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OUTLINE

Evidence of SOC in solar active-region magnetic fields?

A. Evolution of (most) eruptive ARS:
® Metastability through irreversibility:
* The “point of no return” - physical:mechanism

e Marginal stability

* A possible nature of the critical:thresnholdinvolvead
* How do we get-there?

® A numerical test and implications

Extrapolated

force-free field

B. Open questions:
C. Gonclusions
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THE CASE OF NOAA AR 11158
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A super-eruptive AR with 1 X--and 3 M-class eruptive flares, including
> 30 C-class flares, many of which eruptive, over a 5-day period
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MAGNETIC-FIELD EVOLUTION IN THE AR

Jiang & Feng (2013)

A very complex observed ...and an equally complex

photospheric magnetic field... extrapolated field in the AR'’s
corona
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STRONGLY SHEARED PHOTOSPHERIC FIELDS

HiMI / SDO § Stanford

Source: Keiji Hayashi - Stanford U.
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AND A WELL-MANIFESTED MULTISCALE BEHAVIOR
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FOR THE ENTIRE SDO/HMI OBSERVING INTERVAL
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fractal dimension

power-law index of turbulent
POWEr spectrum

intermittency scaling index

Georgoulis (2013), submitted
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FREQUENCY DISTRIBUTION OF GOES X-RAY FLUX

GOES 1—min X—ray data
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FREQUENCY DISTRIBUTION OF GOES X-RAY FLUX

GOES 1—min X—ray data
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A well-defined power law!
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Q: Could this (and similar) active regions
oe in‘a SOC state”?

I SOC IN ERUPTIVE ARs: CENTRAL QUESTION
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A PROPOSITION

Active regions with a strong photospheric magnetic polarity-inversion
ine do not die out without at least one major eruption (flare + CME)

NN SOC IN ERUPTIVE ARs: FACTS
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A PROPOSITION

Active regions with a strong photospheric magnetic polarity-inversion
ine do not die out without at least one major eruption (flare + CME)

Eruptie ARs:
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A PROPOSITION

Active regions with a strong photospheric magnetic polarity-inversion
ine do not die out without at least one major eruption (flare + CME)

Eruptive ARs:
'NOAAAR9077 | NOAAAR9415 | NOAA AR 10486

’ 11 - .
A J | | ‘. 3 .
P2 | (- * 3 s

4 | 2003-10-29 17:35 UT ; - 2005-01-16 06:23 UT | |

[ NoAAAR10207 | NoAAARtOT4S

| 2002-12-1320:48 UT | 2005-03-26 12:47 UT
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A PROPOSITION

Active regions with a strong photospheric magnetic polarity-inversion
ine do not die out without at least one major eruption (flare + CME)

Eruptie ARs:

After a certain “point of no
return” (strong-PIL formation),
irreversibility sets in!
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A SEEMINGLY “IRRELEVANT” STUDY

Are electric currents injected In the solar atmosphere via magnetic
flux emergence neutralized?
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A SEEMINGLY “IRRELEVANT” STUDY

Are electric currents injected In the solar atmosphere via magnetic
flux emergence neutralized?

YES, according to E.-N.:Parker

Parker (1996)

Observationally inferred photospheric density:

“..the curl of the transverse magnetogram of
magnetic fields composed of unresolved separate
fonls -bears no direct relation to the mean
longitudinal electric current aensity. The mean
current density is essentially zero.” (Parker, 19906)

INTERNATIONAL
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A SEEMINGLY “IRRELEVANT” STUDY

Are electric currents injected In the solar atmosphere via magnetic
flux emergence neutralized?

YES, according to E.-N.:Parker

Parker (1996)

Observationally inferred photospheric density:

“..the curl of the transverse magnetogram of
magnetic fields composed of unresolved separate
fonls -bears no direct relation to the mean
longitudinal electric current aensity. The mean
current density is essentially zero.” (Parker, 19906)

Notice, however, that Parker refers to isolated magnetic flux tubes
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THE SITUATION ALONG PILs: ERUPTIVE AR

Georgoulis, et al. (2012a)
NOAA AR 10930
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THE SITUATION ALONG PILs: ERUPTIVE AR

Georgoulis, et al. (2012a)

Continuum
Intensity

s vector
magnetogram

S e ..

/
7

N - w4
s s /e
oy

B -
B . .

