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Scale invariance at the earth’s surface has attracted scientists for several decades.
Even the first formal description of scale invariance in nature concerned geomorphic
data. In his seminal work, Mandelbrot [1967] measured the length of coastlines with
rulers of different lengths and found a power-law relation between the measured
length and the ruler’s length. The scaling exponent of this power-law relation was
used to assign a non-integer dimension between one and two tothese lines. The
fractional dimension finally led to the term fractals.

In the 1980s, when fractals became popular and subject of several monographs
[e.g., Mandelbrot, 1982, Feder, 1988], geomorphology again provided one of the
most fascinating examples: artificial self-affine landscapes [e.g., Voss, 1985, Feder,
1988]. Figure 1 shows an example with a local fractal dimension [e.g., Mandelbrot,
1985]Dl = 2.1, generated by Fourier methods [e.g., Hergarten, 2002].

Although these artificial surfaces may be beautiful and evensomewhat similar
to the real topography of the earth at first sight, their valueturned out to be lim-
ited. First, the earth’s surface is not perfectly self-similar or self-affine [Evans and
McClean, 1995] as it is shaped by a variety of processes and shows strong corre-
lations between elevation and slope [e. g., Kühni and Pfiffner, 2001] which are not
reproduced by simple self-affine surfaces. Furthermore, these surfaces lack impor-
tant geomorphic elements such as river valleys. And finally,the algorithms behind
these surfaces seem to be far away from the present understanding of the tectonic
and geomorphic processes shaping the real topography.

A few years after the concept of SOC was introduced, the first attempts to recog-
nize SOC in landform evolution were made [Kramer and Marder,1992, Takayasu
and Inaoka, 1992, Rinaldo et al., 1993]. These studies addressed the statistical prop-
erties of river networks using models of fluvial erosion. Scale-invariant properties
of river networks were found even before the term fractal wascoined [Horton, 1945,
Strahler, 1952, Hack, 1957]. The models themselves were similar in their spirit. It
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Fig. 1 A computer-generated, self-affine surface with a local fractaldimensionDl = 2.1. For a
more realistic impression, the landscape was flooded up to a certainlevel and placed on a section
of a sphere in order to improve the aerial view.

was assumed that water takes the direction of the steepest descent on the surface,
and that the erosion rate of a river segment depends on the discharge and on the lo-
cal channel slope. The simplest case addresses the evolution of the topography and
the river network under constant tectonic uplift where the surface elevation at one
or more pre-defined outlet points at the boundary is kept constant.

It was found that the topography including the river networkevolves towards
a steady state under these conditions. Figure 2 shows an example of such a tree-
like network. The steady-state networks obtained from these models were found to
reproduce several statistical properties of real river networks. Furthermore it turned
out that the details of the model, i.e., the constitutive lawfor the erosion rate as a
function of discharge and slope, has a minor effect on the statistical properties of
the network.

So these models are examples of self-organization towards asteady state with
some scale-invariant properties. Takayasu and Inaoka [1992] even entitled this be-
havior as a new type of SOC. But as pointed out by Sapozhnikov and Foufoula-
Georgiou [1996], this kind of self-organization is not SOC.The evolution ends at a
steady state without further fluctuations, so that this state is not critical.

However, tectonic forces and thus the uplift rates are not constant at geologi-
cal timescales, which is one reason that real landscapes do not achieve a steady
state. In order to mimic these permanently changing drivingforces, Hergarten and
Neugebauer [2001] suggested an extended landform evolution model where the lo-
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Fig. 2 A simulated river
network [Hergarten, 2002].

cation of the outlet is not constant, but varies through timealong the boundary of the
model domain. As a consequence, the river network permanently changes and never
achieves a steady state. These changes are even reflected by apower law if each
change in flow direction at any site is considered as a geomorphic event, and if the
event sizes are measured in terms of changes in river discharge or, more precisely,
catchment size. But unfortunately, it is impossible to verify this event-size distribu-
tion in nature. There is indeed evidence for historical changes in the river network
even in mountain belts with deep valleys, but only very few events can be clearly rec-
ognized, so that a reasonable statistics seems to be out of reach. Even analyzing the
changes in braided river systems which evolve very rapidly compared to large-scale
river networks may take more than a human lifetime, and the results obtained from
downscaled laboratory experiments [Sapozhnikov and Foufoula-Georgiou, 1997]
are non-unique with regard to SOC.

So it seems that large-scale landform evolution is in principle unsuitable for rec-
ognizing SOC. The rest of this chapter is devoted to landslides which constitute a
major natural hazard in almost all mountainous regions and are the presumably the
geomorphic process which is most widely studied in the context of SOC.

1 Landslide Statistics

Landslides cover an enormous range of scales and a variety ofphenomena. In the
vast majority of the literature the term landslides is used as a synonym for all gravity-
driven mass movements. The involved masses may be either rock fragments or an
unconsolidated regolith layer (mainly soil). Depending onthe topographic charac-
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teristics and the properties of the material, the motion maybe dominated by flow,
sliding, avalanching, toppling of falling.

