
The Astrophysical Journal, 722:1778–1792, 2010 October 20 doi:10.1088/0004-637X/722/2/1778
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

SEISMOLOGY OF STANDING KINK OSCILLATIONS OF SOLAR PROMINENCE FINE STRUCTURES

R. Soler, I. Arregui, R. Oliver, and J. L. Ballester

Departament de Fı́sica, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain; roberto.soler@uib.es
Received 2010 July 12; accepted 2010 August 27; published 2010 October 4

ABSTRACT

We investigate standing kink magnetohydrodynamic (MHD) oscillations in a prominence fine structure modeled
as a straight and cylindrical magnetic tube only partially filled with the prominence material and with its ends fixed
at two rigid walls representing the solar photosphere. The prominence plasma is partially ionized and a transverse
inhomogeneous transitional layer is included between the prominence thread and the coronal medium. Thus,
ion-neutral collisions and resonant absorption are the damping mechanisms considered. Approximate analytical
expressions of the period, the damping time, and their ratio are derived for the fundamental mode in the thin
tube and thin boundary approximations. We find that the dominant damping mechanism is resonant absorption,
which provides damping ratios in agreement with the observations, whereas ion-neutral collisions are irrelevant for
damping. The values of the damping ratio are independent of both the prominence thread length and its position
within the magnetic tube, and coincide with the values for a tube fully filled with the prominence plasma. The
implications of our results in the context of the MHD seismology technique are discussed, pointing out that the
reported short-period (2–10 minutes) and short-wavelength (700–8000 km) thread oscillations may not be consistent
with a standing mode interpretation and could be related to propagating waves. Finally, we show that the inversion of
some prominence physical parameters, e.g., Alfvén speed, magnetic field strength, transverse inhomogeneity length
scale, etc., is possible using observationally determined values of the period and damping time of the oscillations
along with the analytical approximations of these quantities.

Key words: magnetic fields – magnetohydrodynamics (MHD) – Sun: corona – Sun: filaments, prominences – Sun:
oscillations
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1. INTRODUCTION

Oscillations and propagating waves are commonly reported
in observations of solar prominences and filaments (see recent
reviews by, e.g., Ballester 2006; Engvold 2008; Mackay et al.
2010). In high-resolution observations, transverse oscillations
of prominence fine structures are frequently detected. These
fine structures, here called threads, appear as a myriad of long
(5′′–20′′) and thin (0.′′2–0.′′6) dark ribbons in Hα images of
filaments on the solar disk (e.g., Lin et al. 2007, 2008, 2009), as
well as in observations of prominences in the solar limb from the
Solar Optical Telescope (SOT) aboard the Hinode satellite (e.g.,
Okamoto et al. 2007; Berger et al. 2008; Chae et al. 2008; Ning
et al. 2009). From a theoretical point of view, prominence fine
structures have been modeled as magnetic flux tubes anchored
in the solar photosphere (e.g., Ballester & Priest 1989; Rempel
et al. 1999), which are piled up to form the prominence body. In
this interpretation, only part of the flux tubes would be filled with
the cool (∼104 K) filament material, which would correspond
to the observed threads, while the rest of the magnetic tube, i.e.,
the so-called evacuated zone, would be occupied by hot coronal
plasma.

Common features of the transverse oscillations of prominence
fine structures detected in Doppler signals and Hα sequences
are that the reported periods are usually in a narrow range
between 2 and 10 minutes, the velocity amplitudes are smaller
than ∼3 km s−1, and the oscillations seem to be damped after
a few periods. Typically, the number of oscillatory periods
observed before the oscillations disappear is less than 10 (see,
e.g., Molowny-Horas et al. 1999; Terradas et al. 2002; Lin
2004; Ning et al. 2009). Theoretically, the oscillations have
been interpreted in terms of kink magnetohydrodynamic (MHD)

modes supported by the fine structure, modeled as a magnetic
slab (Joarder et al. 1997; Dı́az et al. 2001, 2003) or a cylindrical
tube (Dı́az et al. 2002, 2010; Dymova & Ruderman 2005;
Terradas et al. 2008) partially filled with prominence plasma,
whereas several damping mechanisms have been proposed to
explain the quick attenuation (see, e.g., Oliver 2009; Arregui &
Ballester 2010; Soler 2010).

By neglecting the variation of the plasma parameters along
the fine structure and adopting a prominence thread model com-
posed of a homogeneous magnetic flux tube with prominence
conditions embedded in a coronal environment, Soler et al.
(2008) studied the temporal damping of propagating kink MHD
waves due to nonadiabatic effects (radiative losses, thermal con-
duction, and plasma heating), while Soler et al. (2009a) investi-
gated the attenuation in the same configuration but considering
ion-neutral collisions as the damping mechanism. These authors
concluded that neither nonadiabatic effects nor ion-neutral col-
lisions can produce kink mode damping times compatible with
those observed. On the other hand, Arregui et al. (2008b) con-
sidered a similar model but neglected gas pressure (i.e., the
β = 0 approximation, with β the ratio of the gas pressure to
the magnetic pressure) and took into account the presence of
a transversely inhomogeneous transitional layer between the
thread and the coronal plasma. In such a configuration, the kink
mode is resonantly coupled to Alfvén continuum modes, and
so the kink mode is damped by the process of resonant absorp-
tion. Arregui et al. (2008b) numerically obtained values of the
damping time that are consistent with those reported in the ob-
servations. Resonant absorption has been previously proposed
as an explanation for both the temporal damping of coronal
loop transverse oscillations (e.g., Ruderman & Roberts 2002;
Goossens et al. 2002) and the spatial damping of propagating
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Figure 1. Sketch of the model configuration adopted in this work.

(A color version of this figure is available in the online journal.)

kink waves (e.g., Pascoe et al. 2010; Terradas et al. 2010). Sub-
sequently, Soler et al. (2009c) performed a more in-depth ana-
lytical and numerical investigation of the damping by resonant
absorption in prominence threads by including gas pressure and
obtained similar results to those of Arregui et al. (2008b). More
recently, Soler et al. (2009b) studied the combined effect of res-
onant absorption and the prominence plasma partial ionization
on the kink mode damping. For realistic values of the wave-
length, Soler et al. (2009b) concluded that partial ionization
does not affect the process of resonant absorption, and so the
obtained values of the damping time are the same as in a fully
ionized prominence thread (Arregui et al. 2008b; Soler et al.
2009c). Ion-neutral collisions may become more relevant than
resonant absorption for the temporal damping of propagating
kink modes when short wavelengths of the order of 103 km and
smaller values are considered, while the range of typically ob-
served wavelengths in prominences is between 5 × 103–105 km
(Oliver & Ballester 2002).

Whether the reported observations of transversely oscillating
filament and prominence threads are related to propagating
waves or standing oscillations is a subject of debate. For
example, Lin et al. (2009) explained their observations in
terms of propagating kink waves, whereas Terradas et al.
(2008) proposed standing oscillations as an explanation of
the observations by Okamoto et al. (2007). It is likely that
propagating waves may be generated by localized disturbances
in, e.g., the footpoints of the magnetic tube, while standing
oscillations may be related to more global perturbations of the
whole magnetic structure. Regarding the damping, all the works
cited above studied the temporal damping of propagating kink
waves, hence the wavelength (or the wavenumber) is a free
parameter in their case, but the problem of the damping of
standing oscillations has not been addressed yet in the context of
prominence fine structures. Moreover, the effect on the damping
of the longitudinal variation of the plasma parameters along
the fine structure was not addressed in these previous works.
Therefore, the aim of the present investigation is to broach the
problem of the damping of standing kink MHD oscillations of
longitudinally nonuniform prominence fine structures.

The model configuration adopted here is similar to that con-
sidered by Dı́az et al. (2002, 2010), Dymova & Ruderman
(2005), and Terradas et al. (2008), namely a straight and cylin-
drical magnetic flux tube only partially filled with prominence
plasma. The rest of the magnetic tube, as well as the external
medium, has typical coronal properties. The β = 0 approxi-

mation is adopted for the sake of simplicity since we restrict
ourselves to kink modes, which are correctly described by this
approximation. Standing oscillations are studied by imposing
the line-tying condition at the ends of the cylinder. As in Soler
et al. (2009b), we assume that the prominence plasma is partially
ionized and include a transversely inhomogeneous transitional
layer between the dense prominence thread and the external
corona. Hence, the mechanisms of ion-neutral collisions and
resonant absorption are considered as damping mechanisms.
We follow the method introduced by Dymova & Ruderman
(2005) based on the thin tube (TT) limit and derive a dispersion
relation for damped kink MHD oscillations in the thin boundary
(TB) approximation. Analytical expressions of the period, the
damping time, and the ratio of the damping time to the period
are obtained, while a general parametric study is performed by
numerically solving the full dispersion relation. In a subsequent
work, I. Arregui et al. (2010, in preparation) investigate the
damping of kink oscillations beyond the TT and TB approx-
imations by numerically solving the full resistive eigenvalue
problem in two-dimensional (2D), nonuniform threads.

This paper is organized as follows. Section 2 includes a
description of the model configuration and the mathematical
method. The dispersion relation of standing kink MHD oscil-
lations is obtained in Section 3, which also contains analytical
approximations. The results of solving the dispersion relation
are given in Section 4, while their implications for prominence
seismology are discussed in Section 5. Finally, Section 6 con-
tains our main conclusions.

