Branching Processes and SOC

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Basic Idea

Each individual has a random number of children following a given statistical distribution.

Simple Example

Given maximum number of children n_b ; each of them occurs with a given probability p.

Number of children follows a binomial distribution with an expected value $\overline{n}_c = n_b p.$

Criticality

Subcritical (extinction) for $\overline{n}_c < 1$ Supercritical (population explodes) for $\overline{n}_c > 1$ Critical point (tuned!) for $\overline{n}_c = 1$

Power-law distribution of the number of descendants with a scaling exponent

$$\tau = \frac{3}{2}$$

(at least for the simple example)

Differences towards the most Widespread SOC Models

- SOC models carry local information.
- "Avalanching" is random in branching processes.

	Driving	Triggering	Avalanching
BTW model	random	random	deterministic
OFC model	deterministic	deterministic	deterministic
Forest-fire model	random	random	deterministic
Branching	_	_	random

Spirit

- Attempt to design a simple SOC model by extending the concept of branching.
- First paper: S. Hergarten (2012) Branching with local probability as a paradigm of self-organized criticality. Phys. Rev. Lett., 109: 148001

First Set of Model Rules

Setup: Consider *n* sites and assign a variable p_i (probability) to each site.

Driving and triggering: Select a site *i* randomly and increase p_i by a given amount. The site relaxes with the probability p_i .

- Avalanching: Each active site triggers a given number n_b of randomly selected further sites ("children"):
 - Transfer an amount $\frac{p_i}{n_b}$ to each of these sites and set $p_i = 0$ (conservative relaxation):

$$p_j := p_j + \frac{p_i}{n_b}$$
 for all "children" j of i
 $p_i := 0$

• Each "child" j relaxes with the probability p_j .

Boundary Conditions

Static: Define a set of sites which cannot participate in an avalanche.

Dynamic: Assume that each site can only be triggered once during an avalanche; set $p_i = 0$ at the second trigger.

Result

Power-law distribution of the avalanches with $\tau = \frac{3}{2}$, stable against

- the size of the increment used for driving and
- the number of "children" n_b .

The statistical distribution of the probabilities p_i self-organizes to maintain the power-law distribution.

Branching with Local Probability

Avalanche-Size Distribution

Distribution of the Probabilities

Generalization to Trees, Lattices or other Graphs

Binary Tree

- Seems to work with the same scaling exponent $\tau = \frac{3}{2}$.
- Difficult to test due to high numerical effort.

Directed Lattice

- Less clearer power-law distribution with a tendency $\tau < \frac{3}{2}$.
- Better for larger branching numbers $n_b > 2$?

Not yet tested.

Probability Function

Use an arbitrary monotonic function $f(p_i)$ as the probability instead of p_i .

Seems to work, at least for the random-neighbor version.

Conclusions

- Simple model with a robust power-law distribution and a universal scaling exponent $\tau = \frac{3}{2}$.
- Conservation seems to be crucial for criticality.
- Several modifications where the model seems to be almost SOC.

Open Questions

- Temporal correlations?
- Relationship to real-world phenomena or other models, e.g., gradient-based sandpile / rockfall model?
- Analytical solution for the simplest case, perhaps random neighbor and $n_b \rightarrow \infty$?