SOC in Landdlides

Stefan Hergarten

Scale invariance at the earth’s surface has attractedtistgefor several decades.
Even the first formal description of scale invariance in nmatoncerned geomorphic
data. In his seminal work, Mandelbrot [1967] measured thgtleof coastlines with
rulers of different lengths and found a power-law relati@ivieen the measured
length and the ruler’s length. The scaling exponent of tliwgr-law relation was
used to assign a non-integer dimension between one and tihese lines. The
fractional dimension finally led to the term fractals.

In the 1980s, when fractals became popular and subject efaewmonographs
[e.g., Mandelbrot, 1982, Feder, 1988], geomorphologyragabvided one of the
most fascinating examples: artificial self-affine landsesaje.g., Voss, 1985, Feder,
1988]. Figure 1 shows an example with a local fractal dimam§.g., Mandelbrot,
1985]D, = 2.1, generated by Fourier methods [e.g., Hergarten, 2002].

Although these artificial surfaces may be beautiful and es@mewhat similar
to the real topography of the earth at first sight, their valueed out to be lim-
ited. First, the earth’s surface is not perfectly self-&mor self-affine [Evans and
McClean, 1995] as it is shaped by a variety of processes amassbtrong corre-
lations between elevation and slope [e. guhiki and Pfiffner, 2001] which are not
reproduced by simple self-affine surfaces. Furthermoesdfsurfaces lack impor-
tant geomorphic elements such as river valleys. And findily,algorithms behind
these surfaces seem to be far away from the present undéirgjaof the tectonic
and geomorphic processes shaping the real topography.

A few years after the concept of SOC was introduced, the fitstrgpts to recog-
nize SOC in landform evolution were made [Kramer and Marl®82, Takayasu
and Inaoka, 1992, Rinaldo et al., 1993]. These studies asléldehe statistical prop-
erties of river networks using models of fluvial erosion. [Bdavariant properties
of river networks were found even before the term fractal ezased [Horton, 1945,
Strahler, 1952, Hack, 1957]. The models themselves weriasim their spirit. It
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Fig. 1 A computer-generated, self-affine surface with a local fradt@ensionD; = 2.1. For a
more realistic impression, the landscape was flooded up to a ckveirend placed on a section
of a sphere in order to improve the aerial view.

was assumed that water takes the direction of the steepestmeon the surface,
and that the erosion rate of a river segment depends on ttieadge and on the lo-
cal channel slope. The simplest case addresses the ewvatiitioe topography and
the river network under constant tectonic uplift where thdace elevation at one
or more pre-defined outlet points at the boundary is kepttaohs

It was found that the topography including the river netwewolves towards
a steady state under these conditions. Figure 2 shows arpexafsuch a tree-
like network. The steady-state networks obtained fromehmedels were found to
reproduce several statistical properties of real rivewneéts. Furthermore it turned
out that the details of the model, i.e., the constitutive fanthe erosion rate as a
function of discharge and slope, has a minor effect on thisstal properties of
the network.

So these models are examples of self-organization towastisaaly state with
some scale-invariant properties. Takayasu and Inaok&]18&n entitled this be-
havior as a new type of SOC. But as pointed out by SapozhnikdvFaufoula-
Georgiou [1996], this kind of self-organization is not SO®e evolution ends at a
steady state without further fluctuations, so that thisestanhot critical.

However, tectonic forces and thus the uplift rates are nostamt at geologi-
cal timescales, which is one reason that real landscape®tdachieve a steady
state. In order to mimic these permanently changing dritamges, Hergarten and
Neugebauer [2001] suggested an extended landform evolutanlel where the lo-
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Fig. 2 A simulated river
network [Hergarten, 2002].

cation of the outlet is not constant, but varies through tioag the boundary of the
model domain. As a consequence, the river network permigrargnges and never
achieves a steady state. These changes are even reflectegblerlaw if each
change in flow direction at any site is considered as a gedmwgvent, and if the
event sizes are measured in terms of changes in river digeloar more precisely,
catchment size. But unfortunately, it is impossible to fyettiis event-size distribu-
tion in nature. There is indeed evidence for historical ¢jesnin the river network
even in mountain belts with deep valleys, but only very feergs can be clearly rec-
ognized, so that a reasonable statistics seems to be owtadf.lEven analyzing the
changes in braided river systems which evolve very rapidiyigared to large-scale
river networks may take more than a human lifetime, and thelt® obtained from
downscaled laboratory experiments [Sapozhnikov and kgafGeorgiou, 1997]
are non-unique with regard to SOC.

So it seems that large-scale landform evolution is in ppilecunsuitable for rec-
ognizing SOC. The rest of this chapter is devoted to landsligthich constitute a
major natural hazard in almost all mountainous regions aedhe presumably the
geomorphic process which is most widely studied in the car@eSOC.