2. MODEL AND METHOD

2.1. Equilibrium Configuration

The model considered here is schematically plotted in
Figure 1. We consider a straight and cylindrical magnetic tube
of length L and radius a, whose ends are fixed by two rigid walls
representing the solar photosphere. The magnetic tube is only
partially filled with the cool and dense prominence material and
is composed of a dense region of length Lp with prominence con-
ditions and representing the prominence thread, surrounded by
two much less dense zones corresponding to the evacuated part
of the tube. According to the observed typical values of thread
widths and lengths from the high-resolution observations (e.g.,
Lin 2004; Lin et al. 2008), the ranges of realistic values of a and
Lp are 50 km � a � 300 km and 3000 km � Lp � 28,000 km.
On the other hand, the total tube length, L, cannot be measured
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from the observations, but one can relate L to the typical spatial
scale in prominences and filaments, i.e., L ∼ 105 km.

For simplicity, both the prominence and the evacuated (i.e.,
coronal) part are taken to be homogeneous, with densities ρp and
ρe, respectively. The external, coronal medium has a density of
ρc, which is also homogeneous. Subscripts p, e, and c denote
the prominence part, the evacuated region, and the corona,
respectively. In general, the subscript 0 denotes equilibrium
quantities without referring to a particular region. The density
contrast of the prominence part with respect to the coronal
plasma is a large parameter, with ρp/ρc = 200 being a value
usually considered. We assume that the evacuated part of the
tube has the same density as the corona. Hence, for a typical
prominence density of ρp = 5 × 10−11 kg m−3, the coronal and
evacuated densities are ρc = ρe = 2.5 × 10−13 kg m−3. In the
prominence region, we include a transversely inhomogeneous
transitional layer of thickness l that continuously connects the
internal prominence region to the external corona. A sinusoidal
variation of the density is considered in the transitional layer
(Ruderman & Roberts 2002). The limits l/a = 0 and l/a = 2
correspond to a thread without a transverse transitional layer
and a fully inhomogeneous thread in the radial direction,
respectively. The plasma in the prominence region is assumed to
be partially ionized with an arbitrary ionization degree μ̃p. Both
the evacuated part and the corona are taken to be fully ionized,
hence μ̃e = μ̃c = 0.5.

We use cylindrical coordinates, namely r, ϕ, and z for the
radial, azimuthal, and longitudinal coordinates. The magnetic
field is taken as being homogeneous and orientated along the
z-direction, namely B0 = B0êz, with B0 = 5 G everywhere.
The z-direction also coincides with the axis of the cylinder.
For l/a = 0 and full ionization, the model is equivalent to that
assumed by Dı́az et al. (2002) and Dymova & Ruderman (2005).
In these two works, the prominence thread is located in the center
of the cylinder. Here, we allow the thread to be displaced from
the center of the tube. The length of the evacuated region on
the left-hand side of the thread is L−

e , whereas the length of the
right-hand side evacuated region is L+

e . When L and Lp are fixed,
we can express L+

e = L − L−
e − Lp, hence it is enough to select

a value for L−
e in order to set the length of both evacuated parts.

The allowed values of L−
e are in the range 0 � L−

e � L−Lp. For
L−

e = 0, the thread is totally displaced to the left-hand side end
of the flux tube, while the contrary occurs for L−

e = L−Lp. For
L−

e = L+
e = 1

2 (L − Lp), the prominence thread is located at the
center of the tube, i.e., the configuration studied by Dı́az et al.
(2002) and Dymova & Ruderman (2005). For simplicity, we fix
the origin of coordinates at the center of the prominence region,
so that the interfaces between the prominence plasma and the
evacuated zones are located at z = ±Lp/2. The photospheric
walls are therefore located at z = z−

wall = −Lp/2 − L−
e and

z = z+
wall = Lp/2 + L+

e , with z−
wall and z+

wall being the position
of the left and right walls, respectively. Thus, for Lp = L, i.e.,
a tube fully filled with prominence material, the model reduces
to the configuration studied by Soler et al. (2009b).

2.2. Basic Equations

The governing MHD equations for a partially ionized plasma
are derived in Forteza et al. (2007) after the single-fluid
treatment of Braginskii (1965; see also details in Pinto et al.
2008; Soler et al. 2009a; Soler 2010). Electrons, ions (i.e.,
protons), and neutral hydrogen are the species taken into
account. We assume small-amplitude perturbations over the

equilibrium state and the basic equations are linearized (Soler
et al. 2009a, Equations (4)–(7)). In a partially ionized plasma,
the induction equation contains diffusion terms related to the
collisions between the different species (see Pinto et al. 2008).
For example, Ohm’s diffusion is governed by electron–ion
collisions, whereas Cowling’s diffusion is dominated by ion-
neutral collisions. Here, we neglect Ohm’s diffusion from the
induction equation (Soler et al. 2009a, Equation (7)) because
its role in a partially ionized prominence plasma is much less
important than that of Cowling’s diffusion. In addition, since
we adopt the β = 0 approximation, gas pressure effects are
neglected.

Next, we follow Forteza et al. (2008) and Soler et al. (2009a)
and take a time dependence of the form exp (−iωt), with ω
the oscillatory frequency, so that we can include the effect
of Cowling’s diffusion in the definition of a modified Alfvén
speed squared as Γ2

A0
= v2

A0
− iωηC0 , where v2

A0
= B2

0/μρ0
is the Alfvén speed squared and ηC0 is the Cowling’s diffusion
coefficient, with μ = 4π × 10−7 N A−2. The expression of
Cowling’s diffusivity, ηC0 , in terms of the equilibrium properties
is given in, e.g., Soler et al. (2009a) and Soler (2010). Thus, the
relevant equations for our investigation are

ρ0
∂v1

∂t
= 1

μ
(∇ × B1) × B0, (1)

∂B1

∂t
= Γ2

A0

v2
A0

∇ × (v1 × B0) , (2)

where v1 = (
vr, vϕ, vz

)
and B1 = (

Br, Bϕ, Bz

)
are the velocity

and the magnetic field perturbations. Note that vz = 0 in
the β = 0 approximation, and ΓA0/vA0 = 1 when Cowling’s
diffusion is absent.

Equations (1) and (2) can be combined to arrive at the
following equation for the total pressure perturbation, pT =
B0Bz/μ, namely,

∂2pT

∂t2
− Γ2

A0
∇2pT = 0, (3)

along with an equation relating the total pressure and radial
velocity perturbations as

∂2vr

∂t2
− Γ2

A0

∂2vr

∂z2
= − 1

ρ0

∂2pT

∂t∂r
. (4)

Note that Equation (3) is only valid in the regions with
homogeneous densities, hence it cannot be applied in the
transversely inhomogeneous transitional layer. Now, we write
all perturbations proportional to exp (−iωt + imϕ), where m
is an integer representing the azimuthal wavenumber. In the
absence of magnetic twist, both positive and negative values of
m are equivalent, so hereafter we restrict ourselves to positive
values of m. For kink oscillations, m = 1. Equation (3) becomes

∂2pT

∂z2
+

1

r

∂

∂r

(
r
∂pT

∂r

)
+

(
ω2

Γ2
A0

− m2

r2

)
pT = 0. (5)

Since ρp, ρe, and ρc are uniform in their respective regions,
the corresponding Cowling’s diffusivities, ηCp, ηCe, and ηCc, re-
spectively, are also uniform. Both the corona and the evacuated
region are fully ionized and much less dense than the promi-
nence plasma, so we have ηCc � ηCp and ηCe � ηCp. For the
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sake of simplicity, we set ηCe = ηCc = 0, and the effect of
Cowling’s diffusion is only considered in the prominence re-
gion. If considered, Cowling’s diffusion in the evacuated and
coronal regions would have a very minor influence since Cowl-
ing’s diffusivities in these regions are much smaller than that in
the prominence plasma.

2.3. Mathematical Method

For a fully ionized plasma, the general investigation of the
ideal transverse MHD oscillations supported by our equilibrium
was performed by Dı́az et al. (2002) in the case l/a = 0
and for the prominence thread centered within the magnetic
tube. These authors obtained the oscillatory frequencies and
eigenfunctions for arbitrary values of L, Lp, and a. Here, we
could follow a treatment similar to that of Dı́az et al. (2002),
but this requires a significant mathematical effort beyond the
purpose of the present investigation. Instead, we consider the
much simpler approach introduced by Dymova & Ruderman
(2005), who studied the same configuration but in the TT limit,
i.e., for a/L � 1 and a/Lp � 1. To check the validity of this
approximation in the context of prominence thread oscillations,
we take into account the values of a and Lp reported from the
observations (see Section 2.1) and assume L ∼ 105 km. We
obtain a/Lp and a/L in the ranges 2 × 10−3 � a/Lp � 0.1 and
5×10−4 � a/L � 3×10−3, meaning that the TT approximation
is justified in prominence fine structures. As shown by Terradas
et al. (2008) and Dı́az et al. (2010), the method of Dymova &
Ruderman (2005) shows an excellent agreement with that of
Dı́az et al. (2002) when realistic values of a/Lp and a/L are
taken into account.