The smallest noticeable landslides are rockfalls with a volume in the order of
magnitude of 10−3 m3. However, mass movements involving several million cubic
meters occur quite frequently. Figure 3 shows a rockslide with a volume of about
3×107 m3 that took place in the Matter valley in the Swiss Alps in 1991.Only about
50 years ago, a block of more than one quarter cubic kilometerdetached above the
Vaiont reservoir in the Dolomite Region of the Italian Alps from a wall and slid into
the lake at velocities of up to 30 meters per second. As a result, a wave of water
overtopped the dam and swept onto the valley below, with the loss of about 2500
lives. The largest rockslide documented in the European Alps, the Flims rockslide,
is even more than 30 times larger with respect to volume than the Vaiont reservoir
disaster. Estimates of its total volume cover the range from8 to 15 km3 [e.g., von
Poschinger, 2011].

Fig. 3 Debris deposits of a
rockslide in the Matter valley
(Swiss Alps).

Extensive landslide statistics have been collected for several decades. More than
40 years ago, Fuyii [1969] found a power-law distribution in650 events induced by
heavy rainfall in Japan. In a more comprehensive study, Hovius et al. [1997] ana-
lyzed about 5000 regolith landslides in the western Southern Alps of New Zealand.
Malamud et al. [2004] compiled regolith landslide data setsfrom several regions,
each of them consisting of about 1000 to 45,000 events. Some of them were derived
from historical inventories, while other consist of eventsattributed to one triggering
event (rapid snowmelt, a rainstorm or an earthquake).
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Figure 4 shows the frequency density of eight data sets takenfrom Hovius et al.
[1997] and Malamud et al. [2004] where the area is used as a measure of landslide
size. The diagram displays the frequency density, which is simply the product of the
probability density and the total number of events. It can beestimated by collecting
the objects in (here logarithmic) bins and dividing the number of objects in each bin
by the bin width.
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Fig. 4 Frequency density of eight landslide data sets [Hovius et al., 1997, Malamud et al., 2004].

Malamud et al. [2004] found a power-law distribution

f (A) ∝ A−αA, (1)

with a scaling exponentαA ≈ 2.4 at large landslide sizes and a rather small varia-
tion between the considered data sets. In particular, thereseems to be not systematic
difference between the statistics of the landslides triggered by a single earthquake,
rainstorm or snowmelt event (red/orange in Fig. 4) and historical inventories involv-
ing events arising from various triggers (green/blue).

All datasets displayed in Fig. 4 reveal a striking deviationfrom a power law at
small sizes. The rollover of at small sizes indicates a lack of small landslides in all
data sets. Although Malamud et al. suggested a function to describe it quantitatively,
its origin is still unclear, but it seems not to be an artefactof incomplete sampling.
This rollover strongly limits the range of landslide sizes where a power law can be
found since the largest events are in the order of magnitude of 1 km2 and thus occur
at very low frequencies. As a result, none of the distributions shows a clear power
law over more than two decades in area, which is only one decade in linear size.
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Compared to the distributions of earthquakes (Chapter9) and wildfires (Chapter10)
this is a rather narrow range.

Available statistics of rock mass movements are much smaller than the invento-
ries of regolith landslides. Malamud et al. [2004] re-analyzed three inventories of
rockfalls and rockslides originally published by Dussaugeet al. [2002]. Each data
set consists of only 89 to 157 events compared to several thousands in the landslide
inventories. The frequency densities are displayed in Fig.5. While landslide size
was measured in terms of area, volume is used here.
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Fig. 5 Frequency density of three rockfall inventories [Dussauge et al., 2002, Malamud et al.,
2004]. The dashed line illustrates a power law with a scaling exponent of 1.07.

In contrast to the landslide statistics shown in Fig. 4, no obvious rollover at small
sizes is visible here. Consequently, the power-law distribution extends over a larger
range of scales, about 5 to 7 decades in volume for each data set. Malamud et al.
found that a power law with a scaling exponentαV = 1.07 fits well to the three
datasets without any vertical shift of the curves. This result suggests that the power
law even extends over 9 orders of magnitude, but fitting one power-law distribution
to a merged data set is in principle dangerous as it strongly depends on the number
of events in each data set. However, simultaneously fitting three power-law distribu-
tions with the same scaling exponent, but different factorsin front of the power law
confirms the resultαV = 1.07.