1 Landdlide Statistics

Landslides cover an enormous range of scales and a varigtyesfomena. In the
vast majority of the literature the term landslides is used synonym for all gravity-
driven mass movements. The involved masses may be eithefrempnents or an
unconsolidated regolith layer (mainly soil). Dependingtie topographic charac-
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teristics and the properties of the material, the motion imaylominated by flow,
sliding, avalanching, toppling of falling.

The smallest noticeable landslides are rockfalls with aiva in the order of
magnitude of 103 m3. However, mass movements involving several million cubic
meters occur quite frequently. Figure 3 shows a rockslidé wivolume of about
3% 10" m® that took place in the Matter valley in the Swiss Alps in 199hly about
50 years ago, a block of more than one quarter cubic kilonueterched above the
Vaiont reservoir in the Dolomite Region of the Italian Alperih a wall and slid into
the lake at velocities of up to 30 meters per second. As atresulave of water
overtopped the dam and swept onto the valley below, withaks bf about 2500
lives. The largest rockslide documented in the Europeas Al Flims rockslide,
is even more than 30 times larger with respect to volume thanvaiont reservoir
disaster. Estimates of its total volume cover the range f8aim 15 kn? [e.g., von
Poschinger, 2011].

Fig. 3 Debris deposits of a
rockslide in the Matter valley
(Swiss Alps).

Extensive landslide statistics have been collected fozrs¢decades. More than
40 years ago, Fuyii [1969] found a power-law distributio850 events induced by
heavy rainfall in Japan. In a more comprehensive study, tiogt al. [1997] ana-
lyzed about 5000 regolith landslides in the western SountAdps of New Zealand.
Malamud et al. [2004] compiled regolith landslide data $eim several regions,
each of them consisting of about 1000 to 45,000 events. Séthem were derived
from historical inventories, while other consist of eveattisibuted to one triggering
event (rapid snowmelt, a rainstorm or an earthquake).
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Figure 4 shows the frequency density of eight data sets tiikenHovius et al.
[1997] and Malamud et al. [2004] where the area is used as aureeaf landslide
size. The diagram displays the frequency density, whichrgly the product of the
probability density and the total number of events. It cae$t@nated by collecting
the objects in (here logarithmic) bins and dividing the nemdf objects in each bin
by the bin width.
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Fig. 4 Frequency density of eight landslide data sets [Hovius et@97 1Malamud et al., 2004].

Malamud et al. [2004] found a power-law distribution
f(A) DA% (1)

with a scaling exponenta ~ 2.4 at large landslide sizes and a rather small varia-
tion between the considered data sets. In particular, #emms to be not systematic
difference between the statistics of the landslides triggidy a single earthquake,
rainstorm or snowmelt event (red/orange in Fig. 4) and hitsibinventories involv-
ing events arising from various triggers (green/blue).

All datasets displayed in Fig. 4 reveal a striking deviaticm a power law at
small sizes. The rollover of at small sizes indicates a ldcdawall landslides in all
data sets. Although Malamud et al. suggested a functiondorites it quantitatively,
its origin is still unclear, but it seems not to be an artet#fdhcomplete sampling.
This rollover strongly limits the range of landslide sizelsere a power law can be
found since the largest events are in the order of magnitfiiéam? and thus occur
at very low frequencies. As a result, none of the distrimgishows a clear power
law over more than two decades in area, which is only one @eiratinear size.
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Compared to the distributions of earthquakes (Cha@tand wildfires (Chaptet0)
this is a rather narrow range.

Available statistics of rock mass movements are much snihlée the invento-
ries of regolith landslides. Malamud et al. [2004] re-azaly three inventories of
rockfalls and rockslides originally published by Dussaegeal. [2002]. Each data
set consists of only 89 to 157 events compared to severasdmais in the landslide
inventories. The frequency densities are displayed in Fig/Vhile landslide size
was measured in terms of area, volume is used here.
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Fig. 5 Frequency density of three rockfall inventories [Dussaugd.e2@02, Malamud et al.,
2004]. The dashed line illustrates a power law with a scalingept of 107.

In contrast to the landslide statistics shown in Fig. 4, ndgaiss rollover at small
sizes is visible here. Consequently, the power-law distidin extends over a larger
range of scales, about 5 to 7 decades in volume for each datslaamud et al.
found that a power law with a scaling exponent = 1.07 fits well to the three
datasets without any vertical shift of the curves. This tesuggests that the power
law even extends over 9 orders of magnitude, but fitting oneepdaw distribution
to a merged data set is in principle dangerous as it strorgpgids on the number
of events in each data set. However, simultaneously fittinggt power-law distribu-
tions with the same scaling exponent, but different fadtofsont of the power law
confirms the resultry = 1.07.

