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ABSTRACT

Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments
and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of
propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant
absorption and ion–neutral collisions (Cowling’s diffusion) are the damping mechanisms taken into account. The
dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by
considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of
the kink mode frequency are obtained in the thin tube and thin boundary approximations. For typically reported
periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping,
while ion–neutral collisions have a minor role. Cowling’s diffusion dominates both the propagation and damping
for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of
kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by
comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the
ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the
determination of the inhomogeneity length scale.

Key words: magnetohydrodynamics (MHD) – Sun: corona – Sun: filaments, prominences – Sun: oscillations –
waves
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1. INTRODUCTION

Waves and oscillatory motions are frequently reported in the
observations of solar prominences and filaments (see reviews by
Oliver & Ballester 2002; Ballester 2006; Engvold 2008; Mackay
et al. 2010). In high-resolution observations, the prominence
fine structures (threads) often display transverse oscillations of
small amplitude (e.g., Lin et al. 2005, 2007, 2009; Okamoto
et al. 2007; Ning et al. 2009), which have been interpreted
as kink magnetohydrodynamic (MHD) waves (e.g., Dı́az et al.
2002; Dymova & Ruderman 2005; Terradas et al. 2008; Lin
et al. 2009). The observed threads in Hα images are between
3000 km and 28,000 km long, and between 100 km and 600 km
wide (Lin 2004; Lin et al. 2008). The threads outline part of
much larger magnetic flux tubes which are probably rooted
in the solar photosphere. The majority of observed periods of
transverse thread oscillations roughly range between 1 minute
and 10 minutes, but a few detections of longer periods of
about 20 minutes have been also informed (e.g., Yi et al.
1991; Lin 2004). The wavelengths are usually between 700 km
and 8000 km, although values up to 250,000 km have been
reported (Okamoto et al. 2007). Recently, Soler et al. (2010a)
pointed out that the short periods and wavelengths are consistent
with an interpretation in terms of propagating waves, while
periods larger than 10 minutes and wavelengths longer than
100,000 km could correspond to standing oscillations of the
whole magnetic tube. In the case of standing oscillations, the
value of the wavelength is not strongly influenced by the thread
properties but is mainly determined by the total length of the
magnetic tube, since the fundamental kink mode wavelength
is twice the length of the tube, approximately (see details in
Soler et al. 2010a). Although there are no direct measurements
of the length of prominence magnetic tubes, this parameter is

estimated around 105 km. This rough estimation is in agreement
with the wavelengths reported by Okamoto et al. (2007). In
addition, a common feature of the observations is that the
oscillations are strongly damped (e.g., Terradas et al. 2002;
Ning et al. 2009; Lin et al. 2009).

Motivated by the observational evidence, great effort has been
recently devoted to the theoretical study of both temporal and
spatial damping of MHD waves in prominence plasmas. Tem-
poral damping is investigated for waves with fixed wavelength,
while spatial damping is studied for propagating waves with
fixed frequency. Both phenomena have been extensively inves-
tigated in unbounded and homogeneous prominence plasmas by
assuming different damping mechanisms (e.g., Carbonell et al.
2004, 2006, 2010; Forteza et al. 2007, 2008). The reader is
referred to Oliver (2009), Arregui & Ballester (2010), and ref-
erences therein for a complete account of the theoretical works.

In the case of prominence thread oscillations, works so far
have focused on temporal damping by mechanisms such as, e.g.,
non-adiabatic effects (Soler et al. 2008), ion–neutral collisions
(Soler et al. 2009a), and resonant absorption (Arregui et al.
2008, 2010; Soler et al. 2009c; Soler et al. 2009b; Soler et al.
2010a). The conclusions of these works indicate that resonant
absorption is efficient enough to provide realistic kink mode
damping times consistent with the reported strong damping,
whereas non-adiabatic effects are negligible and ion–neutral
collisions are only important for shorter wavelengths than
those observed. In the case of spatial damping, Pécseli &
Engvold (2000) studied the effect of ion–neutral collisions but
restricted themselves to Alfvén waves, and kink modes were not
investigated. Although spatial damping of kink waves has been
studied in the context of coronal loops (e.g., Pascoe et al. 2010;
Terradas et al. 2010b; Verth et al. 2010), to our knowledge no
detailed investigation taking into account the peculiar properties
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Figure 1. Sketch of the prominence thread model adopted in this work.

(A color version of this figure is available in the online journal.)

of prominence threads can be found in the existing literature.
The purpose of this paper is to fill this gap in the literature, as
the recent observations of wave damping in solar prominences
need to be understood.