As reviewed by Brunetti et al. [2009], similar power-law distributions of rock-
fall and rockslide volumes were found in several other studies. Applying different
methods of analysis in different regions on Earth, exponents αV = 1.1 [Guzzetti
et al., 2003],αV = 1.2 [Guzzetti et al., 2004],αV = 1.19–1.23 [Noever, 1993],αV =
1.41–1.52 (the original results of Dussauge et al. [2002] re-analyzed by Malamud
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et al. [2004], andαV = 1.40–1.72 [Hungr et al., 1999] were obtained. Except for
two data sets which address rather small scales, all these values fall into the range
1.07≤ αV ≤ 1.52. So the finding that a variation of more than 0.4 inαV was ob-
tained by applying different methods to the same data sets [Dussauge et al., 2002,
Malamud et al., 2004] suggests that the entire variation inαV may be a spurious
effect of limited statistics.

In addition to an apparent independence on the triggering mechanism, no sig-
nificant difference between rockfalls and rockslides was revealed. Following the
majority of the references cited in this paper, the term rockfalls is therefore used for
all types of rapid rock mass movements, in particular rockfalls and rockslides, in the
rest of this chapter.

When comparing scaling exponents obtained for rockfalls with those obtained
for regolith landslides, we must either transform the area-related regolith landslide
distributions to volumes or the volume-related rockfall-size distributions to areas.
The simplest assumption is isotropic scaling,V ∝ A

3
2 , as used, e.g., by Hovius et al.

[1997] for regolith landslides. However, non-isotropic scaling was revealed in a
comprehensive theoretical study by Klar et al. [2011], as itwas also found much
earlier in field studies [e.g., Simonett, 1967]. Klar et al. found a weaker increase of
volume with area,V ∝ Aγ with γ ∈ [1.32,1.38], in very good agreement with field
observations. Then, comparing the cumulative distributions with respect to area and
volume immediately leads to the relation

αA−1= γ (αV −1) , (2)

and thus forγ ≤ 1.4

αV ≥
αA−1

1.4
+1≈ 2.0 (3)

for regolith landslides (αA ≈ 2.4). This value is clearly larger than the range 1.07≤
αV ≤ 1.52 found in the rockfall inventories.

In summary, there is growing evidence for power-law size statistics in both re-
golith landslides and rockfalls (including rockslides). Neither significant regional
variations in the scaling exponent nor a dependence on the triggering mechanism
has been found. However, the values of the scaling exponent of rockfall size distri-
butions are significantly smaller than those found for regolith landslides.

2 Mechanical Models

The power-law distributions found for landslide sizes suggest a relationship to SOC.
In the following, the most important modeling approaches inthis context are dis-
cussed.

All these models address the mobilization of rock or regolith masses. With re-
spect to hazard assessment, this is only half of the story because the runout of a
mass movement is as important as the initial mobilization. In particular, debris flows
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consisting of a mixture of rock and water may travel over distances of several kilo-
meters. Rockfalls, rockslides, and rock avalanches may also differ strongly in their
runout behavior. Reviews on models predicting the runout ofrock mass movements
are given by, e.g., Dorren [2003] and Volkwein et al. [2011].In principle the runout
may affect the size distribution of the landslides, too. First, rockfall and rockslide
inventories mostly refer to the deposited volume which is ingeneral larger than the
detached volume as the compactness of the material decreases during the move-
ment. And second, the volume may also increase due to the entrainment of further
rock masses. However, dilatancy should not vary strongly with the event size, and
the second effect becomes significant for a small class of mass movements only.
Under these aspects it seems to be reasonable that the modelsattempting to relate
landslides to SOC only address the detached volumes or the related areas.

The stability of slopes and cliffs is a mechanical problem involving stresses
mainly induced by gravity, but in some cases also by variations in temperature or
pore water pressure. In rock, pre-defined fracture patternsmay be of particular im-
portance, while existing zones of weakness (e.g., clay layers) may strongly affect
the stability of a regolith layer. The topography defines theboundary condition for
the 3-dimensional mechanical problem and is thus at least asimportant as the me-
chanics inside the domain. Although this is all clear on a qualitative level, and even
the differential equations behind it seem to be well-known,the question whether the
power-law distribution arises from an evolving fracture pattern (in rock), another
type of stress redistribution or the topography changing through type is still open.

In this section, two models addressing the redistribution of stress are discussed.
Both are reduced to two dimensions and in principle concern the stability along a
pre-defined slip surface as it is often found in regolith landslides. Topography is
not directly considered in these models. In their spirit, both models can be seen as
extensions of the classical limit equilibrium approach going back to W. Fellenius in
the 1920s. The factor of safetyFSof a given slip surface is defined as the ratio of
maximum shear stressτmax where the material remains stable and the actual shear
stressτ,