Following Dymova & Ruderman (2005), we can perform
a different scaling of Equation (5) inside the tube and in the
corona. For perturbations inside the tube, the characteristic scale
in the r-direction is a, while the characteristic scale in the z-
direction is L. Since a/L � 1, the term with the longitudinal
derivative and the term proportional to ω2 are much smaller
than the other terms. In such a case, Equation (5) inside the tube
reduces to

∂

∂r

(
r
∂pTi

∂r

)
− m2

r2
pTi ≈ 0, (6)

with i = p or e. The solution of Equation (6) for regular
perturbations at r = 0 is

pTi ≈ Ai (z)
( r

a

)m

, (7)

where Ai (z) is an arbitrary function of z.
On the other hand, the characteristic scale of perturbations

outside the tube, i.e., in the corona, is L in both the r- and z-
directions, so that no terms can be neglected in Equation (5).
However, we can express the total pressure perturbation in the
corona as pTc = Ac (z) F (r) and use the technique of separation
of variables to obtain the following expressions:

d2F

dr2
+

1

r

dF

dr
−

(
k2
n +

m2

r2

)
F = 0, (8)

and

d2Ac

dz2
+

ω2

v2
Ac

Ac = −k2
nAc, with Ac = 0 at z = z±

wall,

(9)

where kn is a separation constant, with n being an integer
accounting for the different radial harmonics. In Equation (9),
we have taken into account that Cowling’s diffusion is neglected
in the corona, so Γ2

Ac = v2
Ac. Equation (8) is the modified

Bessel equation. Here, we only consider trapped modes and
assume k2

n > 0. This last condition may not be satisfied
for high harmonics, i.e., large values of n, but we need not
worry about this issue since here we focus our investigation
on the fundamental mode, which is non-leaky in the present
configuration. Then, the solution of Equation (8) is F (r) =
Km (knr), with Km being the modified Bessel function of the
second kind. An asymptotic expansion near the tube boundary
(e.g., Abramowitz & Stegun 1972) allows us to express the total
pressure perturbation in the corona as

pTc ≈ Ac (z)
(a

r

)m

. (10)

Next, our method closely follows that of Dymova & Ruder-
man (2005, 2006). For the sake of simplicity, we omit here the
details, which are given in the Appendix. After considering ap-
propriate boundary conditions for the solutions of Equations (6)
and (10), the dispersion relation for kink oscillations damped
by resonant absorption and Cowling’s diffusion is obtained.

3. DISPERSION RELATION AND APPROXIMATIONS

The general dispersion relation for kink oscillations is

c̃kph cos

(
ω

c̃kph

Lp
2

)
cos

(
ω

cke
L−

e

)
− cke sin

(
ω

c̃kph

Lp
2

)
sin

(
ω

cke
L−

e

)
c̃kph sin

(
ω

c̃kph

Lp
2

)
cos

(
ω

cke
L−

e

)
+ cke cos

(
ω

c̃kph

Lp
2

)
sin

(
ω

cke
L−

e

)

+
c̃kph cos

(
ω

c̃kph

Lp
2

)
cos

(
ω

cke
L+

e

)
− cke sin

(
ω

c̃kph

Lp
2

)
sin

(
ω

cke
L+

e

)
c̃kph sin

(
ω

c̃kph

Lp
2

)
cos

(
ω

cke
L+

e

)
+ cke cos

(
ω

c̃kph

Lp
2

)
sin

(
ω

cke
L+

e

) = 0,

(11)

with

c̃2
kp =

ρpΓ2
Ap+ρcv

2
Ac

ρp+ρc
− iπω

(
Γ2

Ap + v2
Ac

) (
ρpρc

ρp+ρc

)
m/a

ωR|∂rρ0|a

1 − iπω
(

ρpρc

ρp+ρc

)
m/a

ωR|∂rρ0|a

, (12)

b2 = −
iωπΓ2

Apv
2
Ac

(
ρpρc

ρp + ρc

)
m/a

ωR|∂rρ0|a
ρpΓ2

Ap + ρcv
2
Ac

ρp + ρc
− iπω

(
Γ2

Ap + v2
Ac

) (
ρpρc

ρp + ρc

)
m/a

ωR|∂rρ0|a

,

(13)

c2
kp = ρpv

2
Ap + ρcv

2
Ac

ρp + ρc
, c2

ke = ρev
2
Ae + ρcv

2
Ac

ρe + ρc
, (14)

and h =
√

1 − b2

c2
kp

, with ωR being the real part of the frequency

and |∂rρ0|a denoting the radial derivative of the density profile
evaluated at the resonance position, which has been approxi-
mated by the thread mean radius, a. Here the quantity c̃kp is
called the modified kink speed, which takes into account both
the effect of Cowling’s diffusion (through Γ2

Ap) and the effect of
resonant absorption in the TB approach. Extensive details are
given in the Appendix. If the terms related to resonant absorption
are omitted, one has b2 = 0 and c̃2

kp becomes

c̃2
kp = ρpΓ2

Ap + ρcv
2
Ac

ρp + ρc
, (15)
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which reduces to the ideal kink speed, c2
kp (Equation (14)), when

Cowling’s diffusion is neglected, i.e., Γ2
Ap = v2

Ap.
Equation (11) is a transcendental equation that has to be

solved numerically. Some analytical progress can be performed
if the prominence thread is centered within the tube, i.e.,
L−

e = L+
e = 1

2

(
L − Lp

)
, and we focus on the fundamental kink

mode. This solution corresponds to the mode with the lowest
frequency. In such a case, Equation (11) can be simplified to

1

c̃kp

√
1 − b2

c2
kp

tan

⎛
⎝ ω

c̃kp

√
1 − b2

c2
kp

Lp

2

⎞
⎠

− 1

cke
cot

[
ω

cke

(
L − Lp

2

)]
= 0. (16)

The fundamental kink mode is given by the first root of
Equation (16). A first-order Taylor expansion for small argu-
ments of the trigonometric functions of Equation (16) provides
us with an approximation of the frequency as

ω2 ≈ 4(
L − Lp

)
Lp

c̃2
kp

(
1 − b2

c2
kp

)
. (17)

We expect Equation (17) to be valid when both ω and Lp/L
are small quantities, so that the arguments of the trigonometric
functions of Equation (16) remain small. Note that Equation (17)
fails to represent the kink mode frequency in the limits Lp/L →
1 and Lp/L → 0, so one should consider intermediate values
of Lp/L in Equation (17). The correct expressions for the
fundamental kink mode frequency in these limits are

ω = π

L
c̃kp

√
1 − b2

c2
kp

, for Lp/L = 1, (18)

and
ω = π

L
cke, for Lp/L = 0. (19)

We can extract two main results from Equation (17). First of
all, Equation (17) only depends on the physical properties of the
prominence region and the corona through c̃kp, ckp, and b, and
includes no contributions from the evacuated part. Second, the
form of Equation (17) is similar to the approximation of the ideal
kink mode frequency in a homogeneous tube, i.e., ω2 ≈ k2

z c
2
kp,

where kz is the longitudinal wavenumber. Thus, it seems that the
main differences between the expression for the homogeneous
tube and that for the partially filled tube are that 4/(L − Lp)Lp

replaces k2
z and that a redefined kink speed has to be taken into

account. This approximation of the frequency is similar to that
obtained by Joarder & Roberts (1992) and Oliver et al. (1993)
for the string (or hybrid) modes of their slab configuration and
to that obtained by Dı́az et al. (2010) in the context of thread
seismology using period ratios. However, we must bear in mind
that Equation (17) is only a first-order approximation to the kink
mode frequency.

In the general case, i.e., when the prominence region is
allowed to be at any position within the tube, one should consider
the dispersion relation given by Equation (11). We can follow
the same procedure as before and perform a first-order Taylor
expansion for small arguments of the trigonometric functions
of Equation (11). Then, the following approximation for the

frequency is obtained:

ω2 ≈ 4L[(
L − Lp

)
Lp + 4L−

e L+
e

]
Lp

c̃2
kp

(
1 − b2

c2
kp

)
. (20)

Note that the only information from the evacuated zones
present in Equation (20) is their lengths L−

e and L+
e , but

no additional physical property of these zones contributes to
Equation (20). In the centered case, L−

e = L+
e = 1

2 (L − Lp),
Equation (20) reverts to Equation (17). Now, we can consider the
limits L−

e → 0 or L+
e → 0, which correspond to the prominence

thread totally displaced toward an end of the tube. In such limits,
Equation (20) becomes

ω2 ≈ 4L

(L − Lp)L2
p

c̃2
kp

(
1 − b2

c2
kp

)
. (21)

The ratio of Equation (17) to Equation (21) estimates the shift
of ω2 when the thread is displaced from the center toward the end
of the tube. Denoting this ratio as δω2, we obtain δω2 = Lp/L.
Since Lp/L < 1, we expect the frequency of the kink mode to
increase as the prominence thread is displaced from the central
position. Obviously, for Lp/L = 1 there is no frequency shift
because the prominence plasma occupies the whole tube.

