Discussion

Real-World Data beyond Event-Size Distributions and Temporal Correlations

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Fundamental Questions

Does the model show SOC?

- Event-size distribution
- Temporal correlations

Does the model capture the considered phenomenon?

Example: Rockfalls and Rockslides

Power-Law Distribution of Rockfalls and Rockslides

Data: Dussauge et al.: Probabilistic approach to rock fall hazard assessment, Nat. Hazards Earth Syst. Sci., 2002; Malamud et al.: Landslide inventories and their statistical properties, Earth Surf. Process. Landforms, 2004

Bak-Tang-Wiesenfeld (BTW) Model

- BTW model is often called sandpile model.
- Scaling exponent $\tau = 1.27$ of the BTW model is not too bad compared to $\tau \in [1.07, 1.52]$ found for rockfalls.
- Temporal correlations of rockfalls are unclear.
- Model rules of the BTW model cannot be easily related to rockfalls or even sandpile dynamics.

The Olami-Feder-Christensen (OFC) Model

Achievements of the Olami-Feder-Christensen (OFC) Model

The OFC model reproduces:

- Gutenberg-Richter law (power-law size distribution)
- Occurrence of almost periodic (so-called characteristic) earthquakes
- Foreshocks and aftershocks according to Omori's law

$$N(t) \propto rac{1}{\left|t-t_{m}
ight|^{p}}$$

where

 $egin{array}{rcl} N(t) &=& ext{mean number of foreshocks / aftershocks per time} \ t_m &=& ext{time of mainshock occurrence} \ p &pprox & 1 \end{array}$

Hergarten & Neugebauer: Foreshocks and aftershocks in the Olami-Feder-Christensen model, Phys. Rev. Lett., 2002

Achievements of the Olami-Feder-Christensen (OFC) Model

• Mean number of foreshocks and aftershocks as a function of the mainshock magnitude

Helmstetter, Hergarten & Sornette: Properties of foreshocks and aftershocks ..., Phys. Rev. E, 2004

• Occurrence of some big earthquakes without any foreshocks and aftershocks

Hergarten: Self-organized Criticality in Earth Systems, Springer, 2002

• Mean stress drop is independent of the earthquake magnitude.

Stress Patterns in the OFC Model

Immediately before an earthquake

Immediately after the earthquake

How does the OFC Model Work?

• (Apparent) criticality arises from long-term synchronization of almost periodic earthquakes.

Middleton & Tang: Self-organized criticality in nonconserved systems, Phys. Rev. Lett., 1995

 Foreshocks and aftershocks originate from desynchronization of characteristic earthquakes.

Hergarten & Krenn: Synchronization and desynchronization in the Olami-Feder-Christensen earthquake model, Nonlin. Processes Geophys., 2011

Rockfalls

New "Sandpile-Inspired" Model

- Based on local slope *s* in direction of steepest descent among the 8 nearest and diagonal neighbors
- Random triggering
 - $s \le s_{\min}$: stable
 - $s \ge s_{\max}$: unstable

 $s_{\min} < s < s_{\max}$: probability of instability

$$p = rac{s - s_{\min}}{s_{\max} - s_{\min}}$$

- In case of instability:
 - Remove material until $s = s_{\min}$
 - Trigger all neighbors

Rockfalls

Direct Application to a Real Topography

New "Sandpile-Inspired" Model

- Power-law distribution with $\tau \approx 1.35$ fit well into the range $\tau \in [1.07, 1.52]$ found in nature.
- Several mountainous topographies on earth seem to be (slightly sub-) critical with respect to the model.

Strengthens the trust in the model