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Abstract

Nonlinear systems exhibiting self-organized criticality(SOC) are observed in astrophysics, magnetospheric physics,
geophysics, human activities (stock market, city sizes), and in natural hazards (earthquakes, avalanches, forest fires). The
theoretical concept of SOC has been pioneered since Bak in 1987 and simulated with cellular automaton models, but a
comprehensive universal theory is still lacking. It is timely now to take stock of large new databases of space observations
and geophysics records over the last half century. The aim ofthis workshop at ISSI with a balanced interdisciplinary
team is to cross-compare observations (from space physics and other databases), to discuss SOC and SOC-related (such
as turbulence) theoretical models, and to define a diagnostic metrics between observations and theoretical models that
yields new physical insights into SOC phenomena and complexity in nature.

1 Scientific Rationale

How can the universe start with a few types of elementary particles at the big bang, and end up with life, history, eco-
nomics, and literature? The question is screaming out to be answered but it is seldom even asked. Why did the big
bang not form a simple gas of particles, or condense into one big crystal?(Bak 1966). The answer to this fundamental
question lies in the tendency of the universal evolution towards complexity, which is a property of many nonlinear energy
dissipation processes. Dissipative nonlinear systems generally have a source of free energy, which can be partially dissi-
pated whenever an instability occurs that triggers an avalanche-like energy dissipation event above some threshold level.
Such nonlinear processes are observed in astrophysics, magnetospheric physics, geophysics, physical laboratories,mate-
rial sciences, human activities (stock market, city sizes,internet, brain activity), and in natural hazards and catastrophes
(earthquakes, snow avalanches, forest fires), see Table 1 and Figure 1 for specific examples.

A prominent theory that explains such nonlinear energy dissipation events is the so-calledSelf-organized criticality
(SOC)concept, first pioneered by Bak et al. (1987, 1988) and simulated with cellular automaton models, which mimic
next-neighbour interactions leading to complex patterns.The topic of SOC is reviewed in recent reviews, textbooks,
and monographs (e.g., Bak 1996; Jensen 1998; Turcotte 1999;Charbonneau et al. 2001; Hergarten 2002; Sornette 2004;
Aschwanden 2011; Crosby 2011; Pruessner 2012). SOC can be considered as a basic physics phenomenon - universally
occurring in systems with many coupled degrees of freedom inthe limit of infinitesimal external forcing. This theory
assumes a critical state that is robust in the sense that it isself-organizing, like a critical slope of a sandpile is maintained
unter the steady (but random) dropping of new sand grains on top of the pile. Individual avalanches occur with unpre-
dictable sizes, uncorrelated to the disturbances producedby the input. Sandpile avalanches are a paradigm of the SOC
theory, which has the following characteristics: (1) Individual events are statistically independent, spatially andtemporally
(resulting into an exponential waiting time distribution between subsequent events); (2) The size or occurrence frequency
distribution is scale-free and can be characterized by a powerlaw function over some size range (i.e., the inertial range);
(3) The detailed spatial and temporal evolution is complex and involves a fractal geometry and stochastically fluctuating
time characteristics (sometimes modeled with 1/f-noise, white, pink, red, or black noise). There are some related physical
processes that share some of these characteristics, and thus are difficult to discriminate from a SOC process, such as tur-
bulence, Brownian motion, percolation, or chaotic systems. A universal SOC theory that makes quantitative predictions
of the powerlaw-like occurrence frequency and waiting timedistributions is still lacking. Thus, it is most timely now to
study large new databases of space observations and geophysics records that are now available over at least a half cen-
tury, to obtain unprecented statistics of SOC phenomena. Such large datasets will provide the necessary statistics that is
needed to constrain and test the existing SOC theories and models, and to discriminate SOC models from other nonlinear
dissipative processes (e.g., MHD turbulence). The aim of aninterdisciplinary approach is to cross-compare observations
in different fields, to establish common statistical properties in different physical systems, to stimulate and cross-fertilize
theoretical modeling, and to improve forecasting of extreme events.
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Table 1: Examples of physical processes with SOC behavior.