As reviewed by Brunetti et al. [2009], similar power-law tdisutions of rock-
fall and rockslide volumes were found in several other stsidApplying different
methods of analysis in different regions on Earth, expaent= 1.1 [Guzzetti
etal., 2003]ay = 1.2 [Guzzetti et al., 2004y = 1.19-1.23 [Noever, 1993y =
1.41-1.52 (the original results of Dussauge et al. [200dnalyzed by Malamud
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et al. [2004], anday = 1.40-1.72 [Hungr et al., 1999] were obtained. Except for
two data sets which address rather small scales, all théisesviall into the range
1.07 < ay < 1.52. So the finding that a variation of more than 0.4ipwas ob-
tained by applying different methods to the same data saisgaéuge et al., 2002,
Malamud et al., 2004] suggests that the entire variatiooirmay be a spurious
effect of limited statistics.

In addition to an apparent independence on the triggerinchar@sm, no sig-
nificant difference between rockfalls and rockslides wasated. Following the
majority of the references cited in this paper, the term faltkis therefore used for
all types of rapid rock mass movements, in particular rdtkénd rockslides, in the
rest of this chapter.

When comparing scaling exponents obtained for rockfallé wibse obtained
for regolith landslides, we must either transform the ardated regolith landslide
distributions to volumes or the volume-related 3rockfiiiil%dis:tributions to areas.
The simplest assumption is isotropic scali¥d,] Az, as used, e.g., by Hovius et al.
[1997] for regolith landslides. However, non-isotropiakieg was revealed in a
comprehensive theoretical study by Klar et al. [2011], asas also found much
earlier in field studies [e.g., Simonett, 1967]. Klar et alifid a weaker increase of
volume with areay O AY with y € [1.32,1.38], in very good agreement with field
observations. Then, comparing the cumulative distrilmgtiwith respect to area and
volume immediately leads to the relation

ap—1l=y(ay—1), 2

and thus fory < 1.4
av >

an—1

14 +1~20 3)
for regolith landslidesda ~ 2.4). This value is clearly larger than the range7<
ay < 1.52 found in the rockfall inventories.

In summary, there is growing evidence for power-law sizéisttes in both re-
golith landslides and rockfalls (including rockslides)iter significant regional
variations in the scaling exponent nor a dependence onitigeting mechanism
has been found. However, the values of the scaling expotieatkfall size distri-
butions are significantly smaller than those found for ritigddndslides.

2 Mechanical Models

The power-law distributions found for landslide sizes sgj@ relationship to SOC.
In the following, the most important modeling approacheshis context are dis-
cussed.

All these models address the mobilization of rock or repafitasses. With re-
spect to hazard assessment, this is only half of the storgusecthe runout of a
mass movement is as important as the initial mobilizatiopdrticular, debris flows
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consisting of a mixture of rock and water may travel overatises of several kilo-
meters. Rockfalls, rockslides, and rock avalanches maydifer strongly in their
runout behavior. Reviews on models predicting the runoubok mass movements
are given by, e.g., Dorren [2003] and Volkwein et al. [201d]principle the runout
may affect the size distribution of the landslides, toostirockfall and rockslide
inventories mostly refer to the deposited volume which igeneral larger than the
detached volume as the compactness of the material desrdagsag the move-
ment. And second, the volume may also increase due to thairment of further
rock masses. However, dilatancy should not vary strongti tie event size, and
the second effect becomes significant for a small class of mexements only.
Under these aspects it seems to be reasonable that the rattéetpting to relate
landslides to SOC only address the detached volumes orldtedareas.

The stability of slopes and cliffs is a mechanical problewolaing stresses
mainly induced by gravity, but in some cases also by vamatio temperature or
pore water pressure. In rock, pre-defined fracture patteasbe of particular im-
portance, while existing zones of weakness (e.g., clayrfaymay strongly affect
the stability of a regolith layer. The topography defineslibandary condition for
the 3-dimensional mechanical problem and is thus at leastpartant as the me-
chanics inside the domain. Although this is all clear on ditptave level, and even
the differential equations behind it seem to be well-knatlie,question whether the
power-law distribution arises from an evolving fracturdtgan (in rock), another
type of stress redistribution or the topography changingubh type is still open.

In this section, two models addressing the redistributibsti@ss are discussed.
Both are reduced to two dimensions and in principle condeerstability along a
pre-defined slip surface as it is often found in regolith Elittts. Topography is
not directly considered in these models. In their spirithbmodels can be seen as
extensions of the classical limit equilibrium approachngdback to W. Fellenius in
the 1920s. The factor of safeBS of a given slip surface is defined as the ratio of
maximum shear streSsax Where the material remains stable and the actual shear
stressr,

FS— 2, (a)

so that the slope remains stable as lon§ 8s> 1.

