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Earthquakes

Gutenberg-Richter law
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Earthquakes

Gutenberg-Richter law

Number of earthquakes with magnitude m or greater:
log,o N(m) = a— bm

with b~ 1 (b € [0.8,1.2])
Magnitude m is a logarithmic measure of the seismic moment.
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Power-law distribution of the seismic moments (or energies, rupture
areas etc.).




Earthquakes

Temporal correlations

Characteristic earthquakes: large earthquakes occurring almost
periodically

Foreshocks and aftershocks according to Omori's law:
N(t) o< |t—tn| "
where

N(t) = number of earthquakes per time

t,, = time of mainshock occurrence

p ~ 1




Earthquakes

Olami-Feder-Christensen model




Earthquakes

Relaxation rule
Fontiy = Fan(iy +aF;  (nn = nearest neighbors)
F,' = 0

Conservative for o = %, nonconservative for oo < %




Earthquakes

Arguments for the nonconservative version

@ Scaling exponent of the event-size distribution
(Gutenberg-Richter law)

o Characteristic earthquakes

e Foreshocks and aftershocks according to Omori's law

Arguments for the conservative version

o Elastic driver plate or three-dimensional realization: conservative
with long-range interactions (Jansen & Hergarten, PRE, 2006)

o Relation between seismic moment M and rupture area A:

M x A", v>1




Earthquakes

How does the nonconservative OFC model work?

o (Apparent) criticality arises from long-term synchronization of
almost periodic events (Middleton & Tang, PRL, 1995).

@ Universal scaling exponent 7 = 1.775 was derived from the
scaling properties of the accessible perimeter of the rupture areas
(Hergarten & Krenn, NPG, 2011).

\Z

b=3(r—-1)=1.16
Not too bad compared to b € [0.8,1.2] in nature




Earthquakes

How does the nonconservative OFC model work?

e Foreshocks and aftershocks originate from desynchronization of
characteristic earthquakes (Hergarten & Krenn, NPG, 2011).

\Z

e Explains why some large earthquakes are not accompanied by any
foreshocks or aftershocks.

@ Sizes of characteristic earthquakes decrease during a sequence,
while the number of foreshocks and aftershocks increases.

@ Omori exponent p < 1 in contradiction to p > 1 for many real
earthquake series




Earthquakes

Summary

e Overwhelming evidence for power-law distributions in
earthquakes suggests a relationship to SOC.

@ Nonconservative OFC model predicts several statistical properties
of earthquakes more or less well.

e But also several arguments why the OFC model is unrealistic,
e.g.,

o relation between seismic moment and rupture area,
o Omori exponent.




Wildfires

Power-law distribution
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Wildfires

Power-law distribution

e Strong variation in the scaling exponents,
majority in the interval 7 € [1.1,2.0].

@ Presumably not just an artefact of data sampling




Wildfires

Natural and man-made fires in Canada
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Wildfires

Drossel-Schwabl forest-fire model

e Older than knowledge on power-law distribution of wildfires

@ Scaling exponent 7 = 1.19 at the lower edge of the range
T € [1.1,2.0].

o Not widely accepted in forest ecology
e Main criticism: simplicity, random growth of trees

o Apparently even reproduces some geometric properties of real
wildfires




Wildfires

Extension of the forest-fire model towards man-made fires

Ignition only at the accessible perimeter of a cluster of trees
(Krenn & Hergarten, NHESS, 2009)

Scaling exponents:

Model | Data
Lightning 1.19 | 1.20
Man made | 1.51 1.61




Wildfires

Extension of the forest-fire model by fire suppression
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Wildfires

e Strong evidence for power-law distributions in wildfire sizes
suggests a relationship to SOC.

o Drossel-Schwabl forest-fire model has great potential with
respect to real wildfire dynamics.




Landslides

Different materials

o (Fractured) rock

e Regolith cover (soil)

Types of movement

e Sliding

e Falling
e Rolling
e Avalanching

e Toppling




Landslides

Example of a regolith landslide

Photo: USGS
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Landslides

Example of a regolith landslide
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Landslides

Example of a regolith landslide
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Landslides

Example of a regolith landslide
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Landslides

Example of a regolith landslide
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Landslides

Example of a regolith landslide

Photo: USGS
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Landslides

Example of a regolith landslide

Photo: USGS
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Landslides

Power-law distribution of regolith landslides
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Landslides

Power-law distribution of regolith landslides
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Landslides

Power-law distribution of regolith landslides
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Landslides

Power-law distribution of regolith landslides
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Landslides

Example of a large rockslide: Randa (1991, 30 mil. m?)

Photo: S. Hergarten




Landslides

Flims rockslide (10,000 years b.p., 10 km3)

Photo: K. Stiiwe & R. Homberger (www.alpengeologie.org)




Landslides

Power-law distribution of rockfalls and rockslides
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Landslides

Power-law distribution of rockfalls and rockslides
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Landslides

Rockfalls and rockslides vs. regolith landslides

Tv TA
Rockfalls and rockslides | 1.07...1.52
Regolith landslides 2.4




Landslides

Rockfalls and rockslides vs. regolith landslides

Tv TA
Rockfalls and rockslides | 1.07...1.52
Regolith landslides 2.0 2.4




Landslides

Mechanical models

Regolith landslide on a given slip plane

Realistic scaling exponents:
Non-conservative: Piegari et al. (GRL, 2006)

Conservative with time-dependent weakening:
Hergarten & Neugebauer (PRE, 2000)




Landslides

Geomorphic models

e Regolith landslides: Densmore et al. (JGR, 1998), Hergarten &
Neugebauer (GRL, 1998)
o Power-law distribution over a very small range of scales
o No serious parameter studies
e Rockfalls and rockslides:

o BTW model
Realistic scaling exponent, but relationship to topography
questionable

o New “sandpile model” (Hergarten, GRL, 2012)




Landslides

New “sandpile model”

o Based on local slope s in direction of steepest descent among
the 8 nearest and diagonal neighbors

e Random triggering

s < Smin: stable
S > Smax. unstable
Smin < S < Smax. probability of instability
S — Smin
p =
Smax — Smin
@ In case of instability:
o Remove material until s = syin
o Trigger all neighbors




Landslides

New “sandpile model”

e Various ways of long-term driving
or

@ Direct application to a real topography




Landslides

Application to the European Alps
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Landslides

Application to other mountain belts
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Landslides

New “sandpile model”

Scaling exponent 7, = 1.35
e €[1.07,1.52]
@ almost independent on s, and Smax

@ almost the same for the three mountain belts

Regional differences only reflected in the cutoff at large sizes

\Z

Different levels of (sub)criticality




Landslides

Summary

e Strong evidence for power-law distributions in rockfalls and
rockslides suggests a relationship to SOC.

o Power-law distribution of regolith landslides only within a narrow
range of scales

e Geomorphic models seem to capture the phenomena better than
mechanical models.

o Still no clear explanation of the difference in the statistics of the
two types of landslides




Volcanic eruptions

Statistics of large eruptions
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Volcanic eruptions

Spatio-temporal patterns

o Worldwide distribution may be a power law.

e Individual volcanoes seem to behave more regularly over long
times (constant volume per time, eruptions of similar sizes).

@ Relationship to SOC is unclear.