SOC Phenomenon Source of free energy Instability or
or physical mechanism trigger of SOC event

Galaxy formation gravity, rotation density fluctuations
Star formation gravity, rotation gravitational collapse
Blazars gravity, magnetic field relativistic jets
Soft gamma ray repeaters magnetic field star crust fractures
Pulsar glitches rotation Magnus force
Blackhole objects gravity, rotation accretion disk instability
Cosmic rays magnetic field, shocks particle acceleration
Solar/stellar dynamo magnetofriction in tachocline magnetic buoyancy
Solar/stellar flares magnetic stressing magnetic reconnection
Nuclear burning atomic energy chain reaction
Saturn rings kinetic energy collisions
Asteroid belt kinetic energy collisions
Lunar craters lunar gravity meteroid impact
Magnetospheric substormselectric currents, solar wind magnetic reconnection
Earthquakes continental drift tectonic slipping
Snow avalanches gravity temperature increase
Sandpile avalanches gravity super-critical slope
Forest fire heat capacity of wood lightening, campfire
Lightening electrostatic potential discharge
Traffic collisions kinetic energy of cars driver distraction, ice
Stockmarket crash economic capital, profit political event, speculation
Lottery win optimistic buyers random drawing system

2 Proposed Work and Goals

Our proposal has three main foci: (1) Data analysis of statistical datasets of SOC phenomena, using new and enhanced
older datasets (see Table 2), (2) quantitative modeling andfitting of the obtained statistical distributions in terms or pow-
erlaw and modified powerlaw functions, and (3) dicussion of the interpretation in terms of SOC theories and/or related
non-SOC theories, with the goal to discriminate SOC and non-SOC processes (see Figure 2) and to obtain a deeper phys-
ical understanding of the involved nonlinear energy dissipation processes. We strive for a good balance between observa-
tions (space data already observed), theory/modeling, andsimulations. Our combined observational/modeling/theoretical
effort aims to provide physical insights into SOC systems beyond mathematical models and numerical simulations. Our
assembled team consists of a very broad range of representatives from different nonlinear physics disciplines that cover
alternate approaches (SOC, turbulence, chaos theory). A more specific outline of the various data analysis and SOC mod-
eling approaches is given in the following, which contains asubset of the work, projects, questions, and problems that are
proposed by this ISSI team to be studied and addressed in the ISSI meetings:

1. Black hole objects:Using data from blackhole objects (e.g., from FERMI) to explore what is the origin of light
fluctuations from accreting objects (white dwarfs and blackholes). Can MHD turbulence and/or magnetic flares
account for the observations (Ohsuga and Mineshige 2011; Dobrotka et al. 2012).

2. Stellar flares:The Kepler mission provides white-light light curves of flares in≈ 23, 000 cool dwarfs in Quarter
1 long cadence data (Walkowicz et al. 2011). Do stellar flareshave the same occurrence frequency distribution as
solar flares? Or do they exhibit powerlaw slopes steeper thanthe critical value ofα = 2 that would indicate that
there is more energy in nanoflares, which possibly could domninate coronal heating (Audard et al. 2000).

3. Solar flares:Extend the occurrence frequency distribution over 8 ordersof magnitude with flare statistics from the
same instrument (AIA/SDO) in 6 different wavelengths. Can it be fitted with a single powerlaw slope over the entire
range? Does the powerlaw slope vary during the solar cycle (Asachwanden 2011a), and what is the explanation
for it (Aschwanden 2011b)? Are the slopes of the flare durations, peak rates, and total fluences consistent with the



SELF-ORGANIZED CRITICALITY AND TURBULENCE 3

  

 

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
3

10
4

10
5

10
6

10
7

  

slope =

-1.206±0.079

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
3

10
4

10
5

10
6

10
7

  

slope =

-1.161±0.033

10
0

Dissipation Size (sq km)

N
o
r
m
a
l
i
z
e
d
 
O
c
c
u
r
r
e
n
c
e
 
o
f
 
A
u
r
o
r
a
l
 
B
l
o
b
s

(a) (b)

 

Figure 1:Top left: The solar flare of 2001 April 15, observed with the TRACE spacecraft in 171Å. Top right:Occurrence
frequency distribution of the peak count rate of solar flare hard X-ray count rates recorded with HXRBS/SMM (Dennis
1985). Middle left: The auroral oval observed with the NASA satellite Polar/UVIon 1997 April 4, 0519 UT.Middle
right: Occurrence frequency distribution of auroral blobs duringquiet (left) and substorm time intervals (right).Bottom
left: Satellite recording of tsunami waves produced by one of the 10 largest earthquakes, originating in North America.
Bottom right:World-wide cumulative (slope= −1) and differential frequency distribution (slope= −2) of earthquakes
per year as a function of the rupture areaAE during 1977-1994. The Gutenberg-Richter magnitudem is indicated on the
top axis (Turcotte 1999).
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Table 2: Statistical Datasets used and proposed by the ISSI Team to study SOC phenomena.