The models discussed in the following extend this approggbrbgressive fail-
ure using a local factor of safety. FS < 1 at any location, local failure occurs
and leads to an increase ofand thus to a decrease BfS in the neighborhood.
This idea is basically the same as the idea behind the Berfdwpoff earthquake
model [Burridge and Knopoff, 1967] and its most widesprealiutar automaton
version, the Olami-Feder-Christensen (OFC) model [Olanaile 1992]. Altough
20 years old, this model ist still one of the most widely saatimodels in the field
of SOC, and it is discussed in detail in almost all books on $€¢., Bak, 1996,
Jensen, 1998, Hergarten, 2002]. Figure 6(a) illustratdsyaipal realization of the
OFC model. A set of blocks on a regular lattice is intercomegdy springs and
held by static friction at the ground. The forag; acting on each block increases
through time due to an additional connection with a rigid erpplate moving at a
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constant velocity. When the force acting on a site reache#rtiteof friction, the
site becomes unstable and is immediately displaced to a ositign characterized
by zero total force. As a result, a fractionof the forceu; j is transferred to each of
the four nearest neigbors, leading to the relaxation rutt@OFC model

Uit1,j = Uit1j+ O U j, Uj+1:=Ujr1+auj, and uj:=0.  (5)

Here, the symbok: means that the value of the variable is replaced with theavaiu
the right-hand side. As a part of the force is transferretieéaipper plate (depending
on the constants of the springs),must be smaller than one quarter, making the
model nonconservative.

Fig. 6 (a) Geometric representation of the Olami-Feder-Christens#imge@ke model. (b) Trans-
fer of the idea to simulate progressive slope failure at a giverssiiface.

The long-term driving introduced by a rigid upper plate ie tarthquake model
mimics the long-term displacement between the walls of doggmal fault or a
subduction zone. Such a way of driving is obviously absentse of landslides, so
that the driver plate has been removed in the realizatiowsfio Fig. 6(b). Instead,
the blocks connected by elastic springs have been placea amckned surface,
resulting in a constant driving force in downslope diregtio

But apart from the different way of long-term driving, thesebce of the rigid
driver plate also affects the rule of relaxation in case oélanstability. In the earth-
quake model, the relaxed stress is redistributed among tearest neighbor sites
and the driver plate, and the proportion depends on thegttrerfithe springs. Thus,
the relaxation within the lattice of blocks is nonconsereatThis property is cru-
cial for reproducing the size-distribution of real eartaies as the scaling exponent
of the event-size distribution roughly approaches 1.2.[¢igrgarten, 2002] in the
conservative limit, which is much too low. Without the drivéyid upper plate, the
redistribution of stress becomes conservative, and thesdhling exponent of about
1.2 is clearly too far off from the valuea = 2.4 found for regolith landslides.

As the conservative character of the model stems from theipte of conser-
vation of momentum, Hergarten and Neugebauer [2000] lofikea way to obtain
larger scaling exponents under conservative stress @raii$fey extended the model
by a component of time-dependent weakening, which meanghéahreshold of
instability decreases through time between events andét adter each event.
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The model involves two local variabless; andy; j defined on a quadratic lattice.
The variableu; j relaxes conservatively in case of instability like the s$es in
the model shown in Fig. 6(b) would do. In retusg,j, describing time-dependent
weakening, is locally reset to zero in case of instabilityheut any transfer to the
neighbors:

1 1
Uit j = Uikl + 7 Uijs Uil 1= Uijed g Uy Ui =0, (6)

and Vi =0.

Between events, both variables increase at given rates:

%Uiﬁj =ry, and %Viﬁj =Ty. @)
The ratery may describe an increase of stress due to long-term changepdg-
raphy, whiler, quantifies the rate of weakening through time. It was assutimed
slope stability depends on the product of both variables, that a site becomes
unstable if

uijvij > 1 (8)

So the model can be directly transferred to the factor oftgafeproach (Eq. 4) by

definingu; j = T andv; ; = —L_ocally. The latter means that, as long as the slope

Tmax

remains stable, the threshold shear stmggs decreases Iiké wheret is the time
since the last instability at this location. This is, of ceelrjust an ad hoc assumption.

A power-law distribution of the event sizes with a scalingp@xent close to 2
was found, and it was theoretically shown that this exporeimtdependent of the
driving ratesr, andr,. The valuea = 2 was within the range of estimatesayf for
regolith landslides at that time and even in fair agreematit the apparently most
reliable valueoa ~ 2.4 suggested by Malamud et al. [2004].

The model suggested by Piegari et al. [2006a,b] is simil#@sigpirit, but differs
in some details and, more importantly, concerning its gassre character. The lo-
cal variable is the inverse of the factor of safety (Eq. 4) s simply proportional
to the local shear stress. Reasoned by the existence ofbe&sipative compo-
nents in landsliding processes, such as evaporation of ma®@lume contractions,
the authors skipped the conservation of stress and alloweathitrary degree of
dissipation in the relaxation rule.