3.1. Period of the Fundamental Kink Mode

First, we focus our analytical investigation on the period.
Here, we neglect the effect of the damping mechanisms since we
assume that the kink mode period is only slightly affected by the
presence of the damping mechanisms. As a first approximation,
we consider Equation (20) with c̃kp = ckp and b = 0, so now
ω is a real quantity. We compute the period as P = 2π/ω,
obtaining

P = π

vAp

√
ρp + ρc

2ρp

√[
(L − Lp)Lp + 4L−

e L+
e

]
Lp

L
. (22)

Since the expression for the period is known, we could com-
pare the theoretical periods with those observed and apply the
MHD seismology technique to prominence fine structure oscil-
lations. However, in our case P depends on many parameters
of the model, so Equation (22) alone is not very useful from a
seismological point of view. If we assume that the prominence
thread is located at the center of the magnetic tube, Equation (22)
becomes

P ≈ π

vAp

√
ρp + ρc

2ρp

√
(L − Lp)Lp. (23)

In addition, in the case of prominences one has ρp 	 ρc, so
Equation (23) can be simplified to

P ≈ π√
2vAp

√
(L − Lp)Lp. (24)

Although the value of Lp can be measured from Hα obser-
vations of filaments (e.g., Lin et al. 2007, 2009), we still have
two parameters, i.e., the total tube length, L, and the promi-
nence Alfvén speed, that are both difficult to determine from
the observations. Recently, Dı́az et al. (2010) showed that the
ratio of periods of different overtones is a useful quantity for
determining the seismology of prominence threads, since addi-
tional parameters such as, e.g., the prominence Alfvén speed,
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are dropped from the expressions (for details about the impor-
tance of the period ratio for coronal seismology, see the recent
review by Andries et al. 2009). Some additional remarks about
the MHD seismology technique are given in Section 5.

3.2. Damping by Cowling’s Diffusion

Here, we study the kink mode damping. Let us consider the
case without transverse transitional layer, i.e., l/a = 0, so the
damping is exclusively due to Cowling’s diffusion and the fre-
quency is complex, ω = ωR + iωI, with ωR and ωI the real and
imaginary parts of the frequency, respectively. Then, c̃kp is given
by Equation (15) and b2 = 0 since there is no resonant damp-
ing for l/a = 0. For simplicity, we consider that the promi-
nence thread is located at the central position. Equation (17)
allows us to obtain the real and imaginary parts of the
frequency as

ω ≈
[

ρpv
2
Ap + ρcv

2
Ac

ρp + ρc
−

(
ρpηCp

ρp + ρc

)2 1

(L − Lp)Lp

]1/2

× 2√
(L − Lp)Lp

− i

(
ρpηCp

ρp + ρc

)
2

(L − Lp)Lp
. (25)

By setting the real part of Equation (25) equal to zero, we
obtain two critical values of Lp/L, namely,

(Lp/L)±crit = 1

2
± 1

2

[
1 −

(
2ρp

ρp + ρc

)
η̃2

Cp

]1/2

, (26)

with η̃Cp = ηCp/vApL. Hence, the kink mode only exists
for (Lp/L)−crit < Lp/L < (Lp/L)+

crit. We cast Equation (26)
for ρp/ρc = 200 and the extreme case of an almost neutral
plasma with μ̃p = 0.99, obtaining (Lp/L)−crit ≈ 10−5 and
(Lp/L)+

crit ≈ 0.99999. For smaller values of μ̃p, (Lp/L)−crit
decreases and (Lp/L)+

crit increases. Hence, the presence of these
critical values is irrelevant for realistic values of Lp/L.

For Lp/L far from the critical values, one can drop the second
term in the real part of Equation (25). We compute the damping
time, τD = 1/|ωI|, due to Cowling’s diffusion as

τD ≈ 1

2

(
ρp + ρc

ρpηCp

) (
L − Lp

)
Lp, (27)

while the ratio of the damping time to the period is

τD

P
≈ 1

2π

(
ρp + ρc

ρp

)1/2 1

η̃Cp

√
2

(
1 − Lp

L

)
Lp

L
. (28)

For ρp/ρc = 200, Lp/L = 0.1, and L = 105 km, Equa-
tion (28) gives τD/P ≈ 5 × 103 for μ̃p = 0.8 and τD/P ≈ 150
for μ̃p = 0.99. These results indicate that, as in a homogeneous
thread, an almost neutral prominence plasma is needed, i.e.,
μ̃p ≈ 1, in order for the damping due to Cowling’s diffusion to
be efficient. Although the precise ionization degree is unknown,
such large values of μ̃p are probably unrealistic in the context
of prominences.

It is straightforward to extend Equation (28) to the case in
which the prominence region is not at the center of the tube,

obtaining

τD

P
≈ 1

2π

(
ρp + ρc

ρp

)1/2

× 1

η̃Cp

√
2

[(
1 − Lp

L

)
Lp

L
+ 4

L−
e L+

e

L2

]
Lp

L
. (29)

Performing the limits L−
e → 0 or L+

e → 0 to this last
expression, we can obtain the damping ratio when the thread is
totally displaced toward the ends of the tube, namely (τD/P )end.
Then, we compare (τD/P )end with the damping ratio obtained
in the centered case from Equation (28), namely (τD/P )center.
Thus, (τD/P )center / (τD/P )end = √

Lp/L < 1. Therefore, the
minimum value of the damping ratio by Cowling’s diffusion
takes place when the prominence region is located at the center.

3.3. Damping by Resonant Absorption

Here, we study the general case l/a �= 0. The full expressions
of c̃kp and b2 given by Equations (12) and (13) are taken
into account. Again, we assume that the prominence thread
is centered within the magnetic tube. We use Equation (17) to
provide an expression for the ratio ωI/ωR after neglecting terms
of O(ω2

I ) and O(ωIL
−2). Thus, we obtain

ωI

ωR
≈ −π

8

(ρp − ρc)2

(ρp + ρc)

m/a

|∂rρ0|a

−
(

ρp

ρp + ρc

)1/2
η̃Cp√

2
(

1 − Lp

L

)
Lp

L

. (30)

The first term on the right-hand side of Equation (30) is caused
by resonant absorption and the second term is due to Cowling’s
diffusion. The term related to Cowling’s diffusion is also present
in the case l/a = 0. We can compare Equation (30) with
Equation (28) of Soler et al. (2009b) valid for a homogeneous
tube. We see that both equations coincide if the replacement of
kz by 2/

√
(L − Lp)Lp is done in their expression and η̃Cc = 0.

Therefore, this fact again suggests that the results for the
homogeneous tube can be extended to a partially filled tube by
selecting the appropriate value for the longitudinal wavenumber.

Note that the term related to the damping by resonant
absorption in Equation (30) takes the same form as in a
homogeneous tube and does not depend on Lp/L. This result
does not mean that the real and imaginary parts of the frequency
do not depend on Lp/L, but both quantities are affected in
the same way so that their ratio remains unaffected. This
important result is consistent with the conclusions of Andries
et al. (2005) and Arregui et al. (2005), who found that the kink
mode frequency of a longitudinally stratified tube is the same as
that obtained for a homogeneous tube with density ρmean, with
ρmean the mean density weighted with the wave energy. Since
in our equilibrium the transversely transitional layer is only
present in the dense part of the tube and both the evacuated zone
and the corona have the same density, resonant absorption only
takes place in the dense part of the tube. Therefore, the mean
density of the part of the tube where resonant absorption takes
place is, obviously, ρmean = ρp. Hence, according to Andries
et al. (2005) and Arregui et al. (2005), the kink mode damping
ratio in our case must be the same as that of a homogeneous
tube with density ρp, as our results indicate. This conclusion
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Figure 2. A(z) function (in arbitrary units) corresponding to the fundamental kink mode. (a) Results for Lp/L = 0.1 (solid), 0.5 (dashed), and 0.9 (dotted) when the
prominence thread is located at the central part of the magnetic tube. (b) Results with Lp/L = 0.2 for L−

e /L = 0.2 (dashed), 0.4 (solid), and 0.7 (dotted). The thick
part of the lines in panel (b) denotes the position of the prominence thread.

(A color version of this figure is available in the online journal.)

is also equivalent to that obtained by Dymova & Ruderman
(2006), who showed that the damping ratio in a longitudinally
inhomogeneous tube in the TT and TB approximations does not
depend on the particular form of the longitudinal density profile
if the density contrast between the internal and external plasmas
is constant.

