The Search for Units: A Gradient Distribution route to Multifractality in Solar Magnetic Fields

R.T. James McAteer New Mexico State University

Maybe SOC?

O Scale free, maybe SOC
O Fractals, maybe SOC
O Units, in SOC

The Why and The How

$$\nabla \cdot \mathbf{B} = \frac{\partial B}{\partial t} = R_m = \nabla \times \vec{B} = 0$$

 $\nabla \cdot \mathbf{B} = 0$ $\frac{\partial B}{\partial t} = \nabla \times (v \times B) + \eta \nabla^2 B,$ $R_m = \frac{\nabla \times (v \times B)}{\eta \nabla^2 B},$ $\vec{\nabla} \times \vec{B} = \mu_0 J$

Connection to SOC

- O allows for energy build up over timescales much longer than energy release
- O allows for a system to approach SOC
- O requires a threshold in 'energy' which must be followed by a release of energy
- O dictates energy output sizescales much less than spatial scale of system. 5

$$\nabla \cdot \mathbf{B} = \mathbf{0}$$

$$\frac{\partial B}{\partial t} = \nabla \times (v \times B) + \eta \nabla^2 B,$$

$$R_m = \frac{\nabla \times (v \times B)}{\eta \nabla^2 B},$$

$$\vec{\nabla} \times \vec{B} = \mu_0 J$$

Scale free, maybe SOC?

Abramenko 2002, 2005, 2006 Hewett, McAeer et al., 2008

Scale free, maybe SOC

ISS

Scale free, maybe SOC

ISSI r

Sept, 2013

Scale free, maybe SOC

McAteer et al., 2005

Study	Data ^a	Method	FD ^b	
Roudier & Muller (1987)	WL granules	DPA	1.25 for d < 1".37	
Hirzberger et al. (1997)	WL granules	D_{PA}	1.30 for $d < 1.39$	
	WL granular cells	D_{PA}	1.16	
Bovelet & Wiehr (2001)	Wl granules	D_{PA}	1.09	
Janssen et al. (2003)	B small scale	D_{PA}	$1.41 \pm 0.05, d < 1.8$	
	S magnetoconvection	D_{PA}	$1.38 \pm 0.07, d < 1.8$	
Tarbell et al. (1990)	B plage	D_{LA}	1.45-1.60	
Lawrence (1991)	B active region	D_{LA}	1.56 ± 0.08	
Schrijver et al. (1992)	S percolation theory	D_{LA}	1.56	
Lawrence & Schrijver (1993)	B active region	D_{LA}	1.56 ± 0.08	
Balke et al. (1993)	B plage	D_{LA}	$1.54 \pm 0.05, l < 3''$	
Meunier (1999)	B active regions	D_{PA}	1.48-1.68	
		D_{LA}	1.78-1.94	
Meunier (2004)	B active regions	D_{PA}	1.35-1.70	
Gallagher et al. (1998)	EUV quiet-Sun	DBC	1.30-1.70	
Georgoulis et al. (2002)	H α Ellerman bombs	DBC	1.4	
Fragos et al. (2004)	S cell automation	$D_{\rm BC}$	1.5 ± 0.1	
Vlahos et al. (2002)	S cell automation	$D_{\rm BC}$	1.42 ± 0.12	
Lawrence et al. (1993)	В	DBC	Multifractal	
Cadavid et al. (1994)	в	DBC	Multifractal	
Lawrence et al. (1996)	В	DBC	Multifractal	

TABLE 1 FRACTAL DIMENSION ANALYSES OF SOLAR DATA

^a WL: White light; B: magnetic field; S: simulation; EUV: extreme ultraviolet.

b d: Diameter; l: length.

11

McAteer et al., 2005

Corrected NOAA AR 10030, Byð

Threshold 50G

Contoured

3

McAteer et al., 2005 2700 days

9300 images

ISSI meeting

Units, in SOC

"Where is the physics?" "Give me some units!" "The Sun is not a vacuum."