At this level, the model is just another physical interptietaof the OFC earth-
quake model. In extension of the OFC model, the authorscegltne infinitely slow
long-term driving with a finite driving rate, as it was inviggtted by Hamon et al.
[2002] in the context of solar flares. Furthermore, theyddticed an anisotropic
relaxation rule since stress transfer in direction of tlepsimay be stronger than
perpendicular to the slope.

Power-law distributions for the event sizes were found &uesal combinations
of the model parameters (dissipation, anisotropy, andrdyivate), resulting in a
rather large range of scaling exponents. The range inclingegalues found for re-
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golith landslides in nature. In some cases, the power-latwilution was even lost.
In a more recent paper [Piegari et al., 2009], the resulthisfrhodel were quan-
titatively compared to some of the landslide inventoriescdssed in the previous
section. The authors found combinations of the model patemsi¢hat reproduce
both the scaling exponent and the rollover at small landdides quite well after
spatial scaling of the discrete, nondimensional model. &l@r the choice of the
parameters and the spatial scale is based on a fit to the datahere seems to
be no way to derive this choice from physical principles so$a it is still unclear
why the model parameters should always be in a rather naaogerto yield similar
landslide size distributions under strongly different dibions.

Despite the promising results obtained from the two modalsudsed in this
section, some critical comments should be made. The firstmaiely concerns the
range of scaling exponents obtained from the model of Piegal. that is obvi-
ously much wider than the variation found in nature. Thishpem also concerns
the original OFC model with respect to real earthquakesrihcple, the degree of
dissipation introduces a tuning parameter which cannobhbstcained using physi-
cal arguments.

The second criticism arises from the existing knowledgehenbiehavior of the
OFC model. The occurrence of nearly periodic large events sean discovered
[Olami and Christensen, 1992], and recently a more or lesgtaie understanding
how the power-law distribution arises from the synchroticraand the desynchro-
nization of patches toppling almost periodically has begrieved [Hergarten and
Krenn, 2011]. The organization towards an apparentlycaiitstate extends over
many periods, so that these findings may even support thenargs against the
applicability of the OFC model to real earthquakes. Withpeet to landslides,
this argument may even be more severe as it is very difficuiinemgine that the
power-law distribution emerges after a long series of atrpesodic sliding events
involving parts of a slope. Due to its similarity with the OR@del, it can be ex-
pected that the nonconservative model of Piegari et al.Mashexactly like this. For
the two-variable model of Hergarten and Neugebauer, thems to be no further
knowledge on its organization towards a critical state,gsimilar behavior might
be expected.

Finally, the question whether these mechanical models tethe statistical dis-
tributions derived from landslide inventories at all sttbble taken into account.
Since changes in topography are neglected in these mdueysiéscribe slip events
with a small displacement on an individual slope. Such evbave been subject of
research in the last decades and may finally help to underiadslide dynamics
or even help to predict large landslides, but the eventsrdecbin landslide inven-
tories take place on the landscape scale. Apparently vtlig/is known about the
size statistics of these small slip events, but even if tleypawer-law distributed it
is not clear whether this distribution has any relation ®ltndslide distribution on
the landscape scale.
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3 Geomorphic Models

The second class of models attempting to relate landskd8®C is part of the large
group of landform evolution models. In these models, seeasthe material are not
explicitly considered. Instead, slope instability is ansd to depend on properties
of the relief, mainly on local slope. In a simplified view, #gemodel approaches can
be characterized by the key word sandpile dynamics. Apant faumerical model-
ing, this topic was also addressed in several laboratorgraxgents with different
granular materials [e.g., Frette et al., 1996, Katz and éhaw, 2006, Juanico et al.,
2008].

In the context of sandpile dynamics, the Bak-Tang-WieddnfBTW) model
[Bak etal., 1987, 1988] which was the first model of SOC aritisgeéms to be some
kind of paradigm should be mentioned first. This model isroflenoted sandpile
model, and even the entire class of models which are sinmiltrdir rules are often
referred to as sandpile models.

For the two-dimensional BTW model, the presumably mosabdéi estimate on
the scaling exponent of the avalanche size distributioherimit of infinite system
sizeisa = 1.27 [Chessa et al., 1999]. Interestingly, this value is alrimothe middle
of the range D7 < ay < 1.52 found for rockfalls and rockslides in nature. And as
it should be no problem to accept sandpile dynamics as a isieaptepresentation
of rockslides, the problem of relating rockslides (and imgiple rockfalls, too) to
SOC seems to be solved.

However, the problem in this reasoning is not the questioathdr sandpile dy-
namics captures the processes relevant for rockslide dgeabut the relationship
between the BTW model and sandpile avalanches. In the BTWemadsite be-
comes unstable if its local variable becomes too large. [Baial variable is often
considered as a number of grains at this site and may thughese representation
of surface height. In contrast, the stability of a sandpépehds on the local slope
gradient, which should be related to differences in the renibf grains at neigh-
bored sites instead of their absolute number. Furthermedéstribution of grains in
case of instability should not be isotropic as it is in the Bivgdel, but mainly in
downslope direction.