By assuming a sinusoidal density variation in the transitional
layer, the expression for τD/P according to Equation (30) is

τD

P
≈ 2

π

⎡
⎢⎢⎣m

l

a

ρp − ρc

ρp + ρc
+ η̃Cp

(
ρp

ρp + ρc

)1/2 4√
2
(

1 − Lp

L

)
Lp

L

⎤
⎥⎥⎦

−1

,

(31)
which is equivalent to Equation (29) of Soler et al. (2009b)
for η̃Cc = 0 and kz = 2/

√
(L − Lp)Lp. To perform a simple

application, we compute τD/P from Equation (31) in the case
m = 1, Lp/L = 0.1, L = 107 m, and l/a = 0.2, resulting
in τD/P ≈ 3.18 for a fully ionized thread (μ̃p = 0.5) and
τD/P ≈ 3.16 for an almost neutral thread (μ̃p = 0.95). We
note that the obtained damping times are consistent with the
observations. Moreover, as obtained by Soler et al. (2009b), the
contribution of resonant absorption to the damping is much more
important than that of Cowling’s diffusion, so the ratio τD/P
depends only very slightly on the ionization degree. Then, the
second term on the right-hand side of Equation (31) can be
neglected and Equation (31) becomes

τD

P
≈ 2

π

1

m

1

l/a

ρp + ρc

ρp − ρc
, (32)

which coincides with the expressions provided by Ruderman
& Roberts (2002) and Goossens et al. (2002) in the case of
longitudinally homogeneous coronal loops. Equation (32) can
be further simplified by restricting ourselves to the kink mode
(m = 1) and for ρp 	 ρc, hence

τD

P
≈ 2

π

1

l/a
, (33)

meaning that the transverse inhomogeneity spatial scale can be
estimated if both the period and damping time are measured

from the observations. By combining Equations (24) and (33),
we get the expression of the damping time by resonant absorp-
tion as

τD ≈
√

2

vAp

1

l/a

√
(L − Lp)Lp. (34)

Finally, we can compute the damping ratio when the promi-
nence thread is displaced from the center of the tube. In such
a case, only the term related to Cowling’s diffusion is modified
in the way noted in Section 3.2, while the term related to the
resonant damping is not affected at all. The damping time by
resonant absorption in the general case is

τD ≈
√

2

vAp

1

l/a

√[
(L − Lp)Lp + 4L−

e L+
e

]
Lp

L
, (35)

which has the same dependence on L−
e and L+

e as the period
(Equation (22)). Since the resonant damping dominates over
Cowling’s diffusion, we anticipate by means of this analytical
estimations that the damping ratio is almost unaffected by the
position of the prominence region within the fine structure.

4. NUMERICAL RESULTS

4.1. Centered Prominence Thread

In this section, we assume that the prominence region is
centered within the tube, i.e., L−

e = L+
e = 1

2 (L − Lp). We
numerically solve the dispersion relation (Equation (16)) by
means of standard methods and obtain the frequency of the
fundamental mode. We study the dependence of the results
on Lp/L.

We plot in Figure 2(a) the A(z) function corresponding
to the fundamental even kink mode for different values of
Lp/L. The A(z) function gives the dependence of the transverse
displacement in the longitudinal direction at r = a. We see that
A(z) is mainly confined within the prominence part of the flux
tube and satisfies the line-tying condition at z = z±

wall = ±L/2.
For a homogeneous prominence tube, i.e., Lp/L = 1, the A(z)
function becomes proportional to cos(π

L
z).
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Figure 3. Results in the case without a transverse transitional layer and for the prominence thread located at the central part of the magnetic tube. (a) Period, P, of the
fundamental kink mode in units of the internal Alfvén travel time, τAp, as a function of Lp/L. The horizontal dotted line corresponds to the period of the kink mode
in a homogeneous prominence cylinder. The symbols are the approximation given by Equation (24). (b) Damping time, τD, in units of the internal Alfvén travel time,
τAp, as a function of Lp/L. The different lines denote μ̃p = 0.5 (dotted), 0.6 (dashed), 0.8 (solid), and 0.95 (dash-dotted). The symbols are the approximation given by
Equation (27) for μ̃p = 0.8. (c) τD/P vs. Lp/L. The line styles have the same meaning as in panel (b), and the symbols are the approximation given by Equation (28).

(A color version of this figure is available in the online journal.)

4.1.1. Case without a Transverse Transitional Layer (l/a = 0)

First, we take into account the case without a transverse tran-
sitional layer, i.e., l/a = 0, and so we study the kink mode
damping due to Cowling’s diffusion exclusively. Figure 3(a)
displays the period, P, as a function of Lp/L for different values
of the ionization degree in the prominence region, whereas Fig-
ure 3(b) shows the corresponding values of the damping time,
τD. Both values are given in dimensionless form with respect to
the internal Alfvén travel time, τAp = L/vAp. We see that P/τAp
increases as Lp/L increases and tends to the value for a homo-
geneous prominence cylinder when Lp/L → 1. In addition,
we find that P is independent of the ionization degree. On the
contrary, τD is strongly dependent on the ionization degree, as
expected. τD/τAp slightly increases as Lp/L becomes larger. We
see that the analytical expressions for the period (Equation (24))
and the damping time (Equation (27)) are in agreement with the
solution of the full dispersion relation for realistic, small values
of Lp/L, i.e., Lp/L � 0.4, whereas the approximate expres-
sions diverge from the actual solution when the prominence re-
gion occupies most of the magnetic tube. As commented before,
high-resolution observations suggest that the parameter Lp/L is
small in the fine structures of prominences. On the other hand,
Figure 3(c) displays τD/P versus Lp/L. The numerical solution
of the dispersion relation shows little dependence on Lp/L,

while the analytical approximation (Equation (28)) diverges
from the numerical value in the limit of large Lp/L. Given
the large values of τD/P obtained, we can conclude that the ef-
ficiency of the damping due to Cowling’s diffusion in a partially
filled flux tube does not improve with respect to the longitudi-
nally homogeneous tube case of Soler et al. (2009a, 2009b).

4.1.2. Case with a Transverse Transitional Layer (l/a �= 0)

Now, we take the case l/a �= 0 into account. The kink mode
is damped by resonant absorption in the transverse transitional
layer. We have computed both the period and the damping time
of the fundamental kink mode as a function of the different
parameters, namely μ̃p, l/a, and Lp/L. Regarding the period, we
find that both its value and its dependence on Lp/L are the same
plotted in Figure 3(a) because the period is almost independent
of μ̃p and l/a. For the sake of simplicity, we do not repeat this
figure again and refer to Figure 3(a). Therefore, the presence of
the transverse transitional layer in the TB approximation does
not modify the period of kink oscillations with respect to the
case l/a = 0. The period could be slightly affected if thick
layers, i.e., l/a > 1, are considered and the resistive equations
are solved numerically instead of assuming the TB approach
(see, e.g., Van Doorsselaere et al. 2004). This issue will be
further addressed by I. Arregui et al. (2010, in preparation).
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Figure 4. Results in the case with a transverse transitional layer and for the prominence thread located at the central part of the magnetic tube. (a) τD, in units of the
internal Alfvén travel time, τAp, and (b) τD/P as a function of Lp/L. The different lines in both panels denote l/a = 0.05 (dotted), 0.1 (dashed), 0.2 (solid), and 0.4
(dash-dotted). The symbols in panels (a) and (b) are the approximations given by Equations (34) and (32), respectively, with l/a = 0.2.

(A color version of this figure is available in the online journal.)

Figure 4(a) shows τD/τAp versus Lp/L for different values
of l/a. These computations correspond to an ionization degree
μ̃p = 0.8, but equivalent computations for other values of μ̃p
provide almost identical results because the effect of Cowling’s
diffusion is negligible in comparison to that of resonant ab-
sorption. As expected, the value of the damping time decreases
with l/a. The approximate value of τD given by Equation (34)
is in good agreement with the full solution for Lp/L � 0.4,
as happens for the period. In order to assess the efficiency of
the resonant damping, Figure 4(b) displays the corresponding
values of τD/P . In comparison to the damping ratio by Cowl-
ing’s diffusion (see Figure 3(c)), much smaller values of τD/P
are now obtained. As predicted analytically by Equation (32),
τD/P is almost independent of Lp/L. By comparing Figures 3(a)
and 4(a), we see that both the period and the damping time have
a very similar dependence on Lp/L, so the dependence on Lp/L
is canceled when the damping ratio is computed. In this case, a
very good agreement between the numerical result and the an-
alytical approximation (Equation (32)) is found even for large
values of Lp/L.

4.2. Effect of the Position of the Prominence
Thread within the Magnetic Tube

In this section, we study the effect of the position of the
prominence region within the magnetic flux tube. The results of
Section 4.1 correspond to the case in which the thread is located
at the center of the cylinder. Here, we allow the dense region
to be displaced from the center of the tube. Hence, we must
consider the general dispersion relation given by Equation (11).
The dispersion relation is solved numerically for the lowest
frequency solution, equivalent to the fundamental kink mode of
the centered case.

We display in Figure 2(b) the A(z) function for different
values of L−

e /L for Lp/L = 0.2 and μ̃p = 0.8. Since the
oscillation is dominated by the prominence physical prop-
erties, we see that the maximum of A(z) is always in the
prominence region (denoted by the thick part of the lines
in Figure 2(b)), regardless of its location within the flux
tube.

Next, we plot the period (Figure 5(a)) and the damping time
(Figure 5(b)) as functions of L−

e /L for Lp/L = 0.1, μ̃p = 0.8,
and different values of l/a. We obtain that the longest period

takes place when the prominence thread is centered within the
flux tube, i.e., when L−

e /L = 1
2 (1 − Lp/L) = 0.45 for this

particular set of parameters, and P decreases symmetrically
around L−

e /L = 0.45 when L−
e /L increases or decreases. The

dependence of τD on L−
e /L shows the same behavior as P.

Such as happens with the dependence on Lp/L (Figure 4), the
dependence on L−

e /L also cancels out when the damping ratio
is computed (see Figure 5(c)). Hence, in our model the value of
τD/P is independent of both Lp/L and L−

e /L. We can also see
in Figure 5(c) that the approximate τD/P given by Equation (32)
remains valid even when the thread is not located at the center
of the magnetic tube.