Strong gradients in the photosphere produce currents in the corona. Flares occur in the corona where currents build up.

gradients, gradients, gradients,...

1x10

1x10

1x10

1x10

1x10-6

Aaximum X-Ray Flux (Wm⁻²)

Sammis et al, ApJ, 2000, 540, 587 Schrijver, ApJ, 2007, 655, L117 Falconer et al., ApJ, 2008, 689, 1433 Al-Ghraibai, Boucheron, McAteer, ApJ, 2013

gradients, gradients, gradients

ISSI meeting

Size of gradient at each scale or

ISSI meeting

0 0.5 1.0

h

19

Sept, 201

D(h)

Wavelet Transform Modulus Maxima

(1) Take a *multiscale* gradient
(2) At the smallest spatial,
detect a strong gradient.
(3) Track this gradient up
through each size scale.
(4) Calculate partition function

 $\begin{aligned} \mathbf{T}_{\psi}[f](\mathbf{b}, a) \\ &= \begin{pmatrix} T_{\psi_1}[f] = a^{-2} \int d^2 \mathbf{x} \ \psi_1(a^{-1}(\mathbf{x} - \mathbf{b})) f(\mathbf{x}) \\ T_{\psi_2}[f] = a^{-2} \int d^2 \mathbf{x} \ \psi_2(a^{-1}(\mathbf{x} - \mathbf{b})) f(\mathbf{x}) \end{pmatrix}, \\ &= \nabla \{T_{\phi}[f](\mathbf{b}, a)\} \\ &= \nabla \{\phi_{\mathbf{b},a} * f\}, \end{aligned}$ (1)

$$\mathcal{M}_{\psi}[f][\mathcal{L}_{\mathbf{x}_0}(a)] \sim a^{h(\mathbf{x}_0)},$$

$$\mathcal{Z}(q,a) = \sum_{\mathcal{L} \in \mathcal{L}(a)} [\mathcal{M}_{\psi}[f](\mathbf{x} \in \mathcal{L}, a)]^{q},$$

$$h(q, a) = \sum_{\mathcal{L} \in \mathcal{L}(a)} \ln |\mathcal{M}_{\psi}[f](\mathbf{x}, a)| W_{\psi}[f](q, \mathcal{L}, a)$$
$$\sim a^{h(q)}, \tag{5}$$

$$D(q, a) = \sum_{\mathcal{L} \in \mathcal{L}(a)} W_{\psi}[f](q, \mathcal{L}, a) \ln(W_{\psi}[f](q, \mathcal{L}, a))$$

 $\sim a^{D(q)},$ (6)

The quiet Sun

2

Wavelet Transform Modulus Maxima

ISSI meeting

New flux arises near to 'strong' gradients New gradients arise near 'strong' gradients

ISSI meeting

Maybe SOC?

O Scale free, maybe SOC
O Fractals, maybe SOC
O Units, in SOC

Problems

O We're measuring the wrong part of the active region?

- O Energy build up in *transverse* component of magnetic field.
- Magnetic field in *corona* is where the flare occurs.
- We only measure the **driver** of the build up of energy.

O What is the appropriate time scale?

- O Sun doesn't care what is happening on **24 hour timescale**.
- Is there a strong *solar cycle* dependence?
- Flaring is non-Poisson events are not independent.

O What is a big flare?

- O What is the total energy in an event? How is this distributed between radiation, particle, coronal mass ejection, etc..?
- O Careful not to succumb to big-flare syndrome

Conclusions
 The multifractal spectrum is a number distribution of gradient persistence to high spatial scales

- higher h, higher D, more energy build up
- pointer to further flux emergence and gradient build up
 - this may the connection to resulting flares.
- O Is there a maximum predictive timescale of each measure?

Looking forward O Detection of energy

release mechanism.