SOC Phenomena Statistical Datasets
Black hole objects FERMI
Stellar flares Kepler
Solar flares hard X-rays HXRBS/SMM, BATSE/CGRO, RHESSI, AIA/SDO, FERMI
Solar flares, soft X-rays NOAA/GOES,
Solar nanoflares, EUV AIA/SDO, Hinode
Solar magnetic field Hinode/SOT, SDO/MDI, SOLIS
Transition region/corona STEREO/EUVI, SDO/AIA
Solar wind WIND, ACE, CLUSTER, ULYSSES
Magnetospheric events Supermag
Magnetic Confinement FusionMAST, JET
Neural brain activity fMRI (functional Magnetic Resonance Imaging)

predictions of the fractal-diffusive SOC model (Aschwanden 2012)? How do the powerlaw slopes vary for different
wavelengths and can they be explained by physical scaling laws of radiative loss in different wavelengths? Is there
more energy in large flares than in nanoflares possibly accounting for coronal heating?

4. Solar prominences and eruptions:Using Hinode/SOT to study turbulence on spatial scales of0.1′′ − 100
′′ and

temporal scales of 17 s−4.5 hrs, multifractal scale invariance, powerlaw spectra, scaling of higher-order moments,
structure functions, non-Gaussian statistics (Leonardiset al. 2012). At the larger scales, finite-size effects can be
quantified. Can we distinguish between SOC and turbulence orother processes that show the same scaling? What
do we need to measure beyond powerlaws and exponents? (Chapman) Do eruptive and non-eruptive active regions,
filaments, and prominences have different SOC characteristics? (Dimitropoulou et al. 2009, 2011; Georgoulis
2012). Are solar active regions with major flares more fractal, multifractal, or turbulent than others (Georgoulis
2012).

5. Solar wind:Study finite range of spatial scales in turbulence in the solar wind, using ULYSSES, WIND, ACE, and
CLUSTER data. Are the turbulence spectra invariant or sensitive to plasma conditions, for instance during the solar
cycle maximum and the current extremely low minimum? (Chapman and Nicol 2009). Can we distinguish between
SOC and Kolmogorov turbulence, based on bursty transport control parameters? (Chapman et al. 2009; Chapman
and Watkins 2009; Watkins et al. 2009; Uritsky et al. 2007).

6. Solar cycle and total solar irradiance:Study time series of sunspot numbers, solar flare inex, and total solar irradi-
ance with Hurst analysis for long-range persistentce and memory (Rypdal and Rypdal 2011a). Can the temporal
fluctations and avalanche exponents of various SOC systems (including the Bak-Tang-Wiesenfeld sandpile model)
be self-conistently modeled (Rypdal and Rypdal 2008a,b).

7. Magnetospheric physics:Can we model the outer radiation belt as a complex system in a self-organized critical
state (Crosby et al. 2005, 2011). Can the bursty and intermittent dynamics of magnetospheric substorms, previ-
ously modeled with cellular automata models, be described in terms of thermodynamics large deviations of rare
events (Lavenda and Florio 1992; Lavenda 1995, 1997), providing a nonequilibrium thermodynamic description of
avalanching systems? (Consolini and Kretschmar 2007; Touchette 2009; Frisch and Sornette 1997).

8. Neural brain activity:Using fMRI (functional Magnetic Resonance Imaging) from the imaging laboratory at ICL to
analyse bursts of activities. High levels of neural activity spread across the brain like SOC avalanches. Multi-level
dynamics will be explored: How do avalanches of bursts of collective activity at one level of a hierarchical structured
complex system relate to the activity at lower levels? How can information processing be carried in the form of
avalanche activity with a very broad (potentially powerlaw) size distribution? (Jensen). Predictive information can
be defined as the mutual information between the past and the future of a time series, which links predictability,
complexity, and learning (Bialek et al. 2001), complexity,contingency, and criticality (Bak and Paczuski 1995), and
natural complexity (Watkins and Freeman 2008).
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Figure 2: Metrics of observables, statistical distributions, and physical models that need to be defined in order to discrim-
inate SOC from non-SOC processes.