To get around this fundamental problem, one may be tempts#ijpothe idea
that the variable in the BTW model represents a number ofigrdiut interpret it
as an abstract property that is somehow related to the sfapeandpile. However,
the attempt to relate this variable to slopes succeeds irdonension, but quan-
titatively fails on a two-dimensional lattice [Hergarte2002, 2003]. So the BTW
model provides a fundamental description of avalancheggation on a rather ab-
stract level, but a physically consistent relation to sdledfynamics or any type of
gravity-driven mass movements is not visible.

The presumably first geomorphic models to reproduce poswersttatistics in
landslide dynamics were published almost 15 years ago [Dereset al., 1998,
Hergarten and Neugebauer, 1998]. Compared to the mostpvikes models in the
field of SOC, these models are rather complicated and ins#veral parameters.
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The model of Hergarten and Neugebauer [1998] is based oialpdifferential
equations. It contains two variables, the surface elenddip<,Xo,t) and the thick-
ness of an upper mobile layen(xi,Xy,t), both being functions of the horizontal
coordinatex; andx, and the time. The material in the mobile layer flows at a ve-
locity proportional to the slope of the surface if a giveretirold is exceeded. This
behavior is represented by the differential equation

mdiv{a(xmm—ﬁ)gnn KIOH| > B ©

ot 0 else
The parameteq is related to the flow velocity at given slope, whedefines the
threshold where flow starts. The symbols div ahcefer to the two-dimensional di-
vergence and gradient operators, respectively. It wabhdudssumed that material
from the lower solid layer becomes mobile at a (spatially semdporally) random
rater which is the only random component in the model. In returntttiekness
of the mobile layer decays with a given time constanFurthermore, the entrain-
ment of further material due to flow was taken into accounesephenomena were
incorporated by the second differential equation

d K
E(H—K)=—I’+?—VG(K|[|H|—B)|DH| (10)

if k|OH|>B

where the additional parametequantifies the entrainment of material by flow. The
model was applied to individual slopes, and long-term dgwivas introduced by a
constant lowering at the toe of the slope mimicking the ioci®f a river.

At that time, the system of differential equations couldydo¢ solved with rea-
sonable effort on lattices of no more than 644 sites. A power-law distribution
of the landslide sizes was found over only one and a half cofl@nagnitude in
area. The authors analyzed cumulative distributions. sfeaired to non-cumulative
frequency densities, they obtained a scaling expoognt 2.1 which is not far
off from the values found for regolith landslides. Howessrious parameter stud-
ies have not been performed. So the question remains whtbikenodel predicts
a universal scaling exponent or whether there is a signifidapendence on the
model parameters. Apart from this, the geometry of the evestms not to be very
realistic. As illustrated in Fig. 7, the landslides are eatlong and tall and look even
a little like gorges in direction of the slope.

The model of Densmore et al. [1998] is a rather compreheiteaindform evolu-
tion model where landsliding is only one component besidadlisediment trans-
port and diffusive slope processes. As a major differeneatds the models dis-
cussed before, slope instability is not treated as a prsiyeephenomenon. Only the
initiation of a landslide at any location is considered, lelhe size of the resulting
event is completely determined by the existing topograpit/lay an ad hoc rule.
This topography is, in return, the result of all the processmsidered in the model,
including previous landslides.
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Fig. 7 Surface after a large landslide in the model of Hergarten andydlzauer [1998]. Regions
that were unstable are yellow; regions where a significant Ibegight occurred (larger than the
incision of the river) are red.

Compared to the model discussed above, the authors attopteclude more
knowledge on the stability of real slopes instead of usindp@d rules for the ini-
tiation of landslides. Most of this knowledge hinges on tbaaept of the factor
of safety discussed in the previous section (Eg. 4) in coatlin with the Mohr-
Coulomb failure criterion. This criterion is widely usedrirechanics and states that
failure occurs if the shear stress exceeds the maximum streas given by

Tmax = otanp+C (12)

where o is the normal stress. The parametgrandC describe the properties of
the material wher@ is the angle of internal friction and is the cohesion. For the
simplest case of a layer of constant thicknéss a potential failure plane inclined
by an angleéd, the Mohr-Coulomb criterion immediately leads to

_ tang C

“tane pgdsing (12)

wherep is the density ang is the gravitational acceleration. This simple relation-
ship is often used as a first estimate. It states that plartbsangles of inclination

6 < @ are always stable, while cohesion even enables steep@&sglaremain stable
as long as the layer is thin.