5. IMPLICATIONS FOR PROMINENCE SEISMOLOGY

The obtained results have direct implications for the deter-
mination of physical parameters in prominence fine structures
using MHD seismology together with observed periods and
damping times. The technique of MHD seismology has been
previously applied by some authors to obtain information of the
plasma physical conditions in the context of coronal loop oscil-
lations (e.g., Nakariakov & Ofman 2001; Arregui et al. 2007,
2008a; Goossens et al. 2008), prominence global oscillations
(e.g., Roberts 1991; Regnier et al. 2001; Pouget et al. 2006), and
prominence thread oscillations (e.g., Terradas et al. 2008; Lin
et al. 2009). As partial ionization has a negligible effect on the
damping of oscillations, we here concentrate on the inversion
of parameters using theoretical results for resonantly damped
eigenmodes. Following the analytical and numerical inversion
schemes by Arregui et al. (2007) and Goossens et al. (2008) for
coronal loops, Arregui & Ballester (2010) have recently pre-
sented the inversion of prominence Alfvén speed, transverse
inhomogeneity length scale, and density contrast in oscillating
filament threads using results for resonantly damped kink os-
cillations in one-dimensional (1D) filament thread models. A
similar procedure can be followed with 2D threads by consid-
ering the impact that the length of the thread has on the period
and damping ratio of standing kink modes in partially filled fine
structure oscillations.

In the following computations, we consider that the promi-
nence thread is located at the center of the magnetic flux tube.
In the 2D case and for small Lp/L, i.e., Lp/L � 0.4, the os-
cillatory period is approximately given by Equation (23) for
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Figure 5. (a) Period, P, of the fundamental kink mode in units of the internal Alfvén travel time, τAp, as a function of L−
e /L. The symbols are the approximation given

by Equation (22). (b) Damping time, τD, in units of the internal Alfvén travel time, τAp, as a function of L−
e /L. The different lines denote l/a = 0.05 (dotted), 0.1

(dashed), 0.2 (solid), and 0.4 (dash-dotted). The symbols are the approximation given by Equation (35) with l/a = 0.2. (c) τD/P vs. L−
e /L. The line styles have the

same meaning as in panel (b), and the symbols are the approximation given by Equation (32) with l/a = 0.2. In all computations, Lp/L = 0.1.

(A color version of this figure is available in the online journal.)

arbitrary density contrast and by Equation (24) in the limit of
large density contrast. In the 1D case, the kink mode period in
the TT approximation is

P ≈ λ

vAp

√
ρp + ρc

2ρp
, (36)

where λ is the wavelength. By comparing Equations (23)
and (36), we see that the expression in the 1D case is equivalent
to that in the 2D case if a particular or effective value of λ is
considered, namely λ ≈ π

√
(L − Lp)Lp. This effective value of

λ allows us to generalize the 1D inversion to a 2D configuration.
Equation (23) is not accurate enough when Lp/L � 0.4, but we
can still use a similar expression for the period for any Lp/L as

P ≈ C
π

vAp

√
ρp + ρc

2ρp

√
(L − Lp)Lp, (37)

with C a correction factor that is computed by comparing the
period given by Equation (23) to the general result of Figure 3(a)
(solid line), obtained by solving the full dispersion relation
(Equation (16)). Thus, λ ≈ Cπ

√
(L − Lp)Lp in the general

case. For example, by assuming L = 105 km, we obtain
C ≈ 1.05 and λ ≈ 9.89 × 104 km for Lp/L = 0.1, whereas

C ≈ 1.58 and λ ≈ 1.98×105 km for Lp/L = 0.8. As expected,
λ → 2L = 2 × 105 km in the limit Lp/L → 1.

On the other hand, the damping ratio is unaffected by the
length of the thread and the same expression for 1D models given
by Equation (32) holds. By following the analytical inversion
scheme by Goossens et al. (2008), the valid equilibrium models
that explain equally well a given set of parameters (P, τD, and L)
are obtained. The resulting 1D curve in the three-dimensional
parameter space is shown in Figure 6(a), for different values of
the length of the thread. Regardless of the value of Lp/L, the
inversion curve allows us to obtain well-constrained values for
vAp and l/a in the limit of high density contrast values. Because
of the decrease in λ produced by the decrease of the length of the
thread, the obtained Alfvén speed in the prominence decreases
as Lp/L gets smaller. An accurate estimate of the length of
the thread, in comparison to the length of the magnetic flux
tube, is therefore crucial for the determination of the Alfvén
speed in the thread. As pointed out by Dı́az et al. (2010),
Lp/L can be obtained from the ratio of the fundamental mode
period to that of the first harmonic, if these values are reported
from the observations. However, because of the independence
of the damping ratio on Lp/L, the projection of the solution
curve onto the (ρp/ρc, l/a)-plane remains unaltered regardless
of the value of Lp/L. Hence, the inverted value of the transverse
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Figure 6. (a) Inversion of physical parameters in the (ρp/ρc, l/a, vAp) space for a prominence thread oscillation with P = 20 minutes and τD/P = 3, and for different
values of Lp/L (indicated within the figure). The thin continuous, dotted, and dashed lines correspond to the projections of the three-dimensional curves to the (ρp/ρc,
l/a)-, (l/a, vAp)-, and (vAp, ρp/ρc)-planes, respectively. (b) Inversion of the prominence Alfvén speed, vAp, as a function of the period, P, in the limit of large density
contrast. The different lines correspond to Lp/L = 0.2 (solid), 0.4 (dotted), 0.6 (dashed), and 1 (dot-dashed). The shaded zone corresponds to the range of typically
observed periods in thread oscillations. (c) Magnetic field strength, B0, as a function of the prominence thread density, ρp, assuming an oscillatory period of P =
26 minutes. The different lines have the same meaning as in panel (b). In all these computations, L = 105 km.

(A color version of this figure is available in the online journal.)

inhomogeneity length scale, which is obtained taking the limit
ρp/ρc → ∞, is not affected by different values of the length of
the thread.

The value of P has a direct impact on the seismological deter-
mination of the Alfvén speed, with the inversion of Figure 6(a)
corresponding to P = 20 minutes. The effect of the period on
the determination of the prominence Alfvén speed is indicated
in Figure 6(b), where we see that the Alfvén speed decreases
as the period grows. Here, it is important recalling that the usu-
ally reported periods of oscillating threads (e.g., Lin et al. 2007,
2009; Okamoto et al. 2007; Ning et al. 2009) are in the range
2–10 minutes. Note the very large values of vAp obtained in the
range of observed periods (the shaded zone in Figure 6(b)). By
assuming ρp = 5 × 10−11 kg m−3 and B0 = 5 G as typical
values of the density and magnetic field strength of quiescent
prominences that can be found in the literature, respectively,
the corresponding Alfvén speed is vAp ≈ 63 km s−1, which for
L = 105 km and Lp/L = 0.2 gives P ≈ 23.5 minutes. Hence,
to obtain realistic values of vAp, we have to consider larger peri-
ods than those usually observed. Equation (22) indicates that, for
the same set of parameters, the period decreases if the thread is
displaced from the center of the magnetic tube (see Figure 5(a)).
The maximum shift of the period with respect to the value in
the centered case is proportional to

√
Lp/L. Adopting the same

parameters as before, the period varies from P ≈ 23.5 minutes

to P ≈ 9.4 minutes when the thread is displaced from the center
to the end of the magnetic tube, and so the period enters within
the observed range. However, there is no solid basis to assume
that all short-period oscillating threads are located at the ends
of their magnetic tubes. Alternatively, the presence of flows can
also shift the oscillatory period. Although mass flow has not
been included in our model, the time-dependent simulations of
flowing threads by Terradas et al. (2008) indicate that flow has
a minor influence on the period because the flow velocities are
much smaller than the Alfvén speed. In active region promi-
nences, the larger magnetic field strength could cause larger
Alfvén speeds, hence thread standing oscillations in active re-
gion prominences may have shorter periods than in quiescent
prominences.

Moreover, Lin et al. (2007, 2009) and Ning et al. (2009) re-
ported that the wavelengths of these short-period oscillations
are in the range 700–8000 km. The observed wavelengths are
between one and two orders of magnitude smaller than the wave-
lengths corresponding to standing oscillations computed from
Equations (36) and (37). Thus, the reported short wavelengths
are impossible to reconcile with the fundamental standing mode
of the fine structure. These results suggest that the observed
short-period and short-wavelength oscillations of threads in qui-
escent prominences may not be consistent with an interpretation
in terms of standing kink oscillations. A more likely explanation
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of these short-period and short-wavelength oscillations in terms
of propagating kink waves has been performed by Lin et al.
(2009). These authors seismologically inferred realistic values
of the Alfvén speed and magnetic field strength by assuming a
propagating wave interpretation (see details in Lin et al. 2009).

The limited duration of the currently available Doppler time
series may prevent the observation of standing modes with
periods larger than 10 minutes (e.g., the time series last for only
18 minutes in the observations of Lin et al. 2007). However, there
is some minimal evidence of larger periods in longer time series
that could be consistent with standing modes. These longer
periods have been obtained from Doppler signals that have been
averaged over a large area. As the spatial scales of standing
modes are very large, their oscillatory patterns could be found
in spatially averaged signals. By contrast, the averaging process
could mix signals coming from different adjacent threads,
so we cannot be fully confident that the period corresponds
to an individual thread oscillation. Yi et al. (1991) detected
thread oscillations with a period of 16 minutes and minimum
wavelength of 2×104 km in their Doppler observations with low
spatial resolution (1′′), while Lin (2004) reported 26 minutes and
a minimum wavelength of 4×104 km in their averaged Doppler
signals. Although not only the periods but also the wavelengths
reported in these two works are consistent with a standing
oscillation, we have to be very cautious with this interpretation.
Additional information such as, e.g., the polarization of the
oscillations and the phase difference between perturbations,
would be needed for a more robust analysis and an unequivocal
determination of the wave mode.