Vertical electric
current density

~Ixel size: U.1505™

igma (LOS): 2.4 Mx cm™
>igma (TRANS): 41VIx cm™=
Lites et al. 200g)

N SOC IN ERUPTIVE ARs: FACTS
+ 12

<Ml SOC & TURBULENCE +, *| BERN, 16 -20 SEP, 2013

INSTITUTE




THE SITUATION ALONG PILs: NON-ERUPTIVE AR

Georgoulis, et al. (2012a)
NOAA AR 10940
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THE SITUATION ALONG PILs: NON-ERUPTIVE AR

Georgoulis, et al. (2012a)
NOAA AR 10940
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NON-NEUTRALIZED CURRENTS ALONG STRONG PlILs

W SOC IN ERUPTIVE ARs: FACTS
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NON-NEUTRALIZED CURRENTS ALONG STRONG PlLs
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e Significant net currents exclusively along PlLs 0 100 200 300 400 500
e Overall, AR current neutralized (~3.6%)
®| arge consistency of sense of currents per polarity (~80%)
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WEAK NON-NEUTRALIZED CURRENTS, IF ANY, IN WEAK PILs
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WEAK NON-NEUTRALIZED CURRENTS, IF ANY, IN WEAK PILs
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e \uch smaller net currents, also exclusively along PILs
eOverall, AR current neutralized (~6.3%)

e \uch more iInconsistent sense of currents per polarity (~40%)
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INTERPRETATION: LORENTZ FORCE ALONG PILs

SOC IN ERUPTIVE ARs: INTERPRETING SHEAR ALONG PILs
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SOC & TURBULENCE + "4 BERN, 16 -20 SEP 2013 16




INTERPRETATION: LORENTZ FORCE ALONG PILs

e Azimuthal L.orentz force on edges of flux
tube footprints embedded in field-free
Space:

(tension component)
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INTERPRETATION: LORENTZ FORCE ALONG PILs

e Azimuthal L.orentz force on edges of flux
tube footprints embedded in field-free
Space:

(tension component)

® |n case of non-interacting, distant footprints:
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INTERPRETATION: LORENTZ FORCE ALONG PILs

e Azimuthal L.orentz force on edges of flux
tube footprints embedded in field-free
space:

(tension component)

Nonlinear azimuthal gradients ® |n case of non-interacting, distant footprints:

® However, In case of interacting, closely
seated, and hence deformed footprints
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INTERPRETATION: LORENTZ FORCE ALONG PILs

e Azimuthal L.orentz force on edges of flux
tube footprints embedded in field-free
space:

(tension component)

Nonlinear azimuthal gradients ® |n case of non-interacting, distant footprints:

® However, In case of interacting, closely
seated, and hence deformed footprints

L'orentz force appears along strong PlLs
when the interacting magnetic polarities
deform as a result of this interaction.

Apparently it causes consistent shearing
W N SOC IN ERUPTIVE ARs: INTERPRETING SHEAR ALONG PILs
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IS LORENTZ FORCE CAPABLE OF MOVING THE PLASMA?

--> Magnetic field lines are thought to be
anchored deep In the dense, fluid-
dominated photosphere

Titov & DemOL\I\ITn“(-199‘9)/
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IS LORENTZ FORCE CAPABLE OF MOVING THE PLASMA?

--> Magnetic field lines are thought to be
anchored deep In the dense, fluid-
dominated photosphere

--> For MHD (Lorentz) forces to lbe able to
move the plasma, the magnetic energy
density should exceed the fluid energy
density (B < 1), do that L.orentz force ¢an
overcome the photospheric hydrodynamic
inertia:

Titov & DemOL\l\ITn“(-1999)/
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IS LORENTZ FORCE CAPABLE OF MOVING THE PLASMA?

--> Magnetic field lines are thought to be
anchored deep In the dense, fluid-
dominated photosphere

--> For MHD (Lorentz) forces to lbe able to
move the plasma, the magnetic energy
density should exceed the fluid energy
density (B < 1), do that L.orentz force ¢an
overcome the photospheric hydrodynamic
inertia:

Titov & DemOL\l\ITn“(-1999)/

--> Magnetic-field equipartition-value:

(Kinetic)
(thermal)
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IS LORENTZ FORCE CAPABLE OF MOVING THE PLASMA?

