikpati 2012

Horizontal divergence of magnetic flux in a radial column is zero

Equilibrium in Global MHD Tachocline

In general, is a balance among three latitudinal forces, including hydrostatic pressure gradient, magnetic curvature stress, and coriolis forces

Dikpati, Gilman, and Rempel 2003

Effective Gravity Parameter (G)

$$G = \frac{1}{2} \frac{g_t \left| \nabla - \nabla_{ad} \right| H^2}{\left(r_t \omega_c \right)^2 H_p}$$

in which:

gravity at tachocline depth

fractional departure from adiabatic temperature gradient thickness of tachocline "shell"

- pressure scale height
- solar radius at tachocline depth

rotation of solar interior

G ~ 10⁻¹ for Overshoot Tachocline G ~ 10² for Radiative Tachocline

Shallow Water Equations of Motion and Mass Continuity

$$\frac{\partial u}{\partial t} = -G \frac{1}{\cos\phi} \frac{\partial h}{\partial\lambda} + \frac{v}{\cos\phi} \left[\frac{\partial v}{\partial\lambda} - \frac{\partial}{\partial\phi} (u\cos\phi) \right] - \frac{1}{\cos\phi} \frac{\partial}{\partial\lambda} \left(\frac{u^2 + v^2}{2} \right)$$
$$-\frac{b}{\cos\phi} \left[\frac{\partial b}{\partial\lambda} - \frac{\partial}{\partial\phi} (a\cos\phi) \right] + \frac{1}{\cos\phi} \frac{\partial}{\partial\lambda} \left(\frac{a^2 + b^2}{2} \right),$$
$$\frac{\partial v}{\partial t} = -G \frac{\partial h}{\partial\phi} - \frac{u}{\cos\phi} \left[\frac{\partial v}{\partial\lambda} - \frac{\partial}{\partial\phi} (u\cos\phi) \right] - \frac{\partial}{\partial\phi} \left(\frac{u^2 + v^2}{2} \right)$$

$$+\frac{a}{\cos\phi}\left[\frac{\partial b}{\partial\lambda}-\frac{\partial}{\partial\phi}(a\cos\phi)\right]+\frac{\partial}{\partial\phi}\left(\frac{a^2+b^2}{2}\right),$$

$$w = \frac{\partial}{\partial t} (1+h) = -\frac{1}{\cos\phi} \frac{\partial}{\partial\lambda} \Big[(1+h)u \Big] - \frac{1}{\cos\phi} \frac{\partial}{\partial\phi} \Big[(1+h)v\cos\phi \Big],$$

HAO

Pedlosky, Longuet & Higgins 1970;

Shallow Water Induction and Flux Continuity Equations

$$\frac{\partial a}{\partial t} = \frac{\partial}{\partial \phi} \left(ub - va \right) + \frac{a}{\cos \phi} \left[\frac{\partial u}{\partial \lambda} + \frac{\partial}{\partial \phi} \left(v \cos \phi \right) \right] - \frac{u}{\cos \phi} \left[\frac{\partial a}{\partial \lambda} + \frac{\partial}{\partial \phi} \left(b \cos \phi \right) \right],$$

$$\frac{\partial b}{\partial t} = -\frac{1}{\cos\phi} \frac{\partial}{\partial\lambda} (ub - va) + \frac{b}{\cos\phi} \left[\frac{\partial u}{\partial\lambda} + \frac{\partial}{\partial\phi} (v\cos\phi) \right] - \frac{v}{\cos\phi} \left[\frac{\partial a}{\partial\lambda} + \frac{\partial}{\partial\phi} (b\cos\phi) \right],$$

$$\frac{1}{\cos\phi}\frac{\partial}{\partial\lambda}\left[\left(1+h\right)a\right] + \frac{1}{\cos\phi}\frac{\partial}{\partial\phi}\left[\left(1+h\right)b\cos\phi\right] = 0.$$

(Gilman, 2000; Gilman & Dikpati 2002)

Singular Points

Occur at latitudes where:

$$S_r = \omega_o - c_r = 0$$

$$S_m = (\omega_o - c_r)^2 - \alpha_o^2 = 0$$

$$S_g = (1 - \mu^2) \left[(\omega_o - c_r)^2 - \alpha_o^2 \right] - G(1 + h_o)$$

 $h_{\sigma}\,$ is departure of shell thickness from uniform thickness

For cases of solar interest: S_r , $S_m = 0$ are important, $S_g = 0$ is not

- Singular points define places of rapid phase shifts with latitude in unstable modes
- Therefore much of disturbance structure, as well as energy conversion processes, can occur in this neighborhood
- Singular points play major role in interpreting how this instability is driven

Schematic of Possible Modes of Instability in MHD "Shallow Water" Shell

- h increases poleward
- Toroidal ring shrinks
- Fluid in ring spins up

- h redistributed but no net rise
- Toroidal ring tips but remains same circumference
- Fluid in ring keeps same speed but flow tips

