



## SORCE Solar Spectral Irradiance Measurements

Martin Snow, Jerry Harder, Stéphane Béland, Bill McClintock, Erik Richard, Tom Woods Laboratory for Atmospheric and Space Physics University of Colorado Boulder snow@lasp.Colorado.edu





### Outline

SORCE

- Mission Overview
- SOLSTICE Methodology
- SIM Methodology
- Solar Variability Results
- Current Mission Status







#### Solar Radiation and Climate Experiment

- Launched in 2003
- Produces daily (and 6-hour) averages of Solar Spectral Irradiance (SSI)
  - XPS EUV
  - SOLSTICE FUV and MUV (115-300 nm)
  - SIM MUV to Infra-red (240-2400 nm)
- Data available from
  - LISIRD <u>http://lasp.Colorado.edu/lisird</u>
  - SORCE Web page <u>http://lasp.Colorado.edu/sorce/data</u>
  - NASA DAAC <u>https://disc.gsfc.nasa.gov/SORCE</u>





3



#### SOLSTICE II

- SOLar-STellar Irradiance Comparison Experiment.
  - Scanning Grating Monochrometer
    - Far Ultraviolet (FUV) 115-180 nm ( $\Delta\lambda$ =0.1 nm)
    - Middle Ultraviolet (MUV) 180-320 nm ( $\Delta\lambda$ =0.1 nm)
  - Observes both Sun and stars with same optics and detector, changing only the apertures and integration time.
    Entrance Slit









#### Solar-Stellar Comparison



The solar spectrum varies by 5 orders of magnitude from 115 to 300 nm, and the stellar irradiances are 8 orders of magnitude smaller!



#### Measurement Equation

$$E_{AU}(\lambda) = \frac{C(\lambda, \tau, D_C, Sl, St)}{R_C(\lambda, T, \Omega) FOV(\lambda, \Omega, \theta, \phi) A_{Entrance} \Delta \lambda_{BP} T_{Filter}(\lambda) DEG(t, \lambda, \Omega, \theta, \phi) f_{AU}}$$

$$C(\lambda, \tau, Dc, Sl, St) = \frac{S(\lambda)N(\tau) - Dc - Sl(\lambda) - St}{\Delta t}$$





SORCE

LOW

**W** 



#### Measurement Eqn. Terms (1) • E<sub>AU</sub>=Irradiance at 1AU

- C=Corrected Count Rate
- R<sub>c</sub>=Centerpoint Responsivity
- FOV = correction for pointing
- A<sub>entrance</sub>=Area of Entrance Aperture
- Delta lambda = spectral bandpass
- T<sub>filter</sub> = Transmission of filter
- DEG = long term degradation correction



 $E_{AU}(\lambda) = \frac{C(\lambda, \tau, D_C, Sl, St)}{R_C(\lambda, T, \Omega) FOV(\lambda, \Omega, \theta, \phi) A_{Entrance} \Delta \lambda_{BP} T_{Filter}(\lambda) DEG(t, \lambda, \Omega, \theta, \phi) f_{AU}}$ 



#### Measurement Eqn. Terms (2)

- S = detector signal
- N = nonlinearity correction
- Dc = dark current
- SI = Scattered light
- St = Stray light
- Delta t = integration time



$$C(\lambda,\tau,Dc,Sl,St) = \frac{S(\lambda)N(\tau) - Dc - Sl(\lambda) - St}{\Delta t}$$

8



#### Measurement Eqn. Terms (3)

- Lambda = wavelength
- Omega = angular size of target
- Theta, phi = pitch and yaw angles of target
- T = temperature
- t = time (t=0 at start of mission)
- Tau = electronics dead time
- f<sub>AU</sub> = correction to 1 AU



#### **Responsivity Uncertainty Summary**





SORCE



# How can we maintain the preflight accuracy during the mission?



FUV channel is used below 180 nm. Asterisks indicate wavelengths used for stellar observations.





11



### Stellar Targets

SORCI

SOLSTICE Program Stars: Main Sequence B and A Bright Stable **Isolated FOV** Distributed on Celestial Spher These 18 stars are the same

observed.