--> Magnetic field lines are thought to be
anchored deep In the dense, fluid-
dominated photosphere

--> For MHD (Lorentz) forces to lbe able to
move the plasma, the magnetic energy
density should exceed the fluid energy
density (B < 1), do that L.orentz force ¢an
overcome the photospheric hydrodynamic
inertia:

Titov & DemOL\l\ITn“(-199‘9)/

--> Magnetic-field equipartition value: - ==>Mean Beq = 800 G

(Kinetic)
(thermal)
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IS LORENTZ FORCE CAPABLE OF MOVING THE PLASMA?

--> Magnetic field lines are thought to be
anchored deep In the dense, fluid-
dominated photosphere

--> For MHD (Lorentz) forces to lbe able to
move the plasma, the magnetic energy
density should exceed the fluid energy
density (B < 1), do that Lorentz force can
overcome the photospheric hydrodynamic
inertia:

Titov & DemOL\I\ITn“(-199‘9)'/

--> Magnetic-field equipartition value: - ==>Mean Beq = 800 G

sessnen @ [N eruptive NOAA AR 10930 (strong
WRRISE | shear flows), Be > 1500 G in all

Cases.

teraaarznd (@ In non-eruptive NOAA AR 10940
(very weak shear flows, if any), Bpi

ranges from few hundred to < 1500 G
SOC IN ERUPTIVE ARs: INTERPRETING SHEAR ALON S
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INTERPETATION OF IRREVERSIBILITY IN STRONG PlLs
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e [f, for any reason, interactive, opposite-polarity sunspot complexes
start deforming due to this interaction, non-neutralized electric currents

set iIn and the resulting Lorentz-force tension is able to shear the
plasma, thus leading to sheared magnetic configurations along PILs
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INTERPETATION OF IRREVERSIBILITY IN STRONG PlLs

Courtesy: X. Sun
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e [f, for any reason, interactive, opposite-polarity sunspot complexes
start deforming due to this interaction, non-neutralized electric currents
set iIn and the resulting Lorentz-force tension is able to shear the
plasma, thus leading to sheared magnetic configurations along PILs

® -or a consistent sense of twist in the structure (strong coherence), the
action of shear is additive and will continue to stress the system for as

long as the sunspots interact

N SOC IN ERUPTIVE ARs: IRREVERSIBILITY
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INCREASING FREE MAGNETIC ENERGY

® [hen the predominant energy budget is the
magnetic-energy budget:

Free (available
for release)

Total Current-free

-= B --> overall magnetic field
-- Bp --> current-free (potential) field
-- B¢ --> current-carrying field

® Photospheric field of ARs Is known -
coronal field above Is unknown and-1s
estimated by MS magnetic field ® [he Sun needs to dissipate “free” magnetic

extrapolation (870t ~0) or MHD modeling energy accumulated due to electric currents:
® |n the simplest case (extrapolation) we

assume that the plasma-3 parameter is
ZErO:

V BN socC IN ERUPTIVE ARs: IRREVERSIBILITY
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INCREASING FREE MAGNETIC ENERGY

® [hen the predominant energy budget is the
magnetic-energy budget:

Free (available
for release)

Total Current-free

-= B --> overall magnetic field
-- Bp --> current-free (potential) field
-- B¢ --> current-carrying field

® Photospheric field of ARs Is known -
coronal field above Is unknown and-1s
estimated by MS magnetic field ® [he Sun needs to dissipate “free” magnetic

extrapolation (870t ~0) or MHD modeling energy accumulated due to electric currents:
® |n the simplest case (extrapolation) we

assume that the plasma-3 parameter is
ZErO:

Free magnetic energy increases, but continuously
dissipates via magnetic reconnection
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MAGNETIC HELICITY ALSO ACCUMULATES

Magnetic helicity: a measure of the twist, shear, and linkage in a magnetic
configuration

® Relative magnetic helicity in-a volume V
above the lower-boundary plane

® Per the used gauges

Helicity IS a signed quantity; left or
right-nanded. For a consistent shear
resulting from a consistent twist,
however, helicity accumulation is
also a generally additive effect

Demoulin et al. (2006)
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WE’VE COME A LONG WAY TO APPRECIATE HELICITY
J J Rust&LaBo'nTte (2005) TRACE 195 /&
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Magnetic helicity can be thought of
as a matrix, with diagonal (self) terms
and non-diagonal (mutual) terms
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WE’VE COME A LONG WAY TO APPRECIATE HELICITY
J J Rust&LaBo‘njte (2005) TRACE 195 A
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Magnetic helicity can be thought of
as a matrix, with diagonal (self) terms
and non-diagonal (mutual) terms
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WE’VE COME A LONG WAY TO APPRECIATE HELICITY