- h redistributes but no net poleward rise
- Toroidal ring deforms, creating Maxwell Stress
- Fluid flow inside ring deforms but does not spin up

Stability Diagrams for HD Shallow Water System

Location of inflection point in potential vorticity

HD Shallow water Instability

Energetics

Solving Nonlinear Shallow-water Equations in Spherical Coordinate

- Start with real space first order shallow-water equations
- Decompose h, u and v in scalar and vector spherical harmonics to deal with the pole problem
- Evaluate nonlinear terms by implementing pseudo-spectral scheme (Swarztrauber 1996)
- Implement semi-implicit scheme to take the advantage of larger time-step so that high-frequency gravity waves are integrated out (Hack & Jacob 1992)
- Implement fourth order Runge-Kutta time integration scheme
- Parallelize forward and backward transforms in shared memory parallelization scheme (Dikpati 2012)

Nonlinear evolution of shallow-water instability

Arrow vectors: Global flow (clockwise in swelling, and anticlockwise in depression) Color shades: Tachocline thickness (red represents swelling, blue depression) Flow is nearly geostrophic in a hydrodynamic or weakly magnetized tachocline

Features to note in simulation:

- Quasi-periodic oscillations in thickness and velocities
- Slow retrograde propagation relative to rotating frame
- Flow nearly geostrophic in hydrodynamic tachocline, and magnetostrophic in magnetized tachocline
 - Occasional appearance of gravity waves

Dikpati 2012

Nonlinear evolution of shallow-water instability

Arrow vectors: Global flow Color shades: Tachocline thickness (red swelling, blue depression)

- Flow is nearly geostrophic in
- a
- hydrodynamic or weakly magnetized tachocline

^{ic} <u>Features to note in simulation:</u>

- Quasi-periodic oscillations in thickness and velocities
- Slow retrograde propagation relative to rotating frame
- Flow nearly geostrophic in hydrodynamic tachocline, and magnetostrophic in magnetized tachocline
- Occasional appearance of gravity waves
 Dikpati 2012

Evolution of kinetic and potential energies

- Interaction between reference state and perturbation kinetic energies is oscillatory
- These oscillations are related to oscillatory interaction between Rossby waves and differential rotation
- These periodicities organize space weather that influences the earth

(Dikpati 2012)

Evolution of kinetic and potential energies

- Interaction between reference state and perturbation kinetic energies is oscillatory
- These oscillations are related to oscillatory interaction between Rossby waves and differential rotation
- These periodicities organize space weather that influences the earth
- Oscillation frequency is a function of perturbation in total energy

(Dikpati 2012)

Another case (G=0.1)

Rossby waves

Evolution of kinetic and potential energies

High latitude jets

(Christensen-Dalsgaard et al. 2003)

MHD Shallow-water Instability

Energetics in magnetically dominated case

Nonlinear Evolution of MHD Instability

(Cally, Dikpati and Gilman, 2003)

MHD Shallow-water Instability :A Theory of Active Longitudes

Active longitudes

- Active regions persistently appear in one longitude location or two longitudes ~180-degree apart
- Longitude location persists for ~15-20 solar rotation
- Rotation of active longitudes vary, strongest ones rotate rigidly with core rotation rate, but both faster and slower rotations have been found
- Modulation over several months to a few years has been observed in amplitude

HAO

de Toma, White & Harvey 2000

Initial toroidal field is the unperturbed toroidal band with 20 kG peak field plus perturbations caused by all plausible unstable longitudinal modes (m=1S, m=1A, m=2A here)

Identify longitude locations of the band that coincide with the swelled fluid

Active longitudes evolve according to the propagation of unstable MHD shallow-water modes

Evolution of theoretical and observed active longitudes

Dikpati and Gilman, 2005

Evolution of swelling/ depression of tachocline fluid and observed active longitudes

(Dikpati and Gilman, 2005)

Oscillation among kinetic energy, magnetic energy and (magnetic) Rossby waves

Oscillation period as function of band location and band strength

- Period increases as the • band migrates towards the equator
- Period decreases as the • band strength increases

3D MHD instability of antisolar differential rotation

Heavier than the Sun

K-stars: slower rotators; lighter than the Sun

Consequences of 3D MHD axisymmetric (m=0) instability with radial wavenumber

Summary

- HD/MHD shallow-water instability can occur in solar tachocline
- High latitude prograde jets can form due to this instability; such jets have been observed
- The Sun has "Seasons", or characteristic time variations on a scale of 6

 18 months . These seasons can be simulated by using MHD Shallow-water tachocline model, and can be forecast 2 years ahead when surface observations are assimilated
- A global helical flow can be generated in the tachocline and can provide a source for dynamo action there
- When a certain longitude portion of a toroidal band coincide with the swelled fluid region due to tipping of the band, that portion rises to the surface to produce spots at that longitude, creating "active longitudes"

Thank you