We envision to make significant progress in a number of fundamental questions about SOC systems. One critical
issue is that powerlaw distributions cannot be taken as an unambiguous diagnostics of SOC mechanisms (Stumpf and
Porter 2012), in particular in the case of small statistics,which restricts the powerlaw to a small inertial range. Other
questions are: (1) How to identify scaling and universalityin experimental and computational data; (2) How to identify
and characterize the underlying critical phenomenon (if itextists); (3) What are the SOC mechanisms at work; (4) How
can we discriminate between SOC and non-SOC mechanism? (Figure 2). (5) What part of SOC phenomena is captured
by lattice models and is there a route to basic theories and first-principle equations? In summary, one specific final goal
of this workshop is to come up with a metrics as outlined in Figure 2, where the observables are characterized/fitted
with specific mathematical distributions, which then help in the identification of specific physical processes and in the
interpretation of the observed phenomena. The metrics given in Figure 2 can also be read from right to left, which means
that a theoretical model of a nonlinear process predicts a specific distribution, which can then be tested with measured
observables.

3 Time Schedule of Project and ISSI Support

We plan to meet two times with a team of 9-12 funded ISSI team members plus some young scientists, and invite self-
supporting experts in addition (at no cost to the ISSI grant). The two meetings may be chosen with a one-year interval
inbetween, say in fall 2012 and 2013. In the first meeting all participants will present the best available data (from new
missions and databases if possible) in each interdisciplinary field, and discuss theoretical models and interpretations, new
methods and avenues for future data analysis and collaborations, and define a metrics between observables and physical
models. During the intervening year, the participants willthen conduct tests which datasets and theoretical models fit
together and quantify the relationships in the metrics of Figure 2 (between observables and theoretical models) to the
extent possible. The results will then be discussed in the second meeting and a series of publications on the results willbe
planned with specific author teams, which should be published within a year time frame, say in fall 2014.

The support of ISSI for this planned team work is extremely useful, which probably could not be conducted by other
means. The main benefits of such an ISSI team project are: (1) Awell-balanced, interdisciplinary, international team
from fields as diverse as astrophysics, magnetospheric physics, geophysics, and biophysics can jointly tackle a common
problem in nonlinear physics and complexity; (2) Each participant has access to unprecedented rich and large state-of-art
databases in space physics and laboratories; (3) The joint discussions will enforce that we use a common scientific vo-
cabulary that is important to understand each others progress in any field of science; (4) Young scientists will be trained
during these meetings and they will bring new thinking to ourproblems; and (5) Observational/phenomenological, numer-
ical computer simulations, and analytical/theoretical/modeling approaches will be combined to reach a deeper physical
understanding of SOC and related non-SOC processes.



SELF-ORGANIZED CRITICALITY AND TURBULENCE 6

Appendix I: References and Relevant Publications of ISSI Team

Andersen, J.V.,Jensen, H.J., and Mouritsen, O.G. 1991,Crossover in the power spectrum of a driven diffusive lattice-gas
model, Phys. Rev. B.44, 439-442.

Aschwanden, M.J.and Parnell, C.E. 2002,Nanoflare statistics from first principles: fractal geometry and temperature
synthesis, Astrophys. J.572, 1048-1071.

Aschwanden, M.J.andCharbonneau P.2002,Effects of temperature bias on nanoflare statistics, Astrophys. J.566,
L59-L62.

Aschwanden, M.J.2004,Physics of the Solar Corona - An Introduction(1st Edition), Praxis-Springer, Berlin, ISBN
3-540-22321-5, 842p.

Aschwanden, M.J.and Aschwanden P.D. 2008a,Solar flare geometries: I. The area fractal dimension, Astrophys. J.574,
530-543.

Aschwanden, M.J.and Aschwanden P.D. 2008b,Solar flare geometries: II. The volume fractal dimension, Astrophys. J.
574, 544-553.
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