Rust & LaBonte (2005)

- TRACE 195 A
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Magnetic helicity can be thought of
as a matrix, with diagonal (self) terms
and non-diagonal (mutual) terms
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WE’VE COME A LONG WAY TO APPRECIATE HELICITY

Rust & LaBonte (2005)
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Magnetic helicity can be 1
as a matrix, with diagona
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|| 2002-May-27

thought of
(self) terms

and non-diagonal (mutual) terms

Basic property of magnetic helicity:

Conservation even in the

magnetic reconnection for high
Reynolds-numler plasmas
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THE ENERGY-HELICITY DIAGRAM OF SOLAR ARs

162 magnetograms; 42 different ARs

10960
AR10930

X
L] AR10930
X

X
AR10930

1) Free magnetic energy and relative magnetic helicity in ARs are related
2) ARs that manage to accumulate more that 4 x 103! erg of free energy and 2 x 10%°
Mx? of relative helicity are almost exclusively eruptive
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THE ENERGY-HELICITY DIAGRAM OF SOLAR ARs

162 magnetograms; 42 different ARs

¥ AR10930

[] A&fﬁgso

10960
AR10930
%

AR10930

Tziotziou et al. (2012)

1) Free magnetic energy and relative magnetic helicity in ARs are related
2) ARs that manage to accumulate more that 4 x 103! erg of free energy and 2 x 10%°
Mx? of relative helicity are almost exclusively eruptive
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THE ENERGY-HELICITY DIAGRAM OF SOLAR ARs

162 magnetograms; 42 different ARs

—nergy /
nelicity
% thresholds:
point of No
return
guantified(?)

Tziotziou et al. (2012)

1) Free magnetic energy and relative magnetic helicity in ARs are related
2) ARs that manage to accumulate more that 4 x 103! erg of free energy and 2 x 10%°
Mx? of relative helicity are almost exclusively eruptive
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HELICITY ACCUMULATION VIA SHEAR/HELICITY INTERLAY

o As PIL evolves, interaction occurs between pre-
existing, strongly sheared, and newly emerged,

weakly sheared, field lines approaching the PIL

e Although the self-helicities of the two field lines
may not be large, their mutual helicity islarge
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HELICITY ACCUMULATION VIA SHEAR/HELICITY INTERLAY

o As PIL evolves, interaction occurs between pre-
existing, strongly sheared, and newly emerged,

weakly sheared, field lines approaching the PIL

e Although the self-helicities of the two field lines
may not be large, their mutual helicity islarge

e \agnetic reconnection between the two field lines
(1) relaxes some of the shear, (2) minimizes mutual
helicity, (3) due to helicity conservation, enhances
self-helicity forming a strongly twisted, potentially
kink-unstable field line...

(b) — py@ — g (b)
Hm Hm H1 (sclf) 2 HZ (self)
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HELICITY ACCUMULATION VIA SHEAR/HELICITY INTERLAY

o As PIL evolves, interaction occurs between pre-
existing, strongly sheared, and newly emerged,

weakly sheared, field lines approaching the PIL

e Although the self-helicities of the two field lines
may not be large, their mutual helicity islarge

e \agnetic reconnection between the two field lines
(1) relaxes some of the shear, (2) minimizes mutual
helicity, (3) due to helicity conservation, enhances
self-helicity forming a strongly twisted, potentially
kink-unstable field line...

e .. that may rise and reconnect with the overlaying
magnetic structure, supplying it with self helicity

(b) — py@ — g (b)
Hm Hm H1 (sclf) 2 HZ (self)
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HELICITY ACCUMULATION VIA SHEAR/HELICITY INTERLAY

o As PIL evolves, interaction occurs between pre-
existing, strongly sheared, and newly emerged,

weakly sheared, field lines approaching the PIL

e Although the self-helicities of the two field lines
may not be large, their mutual helicity islarge

e \agnetic reconnection between the two field lines
(1) relaxes some of the shear, (2) minimizes mutual
helicity, (3) due to helicity conservation, enhances
self-helicity forming a strongly twisted, potentially
kink-unstable field line...