|   | Star | Name | RA (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dec (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V Magnitude                                                                                                    | Spec Type                                                                                                      |
|---|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 2 | 3    | Per  | 3 <sup>h</sup> 57.8 <sup>m</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40° 0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.90                                                                                                           | B0.5 III                                                                                                       |
|   | α    | CMa  | 6 45.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -16 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.46                                                                                                          | A1 V                                                                                                           |
|   | ĸ    | Vel  | 9 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -55 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.50                                                                                                           | B2 IV-V                                                                                                        |
|   | α    | Leo  | 10 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.35                                                                                                           | B7 V                                                                                                           |
| e | δ    | Cen  | 12 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -50 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.60                                                                                                           | B2 IVne                                                                                                        |
|   | α    | Cru  | 12 26.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -63 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.35                                                                                                           | B0.5 IV + B1 V                                                                                                 |
|   | α    | Vir  | 13 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -11 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.97                                                                                                           | B1 IV + B2 V                                                                                                   |
|   | η    | UMa  | 13 47.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.86                                                                                                           | B3 V                                                                                                           |
|   | ζ    | Cen  | 13 55.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -47 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.55                                                                                                           | B2.5 IV                                                                                                        |
|   | β    | Cen  | 14 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -60 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.61                                                                                                           | B1 III                                                                                                         |
|   | γ    | Lup  | 15 35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -41 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.78                                                                                                           | B2 IV                                                                                                          |
|   | δ    | Sco  | 16 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -22 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.32                                                                                                           | B0.5 IV                                                                                                        |
|   | τ    | Sco  | 16 35.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -28 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.82                                                                                                           | B0 V                                                                                                           |
|   | α    | Lyr  | 18 36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                                                                                           | A0 Va                                                                                                          |
|   | σ    | Sgr  | 18 55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -26 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.02                                                                                                           | B2.5 V                                                                                                         |
|   | α    | Pav  | 20 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -56 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.94                                                                                                           | B2.5 V                                                                                                         |
|   | α    | Gru  | 22 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -46 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.74                                                                                                           | B7 IV                                                                                                          |
|   | α    | PsA  | 22 57.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -29 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.16                                                                                                           | A3 V                                                                                                           |
|   |      |      | and the second state of th | a set & the set of the | the second s | the second s |





#### Single Stellar Observation



A standard SOLSTICE observation of a star consists of a series of 1 second integrations at a fixed wavelength. The total dwell time is a tailored to the count rate for each star at each wavelength.

The integrations are fit to a normal distribution whose peak is the irradiance for that observation.

The uncertainty for each observation is about 1%. Snow,

Snow, McClintock, Rottman, and Woods, 2005, Solar Phys.





### **MUV Stars Example**





Extrapolation of stellar degradation begins July 2011 due to degradation of spacecraft battery capacity.



### FUV Stars Example







alpha Virgo 140.0 nm







#### Geocoronal contamination

- SORCE is in low earth orbit, well within the extended hydrogen atmosphere
- Special observing technique is required to remove variable geocorona





- Geocoronal spectrum Although the geocoronal emission is intrinsically narrow, in stellar mode SOLSTICE is an objective grating spectrograph with a large FOV.
  - Width matches measured stellar FOV determined from stellar alignment scan.









## Observing geometry





## Airglow correction observation





SORCE



#### Solar/Stellar Illumination

Solar Observation: Modified Monk-Gillieson Spectrometer





This diagram is for the UARS SOLSTICE layout. For SORCE, the mirror and grating are reversed.

## Solar/Stellar Correction Tracking



2 Haystacks with Fit for fit number 0



SORC

21



#### S/S Correction over time (1) Solar/Stellar Correction -- SOLSTICE B -- 250 nm



10% change over 10 years.Uncertainty from thiscorrection is probably about0.2%/year.

Four "primary" wavelengths have been measured on a monthly basis since the start of the mission 189, 218, 250, and 289 nm.

They were observed once per four weeks until mid 2007.

These observations have resumed in 2016 in modified form.





#### S/S Correction over time (2) Solar/Stellar Correction -- SOLSTICE B -- 235 nm



Four additional "secondary" wavelengths were added in mid 2007. 204, 235, 270, and 300 nm. The fit for these wavelengths is extrapolated back to the beginning of the mission.

When the four additional wavelengths were added, the cadence for each wavelength (primary and secondary) became once every 8 weeks.











24

### SOLSTICE Summary

- Ultraviolet 115-320 nm
- Uncertainty in measured degradation trends about 0.3% per year
  - Stars
  - Solar/Stellar Field of View correction
- Analysis of calibration data ongoing....







### Spectral Irradiance Monitor (SIM)

- Instrument type: 2 x Féry Prism Spectrometer
- Wavelength range: 200-2400 nm
- Wavelength resolution: 0.24-34 nm
- Detectors: ESR, n-p silicon photodiodes, InGaAs
- Relative accuracy: ~0.5 0.02% (210-2400nm)
- Long-term accuracy: 0.3-0.02%/year (210-2400nm)
- Single Optical Element: prism!











#### SIM Spectrum



$$\int_{\lambda=201}^{\lambda=2423} E(\lambda) d\lambda \approx 1324.49 \text{ Wm}^{-2}$$
$$\approx 97.3\% \text{ of TSI}$$
$$\Leftrightarrow 36.32 \text{ Wm}^{-2} \text{ missing from TSI}$$



### SIM Prism Degradation Model

- Based on comparing two identical spectrometers used at different rates of solar exposure
- Same physical, chemical and thermal environment
- Model validated when measurements of the sun at the same time with both spectrometers result in same calibrated irradiance
- Increased confidence by comparing integrated SSI with TIM TSI measurements
- On-Board-Computer events affected characteristics of degradation model





#### SIM Correction Example



Observations from the two channels (A and B) are both fit using a function that depends on exposure time rather than calendar time.