FS=
τmax

τ
, (4)

so that the slope remains stable as long asFS≥ 1.
The models discussed in the following extend this approach by progressive fail-

ure using a local factor of safety. IfFS< 1 at any location, local failure occurs
and leads to an increase ofτ and thus to a decrease ofFS in the neighborhood.
This idea is basically the same as the idea behind the Burridge-Knopoff earthquake
model [Burridge and Knopoff, 1967] and its most widespread cellular automaton
version, the Olami-Feder-Christensen (OFC) model [Olami et al., 1992]. Altough
20 years old, this model ist still one of the most widely studied models in the field
of SOC, and it is discussed in detail in almost all books on SOC[e.g., Bak, 1996,
Jensen, 1998, Hergarten, 2002]. Figure 6(a) illustrates a physical realization of the
OFC model. A set of blocks on a regular lattice is interconnected by springs and
held by static friction at the ground. The forceui, j acting on each block increases
through time due to an additional connection with a rigid upper plate moving at a
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constant velocity. When the force acting on a site reaches thelimit of friction, the
site becomes unstable and is immediately displaced to a new position characterized
by zero total force. As a result, a fractionα of the forceui, j is transferred to each of
the four nearest neigbors, leading to the relaxation rule ofthe OFC model

ui±1, j := ui±1, j +α ui, j , ui, j±1 := ui, j±1+α ui, j , and ui, j := 0. (5)

Here, the symbol := means that the value of the variable is replaced with the value at
the right-hand side. As a part of the force is transferred to the upper plate (depending
on the constants of the springs),α must be smaller than one quarter, making the
model nonconservative.

(a) (b)

Fig. 6 (a) Geometric representation of the Olami-Feder-Christensen earthquake model. (b) Trans-
fer of the idea to simulate progressive slope failure at a given slipsurface.

The long-term driving introduced by a rigid upper plate in the earthquake model
mimics the long-term displacement between the walls of a geological fault or a
subduction zone. Such a way of driving is obviously absent incase of landslides, so
that the driver plate has been removed in the realization shown in Fig. 6(b). Instead,
the blocks connected by elastic springs have been placed on an inclined surface,
resulting in a constant driving force in downslope direction.

But apart from the different way of long-term driving, the absence of the rigid
driver plate also affects the rule of relaxation in case of local instability. In the earth-
quake model, the relaxed stress is redistributed among the 4nearest neighbor sites
and the driver plate, and the proportion depends on the strength of the springs. Thus,
the relaxation within the lattice of blocks is nonconservative. This property is cru-
cial for reproducing the size-distribution of real earthquakes as the scaling exponent
of the event-size distribution roughly approaches 1.2 [e.g., Hergarten, 2002] in the
conservative limit, which is much too low. Without the driver rigid upper plate, the
redistribution of stress becomes conservative, and then the scaling exponent of about
1.2 is clearly too far off from the valueαA ≈ 2.4 found for regolith landslides.

As the conservative character of the model stems from the principle of conser-
vation of momentum, Hergarten and Neugebauer [2000] lookedfor a way to obtain
larger scaling exponents under conservative stress transfer. They extended the model
by a component of time-dependent weakening, which means that the threshold of
instability decreases through time between events and is reset after each event.
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The model involves two local variablesui, j andvi, j defined on a quadratic lattice.
The variableui, j relaxes conservatively in case of instability like the stresses in
the model shown in Fig. 6(b) would do. In return,vi, j , describing time-dependent
weakening, is locally reset to zero in case of instability without any transfer to the
neighbors:

ui±1, j := ui±1, j +
1
4

ui, j , ui, j±1 := ui, j±1+
1
4

ui, j , ui, j := 0 , (6)

and vi, j := 0 .

Between events, both variables increase at given rates:

d
dt

ui, j = ru and
d
dt

vi, j = rv. (7)

The rateru may describe an increase of stress due to long-term changes in topog-
raphy, whilerv quantifies the rate of weakening through time. It was assumedthat
slope stability depends on the product of both variables, i.e., that a site becomes
unstable if

ui, jvi, j ≥ 1. (8)

So the model can be directly transferred to the factor of safety approach (Eq. 4) by
definingui, j = τ andvi, j =

1
τmax

locally. The latter means that, as long as the slope

remains stable, the threshold shear stressτmax decreases like1t wheret is the time
since the last instability at this location. This is, of course, just an ad hoc assumption.

A power-law distribution of the event sizes with a scaling exponent close to 2
was found, and it was theoretically shown that this exponentis independent of the
driving ratesru andrv. The valueα ≈ 2 was within the range of estimates ofαA for
regolith landslides at that time and even in fair agreement with the apparently most
reliable valueαA ≈ 2.4 suggested by Malamud et al. [2004].

The model suggested by Piegari et al. [2006a,b] is similar inits spirit, but differs
in some details and, more importantly, concerning its dissipative character. The lo-
cal variable is the inverse of the factor of safety (Eq. 4) andthus simply proportional
to the local shear stress. Reasoned by the existence of several dissipative compo-
nents in landsliding processes, such as evaporation of water or volume contractions,
the authors skipped the conservation of stress and allowed an arbitrary degree of
dissipation in the relaxation rule.