To perform a simple application, let us assume that the period
of 26 minutes reported by Lin (2004) corresponds to a standing
thread oscillation. Then, the estimation of the magnetic field
strength in the prominence thread is possible. Following the
analysis presented by Lin et al. (2009) using the observational
period and the seismologically determined Alfvén speed (as in
Figure 6(a)), the magnetic field strength can be computed for a
given prominence density. This result is plotted in Figure 6(c).
For a typical density of ρp = 5 × 10−11 kg m−3, magnetic field
strengths in the range 4–7 G are obtained, approximately, when
varying Lp/L between 0.2 and 1. These values of the magnetic
field strength are in agreement with previous magnetic field
measurements in quiescent prominences using the Hanle effect
(e.g., Leroy et al. 1984). Hence, the method can be applied in
the future using real data if reliable observations of standing
thread oscillations are reported.

6. CONCLUSION

In this paper, we have investigated standing kink oscillations
of prominence fine structures. The longitudinal nonuniformity
has been taken into account by modeling the fine structure
as a magnetic tube only partially filled with the prominence
material. We have followed an analytical method based on
the TT approximation and have found a dispersion relation for
kink oscillations damped by Cowling’s diffusion and resonant
absorption in the TB approach. This dispersion relation has
been numerically solved and a parametric study of the solution
has been performed. In addition to the general dispersion
relation, we have obtained simple analytical approximations
to the period, the damping time, and their ratio.

Both approximate and full results conclude that resonant
absorption is much more efficient than Cowling’s diffusion for
the kink mode damping, with the values of τD/P in agreement
with those reported in the observations. As happens for long-

wavelength propagating waves in the dense part of the fine
structure (Soler et al. 2009b), the prominence plasma ionization
degree turns out to be irrelevant for the resonant damping of
the oscillations. In addition, the value of τD/P is found to be
independent of both the position of the prominence thread within
the magnetic tube and the length of the prominence region and
coincides with the value for a homogeneous and fully ionized
prominence tube (Arregui et al. 2008a; Soler et al. 2009c).

Finally, we have discussed the seismological implications of
our analytical results, in particular Equations (24) and (33).
With these expressions, it is possible to estimate some relevant
physical parameters of oscillating threads if the values of the
period and damping time are available from the observations.
Following this idea, we have performed a seismological inver-
sion of the prominence thread Alfvén speed and the transverse
inhomogeneity length scale by using our theoretical results and
adopting ad hoc values for the period and damping time. We
have shown that for short-period (2–10 minutes) and short-
wavelength (700–8000 km) thread oscillations, the determined
Alfvén speeds are much larger than the expected, realistic val-
ues, pointing out that short-period and short-wavelength thread
oscillations may not be consistent with a standing kink mode
interpretation and could be related to propagating waves. On the
contrary, thread oscillations with periods larger than 10 minutes
and wavelengths larger than 104 km may be interpreted as stand-
ing oscillations. In this last case, the Alfvén speed and magnetic
field strength estimated by the seismological inversion are real-
istic in the context of prominences. Thus, the method can be put
into practice to extract indirect information about prominences
when standing thread oscillations are unequivocally observed
and the oscillation parameters, i.e., period, damping time, and
wavelength, along with the thread length are provided from the
observations.

In this work, we have assumed that there is an abrupt jump
of the density at the boundary between the prominence thread
and the evacuated part of the magnetic tube. This simplification
has allowed us to proceed analytically. Actually, one should
expect a continuous variation of the plasma properties in the
longitudinal direction between both regions, which could affect
somehow our present results. The study of the damping of kink
oscillations in fully nonuniform 2D fine structures is broached
numerically by I. Arregui et al. (2010, in preparation) in a
following investigation. Other additional ingredients such as,
e.g., magnetic twist or curvature and the presence of flows might
be included in future work.
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APPENDIX

DERIVATION OF THE DISPERSION RELATION

Here, we give extensive details about the method that leads
us to the dispersion relation (Equation (11)).
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A.1. Boundary Conditions at r = a

First, we must consider appropriate boundary conditions for
the solutions of Equations (6) and (10) at the cylinder edge, i.e.,
r = a. In the evacuated part of the tube, we assume ρe = ρc and
there is no transverse transitional layer. Hence, the boundary
conditions are those given by Dymova & Ruderman (2005) in
their Equation (4), namely,

[[pT]] = 0, [[vr ]] = 0, at r = a for |z| > Lp/2, (A1)

where [[X]] stands for the jump of the quantity X.
On the other hand, in the prominence part of the tube we

consider the effect of resonant absorption in the transitional
layer. We follow the treatment by Andries et al. (2005), who
generalize the concept of the jump conditions at the resonance
position of Sakurai et al. (1991) to the case of a longitudinally
inhomogeneous tube. Andries et al. (2005) combined the jump
conditions with the TB approximation, i.e., l/a � 1, to
obtain analytical expressions of the dispersion relation and the
frequency for longitudinally stratified tubes. The accuracy of
this analytical method was numerically verified by Arregui et al.
(2005), who found a good agreement between the expressions
of Andries et al. (2005) and their numerical computations. In
the TT approximation, i.e., a/L � 1, Dymova & Ruderman
(2006) follow a similar formalism and also provide equivalent
expressions for the jump conditions that can be applied to our
perturbations. Hence, it is convenient to express pT and vr as

pT =
∞∑

n=1

pTnGn, vr =
∞∑

n=1

vrnGn, (A2)

where pTn and vrn are the coefficients of the series expansions
of pT and vr , respectively, with respect to the functions Gn
determined by the Sturm–Liouville problem

v2
A(r)

d2Gn

dz2
= −λ2

n(r)Gn, (A3)

with appropriate boundary conditions for Gn at z = ±Lp/2,
with λ2

n the corresponding eigenvalues. Equation (A3) describes
the spectrum of Alfvén modes, with λn (r) the corresponding
frequencies of the Alfvén continuum. In general, it is not
straightforward to deduce the boundary conditions for Gn at
z = ±Lp/2 because they are given by the continuity of Gn
at z = ±Lp/2, and the value of Gn at z = ±Lp/2 is also
determined by the properties of the evacuated region. In a
longitudinally homogeneous tube, i.e., for Lp = L and with
the Alfvén speed depending on the radial direction only, we
simply have that the boundary conditions are Gn (±L/2) = 0
and obtain λn (r) ≡ ωA (r) = nπ

L
vA (r), with n = 1, 2,...

In our notation, the jump conditions for pTn and vrn provided
by Dymova & Ruderman (2006) are

[[pTn]] = 0, [[vrn]] = −πωR
m2/a2

|ρ0Δn|rAn

pTn, at

r = rAn for |z| < Lp/2, (A4)

where rAn is the Alfvén resonance position for the nth mode
and Δn = d

dr
(ω2

R − λ2
n), with ωR is the real part of the

frequency. According to Equation (A2), the condition for pTn in
Equation (A4) leads to [[pT]] = 0 at r = rAn for |z| < Lp/2.
On the contrary, the condition for vrn depends on |ρ0Δn|rAn

, and
a more detailed analysis is needed.

For our subsequent analysis, we do not need the precise
value of λn (r) but only its functional dependence on the
radial direction. For the given sinusoidal density profile in the
transitional layer, we can express the Alfvén speed squared in
the transitional layer as v2

A (r) = v2
Ap/f (r), with

f (r) = 1

2

{(
1 +

ρc

ρp

)
−

(
1 − ρc

ρp

)
sin

[π

l
(r − a)

]}
. (A5)

Hence, Equation (A3) is rewritten as

v2
Ap

d2Gn

dz2
= −λ2

n(r)f (r)Gn. (A6)

With no loss of generality, we can assume that Gn is only a
function of z, i.e., the different magnetic surfaces are not coupled
to each other. So, according to Equation (A6), the quantity
λ2

n(r)f (r) corresponds to the Alfvén eigenvalue squared in
the prominence part of the tube. Since ρp is homogeneous, its
corresponding Alfvén eigenvalue does not depend on r, meaning
that the radial contribution of λ2

n(r) and f (r) cancels out. Thus,
we define λ2

pn ≡ λ2
n(r)f (r), with λpn a constant corresponding to

the Alfvén eigenvalue in the homogeneous prominence thread.
Therefore, we have

λ2
n(r) = λ2

pn

f (r)
, (A7)

where all the radial dependence of λ2
n (r) comes from the

function f (r). With the help of Equation (A7), we obtain
that Δn = λ2

n (r) f ′ (r) /f (r), where the prime denotes the
radial derivative. Finally, we use the resonant condition, namely
λ2

n(rAn) = ω2
R and write

|ρ0Δn|rAn
= ω2

R|∂rρ0|rAn
. (A8)

Thus, the condition for vrn in Equation (A4) becomes

[[vrn]] = −π
m2/a2

ωR|∂rρ0|rAn

pTn, at r = rAn for |z| < Lp/2.