- how much energy is available?
- how much energy is released?
- how much energy is needed to maintain a stable active region?

O Predictions over appropriate timescales.

• How do we combine the maximum predictive timescale of each measure and flare size?

Accuracy depends: predict X class / fast CME (HSS 0.7) 12 hours predict C class (HSS 0.65) over 72 hours.

Bloomfield et al, ApJ, 2012 Also Poster Session 6.1

ISSI meeting

Questions

Where are the gradients? Abramenko, 2005, ApJ Size Scaling index related

to structure function

Outline

O The promise of flare prediction
O The premise of flare prediction
O The problems of flare prediction

O "Big and Ugly'
 O Prediction requires understanding

magnetic field

Outline

O The promise of flare prediction
O The premise of flare prediction
O The problems of flare prediction

- O Big and Ugly?
- O Global properties are useful

Higgins et al, ASR, 2010

-Oct

2.3

TABLE Parameters Used in the Dis		AR properties generated by SMART		
		AR Properties	Description	
Description	1	Type-Polarity	Unipolar/Multipolar	
Atmospheric	2	Type-Size	Big/Small	
Median of the granulation contrast	3	Type-Evolution	Emerging/Decaying	
Distribution of Mag	4	Area_Mmsq	Area of the region [Megameters squared].	
Mome Magnetic Structure Detections 1-Jun-1999		Bflux_Mx	Total Unsigned Magnetic Flux of the region [Maxwells]. $\phi_{uns,t,i} = \sum_{pix} \phi_{t,i} $	
Absol Mome Mome Mome Mome	6	Bfluxp_Mx	Total Positive Flux in the region [Maxwells]. $\varphi_{+,t,i} = \sum_{pix} (\varphi_{t,i} > 0)$	
	7	Bfluxn_Mx	Total Negative Flux in the region [Maxwells]. $\phi_{-,t,i} = \sum_{pix} (\phi_{t,i} < 0)$	
	8	Bfluximb	Flux Imbalance Fraction in the region [Fraction]. $\phi_{imb,t,i} = \frac{ (\phi_{+,t,i} - \phi_{-,t,i}) }{\phi_{uns,t,i}}$	
	9	DBfluxDt_Mx	Flux Emergence Rate [Mx/second]. $\frac{d\phi}{dt} _{t,t} = \frac{(B_t - B_{t-\Delta t}) \times A_{cos,t,t}}{\Delta t}$	
	10	Bmin_G	Minimum B value in the region[Gauss].	
	11	Bmax_G	Maximum B value in the region [Gauss].	
Mome Mome Total Absol		Bmean_G	Mean B value in the region [Gauss].	
		Lnl_Mm	Neutral Line Length in the region [Mega meters].	
		Lsg_Mm	High Gradient Neutral Line Length in the region [Mega meters].	
		MxGrad_GpMm	Maximum Gradient along the Neutral Line [Gauss / Megameter].	
		MeanGrad	Mean Gradient along the Neutral Line [Gauss / Megameter].	
Sum o	17	MednGrad	Median Gradient along the Neutral Line[Gauss / Megameter].	
Total		Rval_Mx	Schrijver R-Value[Maxwells], (Schrijver, 2007).	
		WLsg_GpMm	Falconer WLsg value[Gauss / Megameter], (Falconer et al., 2008).	
		R_Str	Schrijver R-Value with a lower threshold for summing flux[Maxwells].	
-500 0 500 100 Momen Paul Higgins 2009	21	WLsg_Str	A modified version of WLsg.	
Best-fit force-free twist parameter ^b	D	$a = \alpha_{\rm ff} \mathbf{v} \wedge \mathbf{p} 39$		

Outline

O The promise of flare prediction
O The premise of flare prediction
O The problems of flare prediction

Conclusions

O Progress is significant

- O solar cycle of synoptic data
- O Combination of local and global properties works at HSS score of 0.8
- O Looking forward to full disk vector data.