Here, we study the spatial damping of propagating kink waves
in prominence threads. Our model is composed of a cylindrical
magnetic flux tube with partially ionized prominence plasma,
representing a thread, surrounded by a fully ionized coronal en-
vironment. The thread is nonuniform in the transverse direction.
Resonant absorption and ion–neutral collisions are assumed as
the damping mechanisms. We use the β = 0 approximation,
with β the ratio of the gas pressure to the magnetic pressure,
and the thin boundary (TB) approach to describe the effect of
resonant absorption in the Alfvén continuum using the connec-
tion formulae for the perturbations across the resonant layer
(e.g., Sakurai et al. 1991; Goossens et al. 1992). We determine
the dominant damping mechanism and obtain analytical expres-
sions for the wavelength, the damping length, and their ratio as
functions of the kink mode frequency.

This paper is organized as follows. Section 2 contains the
description of the model configuration and the basic equations.
First, the problem is attacked analytically in Section 3 by adopt-
ing the thin tube approximation. Later on, the full dispersion
relation is numerically solved and a parametric study of the
wavelength and damping length of the kink mode as functions
of the period is performed in Section 4. Finally, the conclusions
of this work are given in Section 5.

2. MODEL AND DISPERSION RELATION

The equilibrium configuration is composed of a straight
magnetic cylinder of radius a embedded in a homogeneous
environment representing the coronal medium (see Figure 1).
We use cylindrical coordinates, namely, r, ϕ, and z for the
radial, azimuthal, and longitudinal coordinates, respectively.
The magnetic field is uniform and along the axis of the cylinder,
B = Bêz, with B constant everywhere. Hereafter, subscripts p
and c denote prominence and coronal quantities, respectively.
The density within the prominence thread is denoted by ρp, while
the coronal density is ρc. Both ρp and ρc are homogeneous. A
transverse transitional layer is included in the radial direction,
where the density varies continuously between the internal and
external densities. We do not specify the form of the density
profile at this stage. The transverse inhomogeneous length
scale in the transitional layer is given by the ratio l/a, with
l the thickness of the layer. This ratio ranges from l/a = 0
if no transitional layer is present, to l/a = 2 if the whole
tube is radially inhomogeneous. Due to the presence of the
transverse transitional layer, the kink mode is resonantly coupled

to Alfvén continuum modes. The resonance leads to the kink
mode damping as the energy is transferred to Alfvén modes
at the Alfvén resonance position. This mechanism is known as
resonant absorption.

The prominence plasma is partially ionized and we adopt the
single-fluid formalism (e.g., Braginskii 1965). The ionization
degree is arbitrary and is denoted here by the mean atomic
weight of the prominence material, μ̃p. This parameter takes
values in the range 0.5 � μ̃p � 1, where μ̃p = 0.5 corresponds
to a fully ionized plasma and μ̃p = 1 to a fully neutral gas.
The external coronal medium is assumed fully ionized. By
assuming the β = 0 approximation and linear perturbations
from the equilibrium state, the basic MHD equations for a
partially ionized plasma discussed in this work are (see, e.g.,
Cowling 1956; Piddington 1956; Goodman 2000; Khodachenko
et al. 2004; Forteza et al. 2007)

ρ
∂v
∂t

= 1

μ
(∇ × b) × B, (1)

∂b
∂t

= ∇ × (v × B) + ∇ ×
{ ηC

B2
[(∇ × b) × B] × B

}
, (2)

where ρ is the local density, and v = (vr, vϕ, vz) and b =(
br, bϕ, bz

)
are the velocity and the magnetic field perturbations,

respectively, and μ is the magnetic permittivity. Note that
vz = 0 in the β = 0 approximation. In a partially ionized
plasma, the induction equation contains a term accounting for
Cowling’s diffusion, i.e., the second term on the right-hand
side of Equation (2). Cowling’s diffusion represents enhanced
magnetic diffusion caused by ion–neutral collisions, which
is several orders of magnitude more efficient than classical
Ohm’s diffusion and is the dominant effect in partially ionized
plasmas (Cowling 1956). For this reason, here we neglect Ohm’s
diffusion and other terms of minor importance present in the
generalized induction equation (see the complete expression
for the induction equation in, e.g., Braginskii 1965). Cowling’s
diffusion coefficient, ηC, depends on the ionization degree
through μ̃p as well as on the plasma physical conditions. The
expression of ηC for a hydrogen plasma is (e.g., Cowling 1956;
Braginskii 1965; Pinto et al. 2008; Soler 2010)

ηC = η +
B2ξ 2

n

μαin
, (3)

where ξn = 2 − 1/μ̃p is the relative density of neutrals, αin is
the ion–neutral friction coefficient given by

αin = 1

2
(1 − ξn) ρνin, (4)

with νin the ion–neutral collision frequency expressed as (see
details in, e.g., De Pontieu et al. 2001)