At this level, the model is just another physical interpretation of the OFC earth-
quake model. In extension of the OFC model, the authors replaced the infinitely slow
long-term driving with a finite driving rate, as it was investigated by Hamon et al.
[2002] in the context of solar flares. Furthermore, they introduced an anisotropic
relaxation rule since stress transfer in direction of the slope may be stronger than
perpendicular to the slope.

Power-law distributions for the event sizes were found for several combinations
of the model parameters (dissipation, anisotropy, and driving rate), resulting in a
rather large range of scaling exponents. The range includesthe values found for re-
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golith landslides in nature. In some cases, the power-law distribution was even lost.
In a more recent paper [Piegari et al., 2009], the results of this model were quan-
titatively compared to some of the landslide inventories discussed in the previous
section. The authors found combinations of the model parameters that reproduce
both the scaling exponent and the rollover at small landslide sizes quite well after
spatial scaling of the discrete, nondimensional model. However, the choice of the
parameters and the spatial scale is based on a fit to the data, and there seems to
be no way to derive this choice from physical principles so far. So it is still unclear
why the model parameters should always be in a rather narrow range to yield similar
landslide size distributions under strongly different conditions.

Despite the promising results obtained from the two models discussed in this
section, some critical comments should be made. The first onemainly concerns the
range of scaling exponents obtained from the model of Piegari et al. that is obvi-
ously much wider than the variation found in nature. This problem also concerns
the original OFC model with respect to real earthquakes. In principle, the degree of
dissipation introduces a tuning parameter which cannot be constrained using physi-
cal arguments.

The second criticism arises from the existing knowledge on the behavior of the
OFC model. The occurrence of nearly periodic large events was soon discovered
[Olami and Christensen, 1992], and recently a more or less complete understanding
how the power-law distribution arises from the synchronization and the desynchro-
nization of patches toppling almost periodically has been achieved [Hergarten and
Krenn, 2011]. The organization towards an apparently critical state extends over
many periods, so that these findings may even support the arguments against the
applicability of the OFC model to real earthquakes. With respect to landslides,
this argument may even be more severe as it is very difficult toimagine that the
power-law distribution emerges after a long series of almost periodic sliding events
involving parts of a slope. Due to its similarity with the OFCmodel, it can be ex-
pected that the nonconservative model of Piegari et al. behaves exactly like this. For
the two-variable model of Hergarten and Neugebauer, there seems to be no further
knowledge on its organization towards a critical state, buta similar behavior might
be expected.

Finally, the question whether these mechanical models refer to the statistical dis-
tributions derived from landslide inventories at all should be taken into account.
Since changes in topography are neglected in these models, they describe slip events
with a small displacement on an individual slope. Such events have been subject of
research in the last decades and may finally help to understand landslide dynamics
or even help to predict large landslides, but the events recorded in landslide inven-
tories take place on the landscape scale. Apparently very little is known about the
size statistics of these small slip events, but even if they are power-law distributed it
is not clear whether this distribution has any relation to the landslide distribution on
the landscape scale.
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3 Geomorphic Models

The second class of models attempting to relate landslides to SOC is part of the large
group of landform evolution models. In these models, stresses in the material are not
explicitly considered. Instead, slope instability is assumed to depend on properties
of the relief, mainly on local slope. In a simplified view, these model approaches can
be characterized by the key word sandpile dynamics. Apart form numerical model-
ing, this topic was also addressed in several laboratory experiments with different
granular materials [e.g., Frette et al., 1996, Katz and Aharonov, 2006, Juanico et al.,
2008].

In the context of sandpile dynamics, the Bak-Tang-Wiesenfeld (BTW) model
[Bak et al., 1987, 1988] which was the first model of SOC and still seems to be some
kind of paradigm should be mentioned first. This model is often denoted sandpile
model, and even the entire class of models which are similar in their rules are often
referred to as sandpile models.

For the two-dimensional BTW model, the presumably most reliable estimate on
the scaling exponent of the avalanche size distribution in the limit of infinite system
size isα = 1.27 [Chessa et al., 1999]. Interestingly, this value is almost in the middle
of the range 1.07≤ αV ≤ 1.52 found for rockfalls and rockslides in nature. And as
it should be no problem to accept sandpile dynamics as a simplified representation
of rockslides, the problem of relating rockslides (and in principle rockfalls, too) to
SOC seems to be solved.

However, the problem in this reasoning is not the question whether sandpile dy-
namics captures the processes relevant for rockslide dynamics, but the relationship
between the BTW model and sandpile avalanches. In the BTW model, a site be-
comes unstable if its local variable becomes too large. Thislocal variable is often
considered as a number of grains at this site and may thus be seen as a representation
of surface height. In contrast, the stability of a sandpile depends on the local slope
gradient, which should be related to differences in the numbers of grains at neigh-
bored sites instead of their absolute number. Furthermore,redistribution of grains in
case of instability should not be isotropic as it is in the BTWmodel, but mainly in
downslope direction.

