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Outline:
 Criticality and self-similarity or scale invariance

 Macroscopic spatio-temporal scale invariance in the brain

 SOC or avalancheology 

 3/2  

 The rain and brain approach - Dantology
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Criticality and self-similarity             

Snapshots of simulations of an 2d Ising model

Scale or no scale
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What is so special about scale invariance ?
Equilibrium critical phenomena
The 2 dim Ising model

Order parameter

Susceptibility Correlation length

Figures from: The Phase Transition of the 2D-Ising Model by Lilian Witthauer and Manuel Dieterle
http://quantumtheory.physik.unibas.ch/bruder/Semesterprojekte2007/p1/index.html#nameddest=x1-110002.1.6

Correlation function
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Criticality - self-similarity

 No characteristic scales in space nor in time
 Interdependence throughout the system
 Ideally studied in terms of correlations functions

       (or other information theoretic measures:  mutual information, transfer entropy, etc.)
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What to probe?

 Focus on correlation functions

 

Event analysis

 Identify control parameter (humidity, background activity)

    Plot event sizes versus control parameter 

C(r, t) = hA(r0, t0)A(r0 + r, t0 + t)ir0,t0 � hA(r0, t0)i2
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Brain, Bold  and Correlations  
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C(i, j) = C(|ri � rj |) =
hViVji � hViihVji

�i�j

Correlation matrix

t

Vi(t)Rest state fMRI correlations 
       

8



fMRI correlation functions  
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Analysis of scale invariance

9



fMRI correlation functions  

Paul Expert & Renaud Lambiotte
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fMRI correlation functions  
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Generality

Correlation functions of 53 prematurely born babies 
hierarchically grouped together to form clusters.

Data from Valentina Doria and Professor David Edwards
Neonatal Medicine, MRC Clinical Sciences Centre 
Hammersmith Hospital, Imperial College London

Paul Expert
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SOC or avalancheology 
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  Scale free behaviour out of equilibrium 

Spatial fractals

• Clouds

• Mountains

• Cauliflower
• 

S
now

 on ground                    C
anopy
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   An explanation needed!

If critical behaviour is so common there must surely be 
one universal mechanism behind (? ?)
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  Many more models:
• Earth quake model                  (Olami-Feder-Christensen)

• Forest fires or epidemics         (Drossel-Schwabl)

• Deterministic lattice gas           (Jensen)

All exhibit scale invariance in the form of power laws 
for the distributions of events or avalanches and the 
DLG has 1/f. 

Well, at least to some degree
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  Broken scaling

The ideal situation

Log(s)

Log[P(s)]

Increasing system size

Log(s)

Increasing system size
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  The real situation
The Drossel-Schwabl forest fire model

From G. Prussner & HJJ,  

Phys. Rev. E. 65, 056707 (2002).

See also Grassberger.

Why:  the dynamics keeps moving the system 
         away from criticality
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The random walker as a non-critical power law generator

x(t + 1) = x(t) + � � 2 {�1, 1}with

t

x(t)

T

P (T ) ⇠ T�3/2

h(x(t + T )� x(t))2i ⇠ T

h�x(t)�x(t + T )i = �(T )

Consider the displacement at time t �x(t) = x(t + 1)� x(t)
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The branching process

Branching probability

Average branching ratio

Tree size distribution

pn

� =
X

n

npn

P (S) ⇠ S�3/2
exp(�S/Sc)

Sc !1 for � ! 1where
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Proper many body criticality only if space and 
time exhibit scale invariance / power laws
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The rain and brain approach 
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Peters & Neelin, Nature Physics, 2006
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Peters & Neelin, Nature Physics, 2006
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Peters & Neelin, Nature Physics, 2006
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From: Tagliazucchi, et al. 
frontiers in Physiology

Feb 2012

Brain

Dante Chialvo

25



What do we learn about the degree of criticality 
form this kind of analysis ?

Question
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Forest fire and percolation
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Percolation
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Percolation
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Percolation

28



Percolation
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Percolation

Spanning 
prob

p
pc
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Percolation

Spanning 
prob

p
pc

p
pc

(size of largest cluster)/L2
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Forest fire model
Drossel & Schwabl Phys Rev Lett 69, 1629 (1992)

 Consider a square lattice

 Plant trees with probability p  

 Ignite trees with probability f << p

 Tree neighbour to a burning tree catches fire

If one tree in a cluster is on fire the entire 
    cluster will burn down.

 Related to percolation

Investigate the statistics of cluster sizes in
percolation and in the forest fire model 
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Red = order param for percolation driven by resi.d (green) 
from the 
Black = order param for Lx=Ly=100 Run1 forest fire.

fores fire

resi.d x 1000 for
prob
drive percolation

resi.d x 1000 for forest 
fire

prob AND resi.d
driven
percolation
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Forest fire
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Order parameter plot for different growth probabilities
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Order parameter plot for different growth probabilities
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Order parameter plot for different growth probabilities
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Cluster size histogram for different coverages 
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Cluster size histogram averaged over  
coverages 
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Effect of the coupling between the order parameter and the 
dynamics
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Lattice gas
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Deterministic lattice gas
Periodic boundary condition to avoid surface effects

N(t)

39
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Density dependence

From Master thesis
Andrea Giomette

L=64
 µ
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Individual particles behave as random walkers 
at times later than about 100 time steps

Need correct graph for pDLG
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Even bigger systems  
 

From Master thesis
Andrea Giomette
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Even bigger systems 
   - and density dependence 
 

From Master thesis
Andrea Giomette
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Larger systems
 > at higher densities => μ = 3/2

 > at low density      => μ = 1.8
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Explanation The β = 3/2 at high density

As the system increases a bulk noise term is generated

⇤n(x, t)
⇤t

= ��2n(x, t)

µ = 3/2

@n(x, t)
@t

= �r2n(x, t) +r · ~�(x, t)
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Explanation The β = 1.8 at low density

The absorbing state phase transition:
  > as density decreases motion will stop

High density Low density

45



The absorbing state phase transition

ρ

ρa

ρc

Density of active particles

Survival probability

�a ⇥ (�� �c)�

P� ⇥ (�� �c)�
�
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β = 0.634
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Study all the critical exponents
   Determine universality class

Conclude: 
Deterministic Lattice Gas belongs to the Manna universality 
class. 

Hitherto unexpected because because all other members 
are stochastic models.  
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Back to power spectrum

µ = 1 +
1
z
(2� �

⇤�
)

� = 0.634
z = 1.5
⇥ = �= 0.83

µ = 1.78(2)

� � �a near transition
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Summary of lattice gas behaivour:

 > phenomenology well described by Langevin Eq. 
   with bulk noise at elevated densities

 > at low densities near the frozen state critical 
   properties describes the fluctuations 
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The morale 

  From study of power laws the lattice gas appeared to be   
     critical for all densities.

  Combination of theory and simulations established proper   
     critical behaviour only at the absorbing state phase transition

  Take a close look at the fluctuations 
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Cluster analysis of sites involved in dissipation
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Cluster analysis of sites involved in dissipation
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Conclusion
 Brain and rain certainly not in a critical state

 but certainly wanders around near one

 Identify the “order parameter” 
 and study the fluctuations of it

                 = susceptibility
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Conclusion
 Brain and rain certainly not in a critical state

 but certainly wanders around near one

 Identify the “order parameter” 
 and study the fluctuations of it

                 = susceptibility

Thank you
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