e .. that may rise and reconnect with the overlaying
magnetic structure, supplying it with self helicity

A continuous-action-of this mechanism-may. result
In-a strongly helical magnetic structure along the
PIL, prone 10-one or more major eruptions

(b) — @ — gy gy
Hm Hm Hl (sclf) + H2 (self)
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THE MECHANISM AT WORK

1.0
()
0.8 —— Mutual term

Self term MV NOAA AR 11158: strongly
S sheared PIL area (strong
mutual helicity) works to
fransterring mutual helicity
o into self helicity (twist &
b et tem UL /i iihc). Increasingly helical
Self term WY magnetic structures
TRt obtained in the AR.
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Tziotziou et al. (2013)

V N soc IN ERUPTIVE ARs: MARGINAL STABILITY
SPACE =
+
ﬁ'ﬁm OGRS TENEE +, +| BERN, 16 -20 SEP 2013 24




THE MECHANISM AT WORK

—— Mutual term

Self term AL NOAA AR 11158: strongly
(NN sheared PIL area (strong
mutual helicity) works to
fransterring mutual helicity
: into self-helicity (twist &
® N | . .
— Mutual term writhe). Increasingly helical
Selt torm AL Magnetic structures
BRI obtained in the AR.

.. AAAA DA A AL A AAA A OOA VA B0

13 14 15 How much helicity can the
Decimal day of February
AR accumulate?

Tziotziou et al. (2013)
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ERUPTIVE X-CLASS FLARE IN MULTIPLE WAVELENGTHS

20110235 014511 0 20110215._014503

201 1021501 4505

¥4
2011021501450

201 10215014509

Schrijver et al. (2011)
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ERUPTIVE X-CLASS FLARE IN MULTIPLE WAVELENGTHS
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Georgoulis (2013), submitted; Tziotziou et al. (2013)
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MARGINAL STABILITY IN TERMS OF HELICITY?

Free magnetic energy and
relative magnetic helicity
climaxand then start
decreasing while the AR Is
still growing in terms of
magnetic flux.

Results In agreement with
theoretical analysis of an
upper helicity bound In
force-free (axisymmetric)
confirurations (Zhang &
Flyer 2008)
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SMALL-SCALE HELICAL KINK INSTABILITY

® A conceptual mechanism to assess the accumulation of helicity along sheared PlLs

® Single force-free flux tube with (self) relative
helicity (Georgoulis & LaBonte 2007):

® Classical definition of magnetic helicity for a
single flux tube (e.g., Moffatt & Ricca 1992):

® Substitute and solve for the ratio of writhe
W vs. twist T;
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SMALL-SCALE HELICAL KINK INSTABILITY

® A conceptual mechanism to assess the accumulation of helicity along sheared PlLs

® Single force-free flux tube with (self) relative
helicity (Georgoulis & LaBonte 2007):

® Classical definition of magnetic helicity for a
single flux tube (e.g., Moffatt & Ricca 1992):

® Substitute and solve for the ratio of writhe
W vs. twist T:
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SMALL-SCALE HELICAL KINK INSTABILITY

® A conceptual mechanism to assess the accumulation of helicity along sheared PlLs

® Single force-free flux tube with (self) relative
helicity (Georgoulis & LaBonte 2007):

® Classical definition of magnetic helicity for a

(b) 0 41_75 <A< %
single flux tube (e.g., Moffatt & Ricca 1992):
- .‘ S
-~ L ——

® Substitute and solve for the ratio of writhe c) 1
_ Q A —
W vs. twist I: 8

L

e - Ao 0); (=4 L A
iInkgnstabilitviensuesawvhen )\ 0.0

(slender flux tube)
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REQUIREMENTS FOR SMALL-SKALE HKI

® A minimum magnetic flux is required for K>0

® | cading to a minimum vertical field strength
per area element d?;

® -or shear to act along a PIL, Bz must
exceed ~800 G (Georgoulis-et-al 2012).
This constrains the unknown constant Cp,
that obtains a minimum value:
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REQUIREMENTS FOR SMALL-SKALE HKI

e A minimum magnetic flux is required for K>0 HKI condition a very stringent one
-t:can-occur-only:along PILs

® | cading to a minimum vertical field strength
per area element d?;

® -or shear to act along a PIL, Bz must
exceed ~800 G (Georgoulis-et-al 2012).
This constrains the unknown constant Cp,
that obtains a minimum value:

nresolved : Unresolved
Situation : Situation
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GENERALIZATION & APPLICATION TO NOAA AR 11158