(A9)
The value of rAn is in principle different for each value of n and

could be determined from the resonant condition λ2
n(rAn) = ω2

R
if the eigenvalues λ2

n(r) were a priori known and the number
of Alfvén eigenmodes that are resonant to the kink mode is
also known. Hence, the derivative of the density profile at each
resonant position could be computed. A reasonable assumption
in the TT and TB limits is to consider rAn ≈ a for all n, so
that |∂rρ0|a is a constant independent of n, meaning that we are
assuming that all resonances take place at the same position.
For our sinusoidal profile, |∂rρ0|a ≈ π (ρp − ρc)/2l. Note that
this is not a very strong restriction for the fundamental kink
mode, since it is likely that the resonant condition is satisfied
for n = 1 only, because λ2

n(r) grows as n increases and so only
one resonance takes place. The approximation rAn ≈ a might
not be valid for the kink mode overtones, but here we restrict
ourselves to the fundamental mode. Alternatively, a simpler
linear density profile could be adopted (Goossens et al. 2002) in
which the derivative of the density profile does not depend on
the position. Therefore using Equation (A2), we arrive at

[[vr ]] = −π
m2/a2

ωR|∂rρ0|a pT, at r = a for |z| < Lp/2.

(A10)
For Lp = L, the jump condition of Equation (A10) consis-

tently reduces to that provided by Sakurai et al. (1991).
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A.2. Solution in the Evacuated Regions

Let us consider first the boundary conditions for the evacuated
parts (Equation (A1)). The analysis here is identical to that of
Dymova & Ruderman (2005). For the condition on the total
pressure perturbation, we obtain Ae(z) = Ac(z) = A(z). Next,
we rewrite Equation (4) as

v2
A0

∂2vr

∂z2
+ ω2vr = − iω

ρ0

∂pT

∂r
. (A11)

We evaluate Equation (A11) for r ≈ a on both sides of the
tube boundary. Thus, in the evacuated part,

v2
Ae

∂2vre

∂z2
+ ω2vre = − iω

ρe

m

a
A(z), for r � a, (A12)

whereas in the corona,

v2
Ac

∂2vrc

∂z2
+ ω2vrc = iω

ρc

m

a
A(z), for r � a. (A13)

According to the boundary condition for vr given by
Equation (A1), vre = vrc. Thus, we combine Equations (A12)
and (A13) to find the following two expressions:

∂2vr

∂z2
= iω

m

a

μ

B2
0

ρe + ρc

ρe − ρc
A(z), (A14)

vr = −i
m

a

1

ω

2

ρe − ρc
A(z), (A15)

where we have considered that the magnetic field is homo-
geneous. Now, we differentiate Equation (A15) with respect
to z twice and compare the resulting expression with Equa-
tion (A14). We obtain

d2A(z)

dz2
+

ω2

c2
ke

A(z) = 0. (A16)

The quantity cke corresponds to the kink speed in the
evacuated region (Equation (14)). Note that in our particular
application ρe = ρc, so cke = vAe. However, we keep the general
notation cke in the following expressions.

To solve Equation (A16), we consider the line-tying condition
at the photosphere, i.e., A(z±

wall) = 0. Therefore, the solution in
the two evacuated zones is

A(z) =

⎧⎪⎪⎨
⎪⎪⎩

C1 sin
[

ω
cke

(
z − Lp/2 − L+

e

)]
, for z > Lp/2,

C2 sin
[

ω
cke

(
z + Lp/2 + L−

e

)]
, for z < −Lp/2,

(A17)
where C1 and C2 are constants.

A.3. Solution in the Prominence Thread

In the prominence thread, we adopt the TB approach and use
the jump conditions given by Equation (A4) as our boundary
conditions. The combination of both formalisms to investigate
resonant waves in coronal flux tubes has been reviewed by
Goossens et al. (2006). Again, the condition over the total
pressure perturbation gives Ap (z) = Ac (z) = A (z). Near the
boundary, we express vrc = vrp + δvr , where δvr is the jump

of the radial velocity perturbation provided by Equation (A10),
namely,

δvr = −π
m2/a2

ωR |∂rρ0|a
pT. (A18)

As before, we evaluate Equation (4) on both sides of the tube
boundary and, after some algebra, we arrive at the following
expressions:

∂2vrp

∂z2
= m

a

iω

v2
Ac − Γ2

Ap

ρp + ρc

ρpρc
A (z) +

m2/a2

ωR |∂rρ0|a

× π

v2
Ac − Γ2

Ap

[
v2

Ac
d2A (z)

dz2
+ ω2A (z)

]
, (A19)

vrp = −m

a

i

ω

ρpΓ2
Ap + ρcv

2
Ac

ρpρc

(
v2

Ac − Γ2
Ap

)A (z) − π

ω2

Γ2
Ap

v2
Ac − Γ2

Ap

× m2/a2

ωR |∂rρ0|a

[
v2

Ac
d2A (z)

dz2
+ ω2A (z)

]
. (A20)

Now, we differentiate Equation (A20) with respect to z twice
and compare the resulting expression with Equation (A19),
obtaining

d4A(z)

dz4
+

[
ω2

(
Γ2

Ap + v2
Ac

Γ2
Apv

2
Ac

)
+

iω

π

ωR|∂rρ0|a
m/a

(
ρpΓ2

Ap + ρcv
2
Ac

ρpρcΓ2
Apv

2
Ac

)]

× d2A(z)

dz2
+ ω2

[
ω2

Γ2
Apv

2
Ac

+
iω

π

ωR|∂rρ0|a
m/a

×
(

ρp + ρc

ρpρcΓ2
Apv

2
Ac

)]
A(z) = 0. (A21)

The general Equation (65) of Dymova & Ruderman (2006)
and our Equation (A21) are equivalent if a constant piecewise
density is assumed in the former and Cowling’s diffusion is
omitted in the latter. Equation (A21) can be solved by taking
a solution of the form exp (ikzz) and obtaining the subsequent
forth-order polynomial for kz. Two independent values of kz
are possible, namely kz1 and kz2. Thus, the general solution of
Equation (A21) is

A(z) = D1 exp(ikz1z) + D2 exp(−ikz1z)

+ D3 exp(ikz2z) + D4 exp(−ikz2z), (A22)

with D1, D2, D3, and D4 constants that are determined by
the boundary conditions at z = ±Lp/2. However, to keep
this general analysis implies that the following expressions
are complicated and require an additional mathematical effort.
Instead, we choose a more restrictive way to simplify matters.

For our next analysis, Equation (A21) is rewritten in a
convenient form as

b2

ω2

d4A (z)

dz4
+

d2A (z)

dz2
+

ω2

c̃2
kp

A (z) = 0, (A23)

where c̃2
kp and b2 are defined in Equations (12) and (13).

In the case of the fundamental mode, one could assume that,
when the terms related to Cowling’s diffusion and resonant ab-
sorption are present, the characteristic scale for the variations
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of the eigenfunctions in the z-direction is only slightly modified
with respect to the ideal case without transitional layer. There-
fore, a reasonable approximation is to relate the forth-order
derivative of A (z) in Equation (A23) with the second-order
derivative as follows:

d4A (z)

dz4
∼ −K2 d2A (z)

dz2
, (A24)

where the quantityK plays the role of the longitudinal wavenum-
ber. We can approximate K by its expression in the ideal case,
namely,

K2 ≈ ω2

c2
kp

, (A25)

with c2
kp the ideal kink speed. Hence, Equation (A23) becomes

d2A (z)

dz2
+

ω2

c̃2
kp

(
1 − b2

c2
kp

)A (z) ≈ 0, (A26)

which is formally identical to Equation (A16). It is important
to recall that the approximation of the forth-order z-derivative
of A (z) may introduce some uncertainty in the solutions of
Equation (A26) in comparison with the solutions of the full
Equation (A21). However, we expect a minor discrepancy in
the case of the fundamental mode because its characteristic
scale in the z-direction should not be essentially modified when
the terms related to Cowling’s diffusion and resonant absorption
are taken into account in the equations.

The solution of Equation (A26) is

A(z) = E1 cos

⎛
⎝ ω

c̃kp

√
1 − b2

c2
kp

z

⎞
⎠

+ E2 sin

⎛
⎝ ω

c̃kp

√
1 − b2

c2
kp

z

⎞
⎠ , if |z| � Lp/2,

(A27)

with E1 and E2 constants. When the prominence thread is
centered within the magnetic tube, i.e., L−

e = L+
e = 1

2 (L − Lp),
the solutions of Equation (A26) can be separated according to
their symmetry about z = 0. Thus, even modes are described by
E1 �= 0, E2 = 0 and odd modes by E1 = 0, E2 �= 0.

A.4. Matching the Solutions at z = ±Lp/2

In order to match the solution in the prominence thread
(Equation (A27)) with those in the evacuated regions
(Equation (A17)), we impose the boundary conditions

[[A]] = 0,

[[
dA

dz

]]
= 0, at z = ±Lp/2, (A28)

corresponding to a contact discontinuity (Goedbloed & Poedts
2004). After applying these boundary conditions, the general
dispersion relation (Equation (11)) is finally obtained.
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