To get around this fundamental problem, one may be tempted toskip the idea
that the variable in the BTW model represents a number of grains, but interpret it
as an abstract property that is somehow related to the slope of a sandpile. However,
the attempt to relate this variable to slopes succeeds in onedimension, but quan-
titatively fails on a two-dimensional lattice [Hergarten,2002, 2003]. So the BTW
model provides a fundamental description of avalanche propagation on a rather ab-
stract level, but a physically consistent relation to sandpile dynamics or any type of
gravity-driven mass movements is not visible.

The presumably first geomorphic models to reproduce power-law statistics in
landslide dynamics were published almost 15 years ago [Densmore et al., 1998,
Hergarten and Neugebauer, 1998]. Compared to the most widespread models in the
field of SOC, these models are rather complicated and involveseveral parameters.
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The model of Hergarten and Neugebauer [1998] is based on partial differential
equations. It contains two variables, the surface elevation H(x1,x2, t) and the thick-
ness of an upper mobile layerκ(x1,x2, t), both being functions of the horizontal
coordinatesx1 andx2 and the timet. The material in the mobile layer flows at a ve-
locity proportional to the slope of the surface if a given threshold is exceeded. This
behavior is represented by the differential equation

∂H
∂ t

= div

{

α (κ |∇H|−β ) ∇H
|∇H| if κ |∇H|> β

0 else
. (9)

The parameterα is related to the flow velocity at given slope, whileβ defines the
threshold where flow starts. The symbols div and∇ refer to the two-dimensional di-
vergence and gradient operators, respectively. It was further assumed that material
from the lower solid layer becomes mobile at a (spatially andtemporally) random
rate r which is the only random component in the model. In return thethickness
of the mobile layer decays with a given time constantτ. Furthermore, the entrain-
ment of further material due to flow was taken into account. These phenomena were
incorporated by the second differential equation

∂
∂ t

(H −κ) =−r +
κ
τ
−γα (κ |∇H|−β ) |∇H|
︸ ︷︷ ︸

if κ |∇H|>β

(10)

where the additional parameterγ quantifies the entrainment of material by flow. The
model was applied to individual slopes, and long-term driving was introduced by a
constant lowering at the toe of the slope mimicking the incision of a river.

At that time, the system of differential equations could only be solved with rea-
sonable effort on lattices of no more than 64× 64 sites. A power-law distribution
of the landslide sizes was found over only one and a half orderof magnitude in
area. The authors analyzed cumulative distributions. Transferred to non-cumulative
frequency densities, they obtained a scaling exponentαA ≈ 2.1 which is not far
off from the values found for regolith landslides. However,serious parameter stud-
ies have not been performed. So the question remains whetherthis model predicts
a universal scaling exponent or whether there is a significant dependence on the
model parameters. Apart from this, the geometry of the events seems not to be very
realistic. As illustrated in Fig. 7, the landslides are rather long and tall and look even
a little like gorges in direction of the slope.

The model of Densmore et al. [1998] is a rather comprehensivelandform evolu-
tion model where landsliding is only one component beside fluvial sediment trans-
port and diffusive slope processes. As a major difference towards the models dis-
cussed before, slope instability is not treated as a progressive phenomenon. Only the
initiation of a landslide at any location is considered, while the size of the resulting
event is completely determined by the existing topography and by an ad hoc rule.
This topography is, in return, the result of all the processes considered in the model,
including previous landslides.
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Fig. 7 Surface after a large landslide in the model of Hergarten and Neugebauer [1998]. Regions
that were unstable are yellow; regions where a significant loss of height occurred (larger than the
incision of the river) are red.

Compared to the model discussed above, the authors attempted to include more
knowledge on the stability of real slopes instead of using adhoc rules for the ini-
tiation of landslides. Most of this knowledge hinges on the concept of the factor
of safety discussed in the previous section (Eq. 4) in combination with the Mohr-
Coulomb failure criterion. This criterion is widely used inmechanics and states that
failure occurs if the shear stress exceeds the maximum shearstress given by

τmax= σ tanφ +C (11)

whereσ is the normal stress. The parametersφ andC describe the properties of
the material whereφ is the angle of internal friction andC is the cohesion. For the
simplest case of a layer of constant thicknessd on a potential failure plane inclined
by an angleθ , the Mohr-Coulomb criterion immediately leads to

FS=
tanφ
tanθ

+
C

ρgdsinθ
(12)

whereρ is the density andg is the gravitational acceleration. This simple relation-
ship is often used as a first estimate. It states that planes with angles of inclination
θ < φ are always stable, while cohesion even enables steeper planes to remain stable
as long as the layer is thin.