In this view of marginal stability scenario, the critical threshold
becomes the threshold number of turns for the helical Kink instability

® Candidate small-scale HKI locations
and their total flux for NOAA AR 11158

-
o

andidate HKI-unstable locations
O,

2.6

-l
o

Total flux of candidates (x10” Mx)
(@] -
O o

Spatial distribution of candidate

14 15 - -
of February 2011 |OCatIOﬂS
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GENERALIZATION & APPLICATION TO NOAA AR 11158

In this view of marginal stability scenario, the critical threshold
becomes the threshold number of turns for the helical Kink instability

® Candidate small-scale HKI locations
and their total flux for NOAA AR 11158
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OVERVIEW OF LIKELY HKI LOCATIONS IN AR 11158

PIL(s) and “parasitic-polarity” areas included
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OVERVIEW OF LIKELY HKI LOCATIONS IN AR 11158

PIL(s) and “parasitic-polarity” areas included
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TEST AIMING TO BUILD AN ARGUMENT

Key Q: are magnetic fields of eruptive ARs in a SOC state?
A: one cannot judge from a single, instantaneous snapshot
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TEST AIMING TO BUILD AN ARGUMENT

Key Q: are magnetic fields of eruptive ARs in a SOC state?
A: one cannot judge from a single, instantaneous snhapshot

Georgoulis, PhD Thesis (2000)

in Event Number

tatistical Flare Model

SRR NN SR e S e i Y S 5T S TG LA . N AR g, ah A S (WA a —m— -

To conclude on SOC existence,
one must have a time seguence available
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TEST DESCRIPTION

Key Q: are magnetic fields of eruptive ARs in a SOC state?
A: one cannot judge by a simple, instantaneus snapshot

See M. Dimitropoulou’s talk
Observed magnetogram
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TEST DESCRIPTION

Key Q: are magnetic fields of eruptive ARs in a SOC state?
A: one cannot judge by a simple, instantaneus snapshot

See M. Dimitropoulou’s talk
Observed magnetogram

+ coronal field extrapolation
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TEST DESCRIPTION

Key Q: are magnetic fields of eruptive ARs in a SOC state?
A: one cannot judge by a simple, instantaneus snapshot

See M. Dimitropoulou’s talk

Observed magnetogram

Bring to
SOC state

S-IFM

+ coronal field extrapolation SOC state (monitored)
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TEST DESCRIPTION

Key Q: are magnetic fields of eruptive ARs in a SOC state?
A: one cannot judge by a simple, instantaneus snapshot

See M. Dimitropoulou’s talk
Observed magnetogram

Bring to Return to
SOC state initial state
S-IFM D-1IFM
+ coronal field extrapolation SOC state (monitored) Initial extrapolated state
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TEST DESCRIPTION

Key Q: are magnetic fields of eruptive ARs in a SOC state?
A: one cannot judge by a simple, instantaneus snapshot

See M. Dimitropoulou’s talk
Observed magnetogram

T Bring to Return to
SOC state initial state
S-IFM D-1IFM
+ coronal field extrapolation SOC state (monitored) Initial extrapolated state

* SOC will continue to be monitored in the course of the D-IFM
interpolation

Will SOC be destroyed when trying to

reach the initial 3D magnetic-field state”
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TEST RESULTS ON NOAA AR 11158

The mean Laplacian of the magnetic field is stabilized

Crltlcal threshold o

C
©

15x10"

Iteration
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TEST RESULTS ON NOAA AR 11158

The mean Laplacian of the magnetic field is stabilized

Crltlcal threshold o

an

—  S-IFM action : «— D-IFM action —>

5x10" 10x10" 15x10"

Iteration
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TEST RESULTS ON NOAA AR 11158

The mean Laplacian of the magnetic field is stabilized

a
f

Critical threshold

xQ
é@

Mean field Laplacian

«—  S-IFM action «— D-IFM action —

5x10" 10x10" 15x10" 20x10" 10" 30x10" 35x10"

Iteration
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TEST RESULTS ON NOAA AR 11158

The mean Laplacian of the magnetic field is stabilized

Mean field Laplacian

.'.................‘

S-IFM action

10x10" 15x10" 20x10"

Iteration

D-IFM action —

Test seems successtul!

