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Branching Processes

Basic Idea

Each individual has a random number of children following a given
statistical distribution.

Simple Example

Given maximum number of children nb; each of them occurs with a given
probability p.

Number of children follows a binomial distribution with an expected value
nc = nb p.



Branching Processes

Criticality

Subcritical (extinction) for nc < 1

Supercritical (population explodes) for nc > 1

Critical point (tuned!) for nc = 1

Power-law distribution of the number of descendants with a scaling
exponent

τ = 3
2

(at least for the simple example)



Branching Processes

Differences towards the most Widespread SOC Models

SOC models carry local information.

“Avalanching” is random in branching processes.

Driving Triggering Avalanching

BTW model random random deterministic

OFC model deterministic deterministic deterministic

Forest-fire model random random deterministic

Branching – – random



Branching with Local Probability

Spirit

Attempt to design a simple SOC model by extending the concept of
branching.

First paper: S. Hergarten (2012) Branching with local probability as a
paradigm of self-organized criticality. Phys. Rev. Lett., 109: 148001



Branching with Local Probability

First Set of Model Rules

Setup: Consider n sites and assign a variable pi (probability) to each site.

Driving and triggering: Select a site i randomly and increase pi by a given
amount. The site relaxes with the probabilty pi .

Avalanching: Each active site triggers a given number nb of randomly
selected further sites (“children”):

Transfer an amount pi
nb

to each of these sites and set pi = 0
(conservative relaxation):

pj := pj +
pi
nb

for all “children” j of i

pi := 0

Each “child” j relaxes with the probability pj .



Branching with Local Probability

Boundary Conditions

Static: Define a set of sites which cannot participate in an avalanche.

Dynamic: Assume that each site can only be triggered once during an
avalanche; set pi = 0 at the second trigger.

Result

Power-law distribution of the avalanches with τ = 3
2 , stable against

the size of the increment used for driving and

the number of “children” nb.

The statistical distribution of the probabilities pi self-organizes to maintain
the power-law distribution.



Branching with Local Probability

Avalanche-Size Distribution
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Branching with Local Probability

Distribution of the Probabilities
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Generalization to Trees, Lattices or other Graphs

Binary Tree

Seems to work with the same scaling exponent τ = 3
2 .

Difficult to test due to high numerical effort.



Generalization to Trees, Lattices or other Graphs

Directed Lattice

Less clearer power-law distribution with a tendency τ < 3
2 .

Better for larger branching numbers nb > 2?



Generalization to Trees, Lattices or other Graphs

Lattice

Not yet tested.



Further Generalization

Probability Function

Use an arbitrary monotonic function f (pi ) as the probability instead of pi .

Seems to work, at least for the random-neighbor version.



Conclusions and Open Questions

Conclusions

Simple model with a robust power-law distribution and a universal
scaling exponent τ = 3

2 .

Conservation seems to be crucial for criticality.

Several modifications where the model seems to be almost SOC.

Open Questions

Temporal correlations?

Relationship to real-world phenomena or other models, e. g.,
gradient-based sandpile / rockfall model?

Analytical solution for the simplest case, perhaps random neighbor
and nb → ∞?

. . .