Densmore et al. used this criterion to discriminate sites where landslides may
be initiated and the maximum landslide volume at these locations. As they wanted
landslides to be initiated only close to the toe of hillslopes, they searched the lowest
pair of neighbored sites at each hillslope where the slope angle β between both is
larger thanφ . In Fig. 8 these two sites are colored yellow. In the next step, the authors
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used the Mohr-Coulomb criterion to estimate the maximum height differenceHc

between these sites where the slope remains stable and related it to the actual height
differenceH. They assumed that failure occurs at a probability

p=
H
Hc

+ rt (13)

wheret is the time since the last event at this site, andr gives the rate of increase
in probability due to time-dependent weakening. In case of instability, a potential
landslide volume is computed. For this, they made an estimate of the most likely
plane of failure using the Mohr-Coulomb criterion and foundthat it dips at the angle
θ = β+φ

2 . The volume above this plane, colored red in Fig. 8, defines the maximum
possible volume of a landslide at this hillslope. Based on their own empirical re-
sults [Densmore et al., 1997], they finally assumed that the real landslide volume
is directly proportional to the time since the last landslide initiated at this location,
limited by the maximum volume.

Fig. 8 Illustration of the land-
sliding algorithm suggested
by Densmore et al. [1998].
Landslides can be initiated at
the lowest pair of sites on a
hillslope where the slope an-
gleβ exceedsφ (yellow). The
maximum landslide volume
(red) is defined by a plane that
dips at an angleθ = β+φ

2 .

H

β

θ = (β+φ)/2

φ

Comparing the physical basis of the model with the number of ad hoc rules raises
the question whether the physically-based part of the modelhas any effect on the
results. But apart from this, the derivation of the most likely dip angleθ and the
maximum stable height differenceHc are wrong. The authors considered the height
differenceH and the slope angleβ between the considered sites as independent and
claimed a quite large degree of freedom when deciding which one is variable and
which one is given by the actual topography. So it is not surprising that their result
on the maximum stable slope is not in agreement with the simple estimate given by
Eq. 12.

Taking these aspects into account, the part of the model referring to landslides is
just a combination of ad hoc rules, similarly to the model of Hergarten and Neuge-
bauer discussed above, but more complicated. However, it should be kept in mind
that such rules are not necessarily bad as long as they are reasonable and the re-
sults make sense. Similarly to Hergarten and Neugebauer, Densmore et al. obtained
power-law distributions of the landslide sizes within a narrow range of scales. In
two simulations involving different strength of the material (represented byφ and
C) they found valuesαV = 2.2 andαV = 1.8 with respect to the volume over about
one order of magnitude. These values are in very good agreement with the estimate
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αV ≈ 2.0 (or slightly larger, depending on the scaling between volume and area) for
the volumes of real regolith landslides given in Eq. 3. The smaller scaling exponent
occurred at higher strength, and this result goes even in thedirection that the scal-
ing exponent for rockfalls and rockslides is smaller than that of regolith landslides.
However, this may also be a matter of fitting straight lines over rather narrow ranges,
and if any error bars had been given, they would surely be larger than the difference
between the two values.

After several years of apparent silence in this field, a new approach focusing
on rockfalls (again including rockslides) has been recently published by Hergarten
[2012]. This model is inspired by ideas on sandpile dynamicsand extremely simple
compared to the other models reviewed in this chapter. In return it is, however, more
or less completely based on ad hoc rules. The basic assumption is that landslides
can in principle be triggered at any site with a probability that depends on the local
slope gradient. All other contributions to rock instability in nature such as fracturing
are mimicked by the randomness of the triggering process.

In analogy to the fluvial erosion models mentioned in the introduction, the gra-
dient at each site is computed in the direction of steepest descent among the eight
(direct and diagonal) neighbors on a rectangular lattice, what is called D8 algo-
rithm [O’Callaghan and Mark, 1984]. It is further assumed that slopes below a lower
threshold slopesmin remain stable under all conditions, while slopes above an up-
per threshold slopesmax are destabilized by any impact. For slopess betweensmin

andsmax a linear increase of the probability of instability in case of an impact is
assumed:

p=
s−smin

smax−smin
. (14)

If a site becomes unstable, material is removed until its slope decreases tosmin.
The downslope motion of unstable rock masses and their deposition is not com-
puted, only the volume of detached material is recorded and used for the event size
statistics. The effect of the event on its vicinity, i.e., progressive destabilization in
the source area of the rockfall, is mimicked by exposing the eight neighbored sites to
the same random impact as the unstable site, so that each of them may become un-
stable with a probability given by Eq. 14, too. Those sites which received an impact
without becoming unstable are assumed to be stable at their present slope and can-
not be destabilized by further impacts unless their slope increases as a consequence
of further removal of material at neighbored sites. This is realized by replacingsmin

of these sites by the present value ofs.
In contrast to all the models discussed earlier, this model only simulates the oc-

currence and the size of rockfalls on a given relief. Long-term driving forces, mainly
fluvial erosion in combination with tectonic uplift and, particularly important in the
context of rockfalls, glacial erosion, are not considered.So if this model yields a
power-law distribution of the rockfalls, it only shows thatthe relief it is applied to
has critical properties with respect to this mechanism. In the context of SOC, this is
clearly a disadvantage, but in return it might allow a hazardassessment for a given
region which is not so easy with models bringing their own mechanism of long-term
driving.
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The model was applied to Digital Elevation Models of three mountain belts: the
European Alps, the central part of the Himalayas, and the southern part of the Rocky
Mountains. The elevation data were taken from the ASTER Global Digital Eleva-
tion Model (a product of METI and NASA) with a resolution of 1 arc second, cor-
responding to about 20–30 m.