Densmore et al. used this criterion to discriminate siteereHandslides may
be initiated and the maximum landslide volume at these imeat As they wanted
landslides to be initiated only close to the toe of hillslsphey searched the lowest
pair of neighbored sites at each hillslope where the slogéeghbetween both is
larger thanp. In Fig. 8 these two sites are colored yellow. In the next,dtepauthors
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used the Mohr-Coulomb criterion to estimate the maximunglitedifferenceH.
between these sites where the slope remains stable arebrlat the actual height
differenceH. They assumed that failure occurs at a probability

H
p= He +rt (13)

wheret is the time since the last event at this site, argives the rate of increase
in probability due to time-dependent weakening. In casenstfability, a potential
landslide volume is computed. For this, they made an estimiithe most likely
plane of failure using the Mohr-Coulomb criterion and fouhalt it dips at the angle
6= L;“’. The volume above this plane, colored red in Fig. 8, definesrtaximum
possible volume of a landslide at this hillslope. Based airtbwn empirical re-
sults [Densmore et al., 1997], they finally assumed that ¢faé landslide volume
is directly proportional to the time since the last landsliditiated at this location,
limited by the maximum volume.

Fig. 8 lllustration of the land- A naialn T
sliding algorithm suggested o= (BTCP)/,Z,/
by Densmore et al. [1998]. el
Landslides can be initiated at
the lowest pair of sites on a
hillslope where the slope an-
gle B exceedwp (yellow). The
maximum landslide volume
(red) is defined by a plane that

dips atan anglé = £52.

Comparing the physical basis of the model with the numbeddfa rules raises
the question whether the physically-based part of the moaglany effect on the
results. But apart from this, the derivation of the mostliikéip angle 8 and the
maximum stable height differen¢®. are wrong. The authors considered the height
differenceH and the slope angl@ between the considered sites as independent and
claimed a quite large degree of freedom when deciding whighis variable and
which one is given by the actual topography. So it is not $sirmy that their result
on the maximum stable slope is not in agreement with the gregtimate given by
Eqg. 12.

Taking these aspects into account, the part of the modetiraieo landslides is
just a combination of ad hoc rules, similarly to the model ef¢thrten and Neuge-
bauer discussed above, but more complicated. Howevemitléghe kept in mind
that such rules are not necessarily bad as long as they aenadze and the re-
sults make sense. Similarly to Hergarten and Neugebauasrbare et al. obtained
power-law distributions of the landslide sizes within arpar range of scales. In
two simulations involving different strength of the masgrirepresented by and
C) they found valuesry = 2.2 anday = 1.8 with respect to the volume over about
one order of magnitude. These values are in very good agreemith the estimate



16 Stefan Hergarten

ay = 2.0 (or slightly larger, depending on the scaling betweenwv@and area) for
the volumes of real regolith landslides given in Eqg. 3. Thaléen scaling exponent
occurred at higher strength, and this result goes even iditketion that the scal-
ing exponent for rockfalls and rockslides is smaller thaat tf regolith landslides.
However, this may also be a matter of fitting straight linesraather narrow ranges,
and if any error bars had been given, they would surely befdtmn the difference
between the two values.

After several years of apparent silence in this field, a nepr@gech focusing
on rockfalls (again including rockslides) has been regegmiblished by Hergarten
[2012]. This model is inspired by ideas on sandpile dynaraicsextremely simple
compared to the other models reviewed in this chapter. immétis, however, more
or less completely based on ad hoc rules. The basic assumgttbat landslides
can in principle be triggered at any site with a probabilitgttdepends on the local
slope gradient. All other contributions to rock instalilit nature such as fracturing
are mimicked by the randomness of the triggering process.

In analogy to the fluvial erosion models mentioned in theoihtiction, the gra-
dient at each site is computed in the direction of steepestette among the eight
(direct and diagonal) neighbors on a rectangular lattideatws called D8 algo-
rithm [O’Callaghan and Mark, 1984]. Itis further assumeattiopes below a lower
threshold slopeyi, remain stable under all conditions, while slopes above an up
per threshold slopemax are destabilized by any impact. For slopdsetweensyin
and smax a linear increase of the probability of instability in cadean impact is
assumed:

S— Smin
Smax— Smin_

If a site becomes unstable, material is removed until itpesidecreases ®nin.
The downslope motion of unstable rock masses and their depos not com-
puted, only the volume of detached material is recorded ard tor the event size
statistics. The effect of the event on its vicinity, i.e.p@ressive destabilization in
the source area of the rockfall, is mimicked by exposing theteeighbored sites to
the same random impact as the unstable site, so that eachnofitiay become un-
stable with a probability given by Eq. 14, too. Those sitegcivineceived an impact
without becoming unstable are assumed to be stable at tlesient slope and can-
not be destabilized by further impacts unless their slopeeases as a consequence
of further removal of material at neighbored sites. Thierlized by replacingmin
of these sites by the present valuesof