SPACE 4
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OPEN QUESTIONS

® Magnetic fields of eruptive ARs may be on a SOC state

| SOC IN ERUPTIVE ARs: OPEN QUESTIONS
+,
SOL LB ULENC +, +| BERN, 16 -20 SEP, 2013 34




OPEN QUESTIONS

® Magnetic fields of eruptive ARs may be on a SOC state

® But what Is the case for non-
eruptive ARs?

I soc IN ERUPTIVE ARs: OPEN QUESTIONS
I
SRL R IRELIENICE: +, | BERN, 16 -20 SEP, 2013 34




OPEN QUESTIONS

® Magnetic fields of eruptive ARs may be on a SOC state

® But what is the case for non-  eOr the quiet Sun?
eruptive ARs?

Courtesy: SOHO
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OPEN QUESTIONS

® Magnetic fields of eruptive ARs may be on a SOC state

® Or, lndeed the entlre magnetlc Sun’
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OPEN QUESTIONS

® Magnetic fields of eruptive ARs may be on a SOC state

® Or, lndeed the en’ure magnetlc Sun’

o \ore tests will be required
- Data-driven SOC models in
| sphencal coordinates
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OPEN QUESTIONS

® Magnetic fields of eruptive ARs may be on a SOC state

° Or mdeed the en’ure magnehc Sun’
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® |\Vlore tests will be requirea
® Data-driven SOC models in
spherical coordinates

Yet unclear how far
could such an

iInterpretation reach,
if successtul

Contopoulos, Geo ¢ ./{ |IS\ ‘otharék‘&s (20\'\)\
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CONCLUSIONS

® Eruptive solar ARs are intermittent, turbulent, and exhipit metastability
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CONCLUSIONS

® Eruptive solar ARs are intermittent, turbulent, and exhipit metastability

® [he majority of them show signs of irreversibility (via PlL.s) and,
perhaps, marginal stability

| SOC IN ERUPTIVE ARs: CONCLUSIONS
+,
SOL LB ULENC +, +| BERN, 16 -20 SEP, 2013 3°




CONCLUSIONS

® Eruptive solar ARs are intermittent, turbulent, and exhipit metastability

® [he majority of them show signs of irreversibility (via PlL.s) and,
perhaps, marginal stability

® |rreversibility seems to stem from a dominant sense of magnetic helicity,
resulting in iIncreasingly helical pre-eruption structures
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CONCLUSIONS

® Eruptive solar ARs are intermittent, turbulent, and exhipit metastability

® [he majority of them show signs of irreversibility (via PlL.s) and,
perhaps, marginal stability

® |rreversibility seems to stem from a dominant sense of magnetic helicity,
resulting in iIncreasingly helical pre-eruption structures

e \Marginal stability seems to stem from the near-conservation of helicity,
even In non-ideal processes. Eruptions are, then, a way for relatively
isolated, strongly helical ARs 1o be relieved from helicity accumulation
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CONCLUSIONS

® Eruptive solar ARs are intermittent, turbulent, and exhipit metastability

® [he majority of them show signs of irreversibility (via PlL.s) and,

perhaps, marginal stability

® |rreversibility seems to stem from a dominant sense of magnetic helicity,
resulting in iIncreasingly helical pre-eruption structures

e \Marginal stability seems to stem from the near-conservation of helicity,
even In non-ideal processes. Eruptions are, then, a way for relatively

isolated, strongly helical ARs 1o be re

leved from

e Numerically, we reproduce a valid NL

nelicity accumulation

- coronal-field solution via a SOC

model. This means that this solution could already be in a SOC state.
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CONCLUSIONS

® Eruptive solar ARs are intermittent, turbulent, and exhipit metastability

® [he majority of them show signs of irreversibility (via PlL.s) and,
perhaps, marginal stability

® |rreversibility seems to stem from a dominant sense of magnetic helicity,
resulting in iIncreasingly helical pre-eruption structures

e \Marginal stability seems to stem from the near-conservation of helicity,
even In non-ideal processes. Eruptions are, then, a way for relatively
isolated, strongly helical ARs 1o be relieved from helicity accumulation

e Numerically, we reproduce a valid NLEF coronal-field solution via a SOC
model. This means that this solution could already be in a SOC state.

® Open guestions remain for non-eruptive ARs, quiet-Sun magnetic
fields, and the Sun as a whole - more effort Is necessary
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