νin = ξn

mi
ρ

√
16kBT

πmi
Σin, (5)

where mi is the proton mass, kB is the Boltzmann constant, T is
the plasma temperature, and Σin is the ion–neutral collisional
cross section. For ion–neutral collisions in the prominence
plasma we take T ≈ 104 K and Σin ≈ 5 × 10−19 m2. Finally,
in Equation (3) η is the classical Ohm’s diffusion coefficient,
whose expression can be found in, e.g., Spitzer (1962), namely,

η = 3.7 × 10−6 me ln Λ
μe2T 3/2

, (6)
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with me the electron mass, e the electron charge, and ln Λ
the Coulomb logarithm (see, e.g., Priest 1982). In a partially
ionized plasma ηC � η, meaning that η can be neglected from
Equation (3) in practice. A generalization of Equation (3) for
a plasma composed of hydrogen and helium can be found in,
e.g., Soler et al. (2010b). As the effect of helium is negligible
for realistic helium abundances in prominences (Soler et al.
2010b), here we consider a pure hydrogen plasma. The effect of
Cowling’s diffusion is neglected in the external medium because
the corona is assumed fully ionized.

We follow an approach based on normal modes. Since ϕ and
z are ignorable coordinates, the perturbations are expressed pro-
portional to exp (imϕ + ikzz − iωt), where ω is the oscillatory
frequency, kz is the longitudinal wavenumber, and m is the az-
imuthal wavenumber (m = 1 for the kink mode). Alternatively,
the problem could be investigated by means of time-dependent
simulations of driven waves as in Pascoe et al. (2010). However,
in the linear regime the different values of m and kz are decou-
pled from each other, and a normal mode analysis is a simpler
procedure for linear waves. If Cowling’s diffusion is neglected,
our configuration corresponds to that studied by Terradas et al.
(2010b) for propagating kink waves in coronal loops. We ex-
tend their investigation by incorporating the effect of Cowling’s
diffusion due to ion–neutral collisions

By using the TB approach (see details in, e.g., Goossens
et al. 2006; Goossens 2008), the analytical dispersion relation
for resonantly damped kink waves propagating in a transversely
nonuniform and partially ionized prominence thread was ob-
tained by Soler et al. (2009b, their Equation (25)). If partial
ionization is not considered and the effect of Cowling’s diffu-
sion is absent, the dispersion relation of Soler et al. (2009b)
reduces to that investigated by Terradas et al. (2010b, Equa-
tion (28)) for kink waves in coronal loops. Soler et al. (2009b)
checked that the solutions of their dispersion relation are in
excellent agreement with the solutions obtained from the full
numerical integration of the MHD equations beyond the TB ap-
proximation. Therefore, the dispersion relation derived by Soler
et al. (2009b) correctly describes the kink mode behavior in our
model and complicated numerical integrations are not needed.
The dispersion relation obtained by Soler et al. (2009b) in the
case of a straight and homogeneous magnetic field is

nc

ρc
(
ω2 − k2

z v
2
Ac

) K ′
m (nca)

Km (nca)
− mp

ρp
(
ω2 − k2

zΓ
2
Ap

) J ′
m(mpa)

Jm(mpa)

= −iπ
m2

/
r2

A

ω2 |∂rρ|rA

, (7)

where Jm and Km are the Bessel function and the modified Bessel
function of the first kind of order m (Abramowitz & Stegun
1972), respectively, and the quantities mp and nc are defined as

m2
p =

(
ω2 − k2

zΓ
2
Ap

)
Γ2

Ap

, n2
c =

(
k2
z v

2
Ac − ω2

)
v2

Ac

, (8)

where Γ2
Ap = v2

Ap − iωηC is the modified prominence Alfvén

speed squared (Forteza et al. 2008), with vAp = B√
μρp

and vAc =
B√
μρc

the prominence and coronal Alfvén speeds, respectively,

and μ = 4π × 10−7 N A−2 the magnetic permeability. In
addition, rA is the Alfvén resonance position and |∂rρ|rA

is the
radial derivative of the transverse density profile at the Alfvén
resonance position. The effect of the variation of ηC within the

transitional layer is not included in Equation (7). In the case of
temporal damping, Soler et al. (2009b) found that this effect is of
very minor influence and can be neglected. It is expected that the
same conclusion will apply to spatial damping and, therefore, in
the present work we do not consider the variation of ηC within
the transitional layer.

Soler et al. (2009b) studied the temporal damping of
kink waves, hence they assumed a fixed, real kz and solved
Equation (7) to obtain the complex frequency. Here, we investi-
gate the spatial damping and proceed the other way round, i.e.,
we fix a real ω and solve Equation (7) to obtain the complex
wavenumber. Then, the period, P, wavelength, λ, and damping
length, LD, are computed as follows:

P = 2π

ω
, λ = 2π

kzR
, LD = 1

kzI
, (9)

with kzR and kzI the real and imaginary parts of kz, respectively.