In contrast to all the models discussed earlier, this modki simulates the oc-
currence and the size of rockfalls on a given relief. Lormgatdriving forces, mainly
fluvial erosion in combination with tectonic uplift and, gaualarly important in the
context of rockfalls, glacial erosion, are not considei®d.if this model yields a
power-law distribution of the rockfalls, it only shows ttthe relief it is applied to
has critical properties with respect to this mechanismhédontext of SOC, this is
clearly a disadvantage, but in return it might allow a hazsgskessment for a given
region which is not so easy with models bringing their own haggsm of long-term
driving.

p= (14)



SOC in Landslides 17

The model was applied to Digital Elevation Models of threeumtain belts: the
European Alps, the central part of the Himalayas, and théhsow part of the Rocky
Mountains. The elevation data were taken from the ASTER &l8ligital Eleva-
tion Model (a product of METI and NASA) with a resolution of icasecond, cor-
responding to about 20-30 m.

As illustrated in Fig. 9, the model predicts a power-lawriisttion with a scaling
exponentay = 1.35 for all three regions, although they strongly differ irithto-
pographic characteristics. This value falls perfectlpitite range D7 < ay < 1.52
found for rockfalls and rockslides. Significant differeadetween the regions only
concern the cutoff behavior at large event sizes. The geshlbwn in Fig. 9 were
obtained using the parameter valsgs, = 1 andsmax = 5, only justified by the rule
of thumb that the majority of real rockfalls and rocksliders at slope angles
greater than 45 However, it was shown that a variation of the model pararaete
Smin @ndsmax Within a reasonable range has a minor effect on the scalipgresnt
of the event-size distribution. Similarly to the differescbetween the considered
regions, variations in the parameters mainly affect thef€bthavior at large event
sizes. The regional differences in the cutoff behavior weterpreted in terms of
subcriticality of the present relief with respect to the rkglmechanism. It was
concluded that the Himalayas are closer to a critical stata the Alps, which are
themselves closer to a critical state than the southerropére Rocky Mountains.
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Fig. 9 Probability density of the rockfalls predicted by the modelH&rgarten [2012] for the
European Alps (43—-48N and 5-18 E), the central part of the Himalayas (26234, 82-92 E)
and for the southern part of the Rocky Mountains (35-M%&nd from 108 W to the West Coast),
computed withsyin = 1 andsmax = 5. The straight line corresponds to a power-law distribution
with an exponentry = 1.35.

In the same paper, a first attempt do derive a topographydbas&fall hazard
map from the model was also made. The map presented in Fig l&sed on a
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prediction of a 2000 year time span and shows a rather inhenems distribution
of the hazard in the European Alps. The largest predictedteseillustrated in
Fig. 11. It involves a volume of about 0.5 Rnand is predicted to occur with a
rather high probability of one per 500 years. However, it @lksady admitted in
the original paper that quantitative assessments basdisomodel must be treated
with some caution. First, assigning an absolute time scatbhé model is rather
uncertain. And second, variations in the paramesgs and smax Which can only
be guessed so far have a stronger influence on the largess ¢ivan on the power-
law distribution itself. It was already discussed in thegoral paper that even a
small increase i, andsmax by 20 % reduces both the size and the probability of
occurrence of the largest events by a factor of two. Evemg#oregional variations
in these parameters can be expected due to lithology, sithatticular estimating
the size and frequency of the largest events in a mountatrsbeins to be rather
uncertain. So this model may provide a tool for hazard assests but any serious
application requires additional data that cannot be dénixen physical principles
in a straightforward way.

.

Fig. 10 Rockfalls withV > 10-3 km® predicted for a 2000 year time span in the Alps [Hergarten,
2012]. Black:V € [0.001,0.01) km® (756 events), bluev < [0.01,0.1) km® (301 events), red:
V > 0.1 km?® (21 events).

Nevertheless, the model seems to have a large potentiabtbrapplication to
rockfall hazard assessment and for clarifying the role o€S®rockfall dynamics.
But as mentioned above, the latter first requires an extersdithe model by long-
term driving processes such as fluvial or glacial erosiotitizally steepen the relief
and thus supply the potential for mass movements.
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Fig. 11 The largest event predicted for the Alps (Lauterbrunnereyal ~ 0.5 km?, red). The
black lines correspond to smaller events predicted for a 2080tyrae span.

To summarize, there is growing evidence for power-law sistridutions in
different types of landslides. The scaling exponents foiandegolith landslides
strongly differ from those found for rockfalls and rockgg] but each of this classes
may be characterized by a universal scaling exponent. Afubofdmodels has been
designed to reproduce these power-law distributions. Mbttem address regolith
landslides, an all hinge on ad hoc rules. So far none of thawiges a consistent
explanation for the difference in the scaling exponentsifbfor different types of
landslides. Even none of them can uniquely identify any tgp&andsliding as a
phenomenon governed by SOC, but this applies to almost alfadgphenomena
considered in the context of SOC.
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