Wavelength scale needs to be adjusted to take account of spacecraft events (shown on previous slide).

**Difference: Integrated SIM - TSI** 

2010

Date

2012

2014

2016





2004

2006

2008

29





#### Correction factor for geometry at UV wavelengths

- Simplest degradation model: 1 / exp(-Kappa(λ)\*C(t))
  - Separating the wavelength and the time dependencies (*Kappa(λ), C(t)*)
- Amount of prism degradation at a specific wavelength also depend on the geometry (ray path): beam enters and exits prism at different location of the "degradation spot"
- Calibration of TSIS prism confirms that degradation is a surface effect.



 $pd(\lambda,t) = (1 - a_{detector}) \bullet exp(-\kappa \ t_{expos} \bullet f') + a_{detector} \bullet exp\left(\frac{-\kappa \ t_{expos} \bullet f'}{2}\right)$ The ray path (trends within the same spectrometer): Degradation spot opacity (trends between  $a_{detector}$  = Fraction of light <u>not</u> attenuated twice spectrometers) (both wavelength and detector posiition dependent) i.e. Lambert's law Solar Inpu to UV detector Solar Input  $\tau = \kappa t_{expos} f'$ *= absorption coefficient* ĸ  $t_{expos} f' = \frac{\text{effective column thickness}}{\text{of absorbing layer}}$ • K is strongly wavelength dependent • Degradation is a surface effect and is not darkening in the bulk of the The Outgoing beam The Outgoing beam overlaps glass. with degradation spot: has smaller overlap with • The degradation spot is not unidegradation spot: (UV detector position) formly opaque. (ESR detector position)  $a_{detector} \longrightarrow 1$ a<sub>detector</sub>  $pd(\lambda,t) \longrightarrow exp\left(\frac{-\kappa t_{expos} \cdot f'}{2}\right)$  $pd(\lambda,t) \longrightarrow exp(-\kappa t_{expos} f')$ 



Measured prism degradation over time for SimA and SimB





SORCE



#### SIM estimated uncertainties



The technique using the full mission does not produce a timedependent uncertainty, only a global error envelope.



±2σ error bands estimated from point-to-point difference between SIM A & B channels





### SIM Summary

- Degradation correction derived from comparing daily channel to reference channel.
- Spacecraft events have greatly complicated analysis in rise of cycle 24, introducing small wavelength shifts. Recent data is more consistent.
- SIM instrument team is still confident in published out of phase trends at some wavelengths.







SORC

Fig. 8 from Ermolli et al. 2013

SIM V20 includes only 240 nm. SOLSTICE and models show integrated 220-240 nm band.



2010

34

2011







#### FUV Variability







#### **MUV** Variability





Funnyeatpix.com



#### Cycle 24 Comparisons: Picard / PREMOS



Launched in June, 2010, one of the instruments has two filter radiometer channels that overlap the SOLSTICE wavelength domain at 215 nm and 268 nm.

The PREMOS team have provided us with the following data from the 215 nm channel.

This data will soon be available on http://projects.pmodwrc.ch/solid/index/php/main-database but it has not yet been updated there.



#### **PREMOS** Comparison SORCE SOLSTICE and Picard PREMOS

SORCE

꾜







#### Cycle 24 Comparisons: SOLAR/SOLSPEC



Launched in 2008 to International Space Station Grating double monochrometer – similar to ATLAS SOLSPEC

Measures 165-3100 nm. Geometry limits solar viewing to only a few days per week (average 1 spectrum every three days).

Decomissioned just a few days ago.

So far, only UV part of the spectrum is ready for release.









#### SORCE Mission Outlook





- Degraded batteries have led to a Day Only Operations (DO-Op) mode.
  - All instruments are powered off during eclipse
  - Data recorder also reset every eclipse
  - Instruments power on autonomously every sunrise
  - Data is captured with real-time contacts or with ground station (2-4 orbits/day)
- Instruments still in good health
- NASA plans to operate SORCE for 1 year after TSIS launches (2018?)
- Compact SIM (CSIM) is a cubesat version of SIM may also launch in 2018.
- Instrument in development at LASP for rocket flight in 2018 will provide underflight calibration of SOLSTICE FUV.
   2018 may be an eventful year for SSI



#### SORCE SSI Summary



- Daily observations continue in DO-Op mode:
  - SOLSTICE gets occasional stellar and solar/stellar calibration observations.
  - Fewer spacecraft events makes SIM analysis less complex spacecraft is currently well behaved.
- Cycle 24 observations are much closer to model predictions and other SSI observations.
- Decline of cycle 23 is larger than model predictions and other SSI observations – but analysis continues.
- Degradation rates for both SIM and SOLSTICE are now very low, giving high confidence in cycle 24 measurements.