As illustrated in Fig. 9, the model predicts a power-law distribution with a scaling
exponentαV = 1.35 for all three regions, although they strongly differ in their to-
pographic characteristics. This value falls perfectly into the range 1.07≤ αV ≤ 1.52
found for rockfalls and rockslides. Significant differences between the regions only
concern the cutoff behavior at large event sizes. The results shown in Fig. 9 were
obtained using the parameter valuessmin = 1 andsmax= 5, only justified by the rule
of thumb that the majority of real rockfalls and rockslides occurs at slope angles
greater than 45◦. However, it was shown that a variation of the model parameters
smin andsmax within a reasonable range has a minor effect on the scaling exponent
of the event-size distribution. Similarly to the differences between the considered
regions, variations in the parameters mainly affect the cutoff behavior at large event
sizes. The regional differences in the cutoff behavior wereinterpreted in terms of
subcriticality of the present relief with respect to the model’s mechanism. It was
concluded that the Himalayas are closer to a critical state than the Alps, which are
themselves closer to a critical state than the southern partof the Rocky Mountains.
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Fig. 9 Probability density of the rockfalls predicted by the model ofHergarten [2012] for the
European Alps (43–48◦ N and 5–16◦ E), the central part of the Himalayas (26–31◦ N, 82–92◦ E)
and for the southern part of the Rocky Mountains (35–45◦ N and from 105◦ W to the West Coast),
computed withsmin = 1 andsmax = 5. The straight line corresponds to a power-law distribution
with an exponentαV = 1.35.

In the same paper, a first attempt do derive a topography-based rockfall hazard
map from the model was also made. The map presented in Fig. 10 is based on a
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prediction of a 2000 year time span and shows a rather inhomogeneous distribution
of the hazard in the European Alps. The largest predicted event is illustrated in
Fig. 11. It involves a volume of about 0.5 km3 and is predicted to occur with a
rather high probability of one per 500 years. However, it wasalready admitted in
the original paper that quantitative assessments based on this model must be treated
with some caution. First, assigning an absolute time scale to the model is rather
uncertain. And second, variations in the parameterssmin andsmax which can only
be guessed so far have a stronger influence on the largest events than on the power-
law distribution itself. It was already discussed in the original paper that even a
small increase insmin andsmax by 20 % reduces both the size and the probability of
occurrence of the largest events by a factor of two. Even stronger regional variations
in these parameters can be expected due to lithology, so thatin particular estimating
the size and frequency of the largest events in a mountain belt seems to be rather
uncertain. So this model may provide a tool for hazard assessment, but any serious
application requires additional data that cannot be derived vom physical principles
in a straightforward way.

6°E 9°E 12°E 15°E

44°N

45°N

46°N

47°N0.3 km³
0.03 km³
0.003 km³

Fig. 10 Rockfalls withV ≥ 10−3 km3 predicted for a 2000 year time span in the Alps [Hergarten,
2012]. Black:V ∈ [0.001,0.01) km3 (756 events), blue:V ∈ [0.01,0.1) km3 (301 events), red:
V ≥ 0.1 km3 (21 events).

Nevertheless, the model seems to have a large potential for both application to
rockfall hazard assessment and for clarifying the role of SOC in rockfall dynamics.
But as mentioned above, the latter first requires an extension of the model by long-
term driving processes such as fluvial or glacial erosion that locally steepen the relief
and thus supply the potential for mass movements.
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Fig. 11 The largest event predicted for the Alps (Lauterbrunnen valley,V ≈ 0.5 km3, red). The
black lines correspond to smaller events predicted for a 2000 year time span.

To summarize, there is growing evidence for power-law size distributions in
different types of landslides. The scaling exponents foundfor regolith landslides
strongly differ from those found for rockfalls and rockslides, but each of this classes
may be characterized by a universal scaling exponent. A handful of models has been
designed to reproduce these power-law distributions. Mostof them address regolith
landslides, an all hinge on ad hoc rules. So far none of them provides a consistent
explanation for the difference in the scaling exponents found for different types of
landslides. Even none of them can uniquely identify any typeof landsliding as a
phenomenon governed by SOC, but this applies to almost all natural phenomena
considered in the context of SOC.
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