3. ANALYTICAL APPROXIMATIONS

Some analytical progress can be performed before solving
Equation (7) by means of numerical methods. To do so, we
adopt the thin tube (TT) limit, i.e., λ/a � 1. A first-order
expansion of Equation (7) gives the dispersion relation in both
the TT and TB approximations, namely,

ρp
(
ω2 − k2

zΓ
2
Ap

)
+ ρc

(
ω2 − k2

z v
2
Ac

) − iπ
m

rA

ρpρc

|∂rρ|rA

×
(
ω2 − k2

zΓ
2
Ap

)(
ω2 − k2

z v
2
Ac

)
ω2

= 0. (10)

If both Cowling’s diffusion and resonant absorption are omitted,
the solution to Equation (10) is

k2
z = ω2

c2
k

, (11)

with c2
k = 2B2

μ(ρp+ρc) the kink speed squared. Equation (11)

corresponds to the ideal, undamped kink mode. The solutions
to Equation (10) considering the different damping mechanisms
are discussed next.

3.1. Damping by Cowling’s Diffusion

In the absence of transverse transitional layer, i.e., l/a = 0,
resonant absorption does not take place and the damping is due
to Cowling’s diffusion exclusively. In such a case, the third term
on the left-hand side of Equation (10) is absent. We write the
wavenumber as kz = kzR + ikzI and use Equation (10) to obtain
the exact expressions for k2

zR and k2
zI, namely,

k2
zR = 1

2

ω2c2
k

c4
k + ω2η̄2

C

(√
1 +

ω2η̄2
C

c4
k

+ 1

)
, (12)

k2
zI = 1

2

ω2c2
k

c4
k + ω2η̄2

C

(√
1 +

ω2η̄2
C

c4
k

− 1

)
, (13)

with η̄C = ρp

ρp+ρc
ηC. By combining Equations (12) and (13), we

compute the ratio of the damping length to the wavelength as

LD

λ
= kzR

2πkzI
= 1

2π

c2
k +

√
c4

k + ω2η̄2
C

ωη̄C
. (14)
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Equations (12)–(14) are exact expressions that can be further

simplified depending on the value of the ratio ω2η̄2
C

c4
k

. For ω2η̄2
C

c4
k

�
1, i.e., in the limit of low frequency (ω small) and/or large
ionization degree (η̄C small), Equations (12)–(14) simplify to

k2
zR ≈ ω2

c2
k

(
1 + ω2η̄2

C

c4
k

) ≈ ω2

c2
k

, (15)

k2
zI ≈ 1

4

ω4η̄2
C

c6
k

(
1 + ω2η̄2

C

c4
k

) ≈ 1

4

ω4η̄2
C

c6
k

, (16)

LD

λ
≈ 1

π

c2
k

ωη̄C
. (17)

On the contrary, if ω2η̄2
C

c4
k

� 1, i.e., high frequency and/or small
ionization degree, the equivalent expressions are

k2
zR ≈ k2

zI ≈ 1

2

ω

c2
kη̄C

, (18)

LD

λ
≈ 1

2π
. (19)

Thus, for ω2η̄2
C

c4
k

� 1 the ratio of the damping length to the
wavelength is inversely proportional to both ω and η̄C, and
k2
zR coincides with the ideal value (Equation (11)). This case

corresponds to a weakly damped kink mode. On the other hand,

for ω2η̄2
C

c4
k

� 1, LD/λ is independent of ω and η̄C and the wave
behavior is governed by diffusion. By assuming typical values
for the parameters in the context of oscillating prominence
threads, e.g., P = 3 minutes, B = 5 G, and ρp/ρc = 200, we

obtain ω2η̄2
C

c4
k

≈ 6 × 10−17 for μ̃p = 0.5 and ω2η̄2
C

c4
k

≈ 1.6 × 10−4

for μ̃p = 0.99, meaning that the case ω2η̄2
C

c4
k

� 1 is more realistic
in the context of oscillating threads even for an almost neutral
plasma.

3.2. Damping by Resonant Absorption and Cowling’s Diffusion

Next, we take the case l/a 	= 0 into account and study the
combined effect of resonant absorption and Cowling’s diffusion.
The third term on the left-hand side of Equation (10) is now
present. As before, we write kz = kzR + ikzI and put this
expression in Equation (10). Since it is very difficult to give
exact expressions for kzR and kzI in the general case, we focus

on LD/λ and restrict ourselves to ω2η̄2
C

c4
k

� 1. Following the
procedure of Terradas et al. (2010b), we assume weak damping,
i.e., kzI � kzR, and neglect terms with k2

zI. The following process
is long but straightforward, and we refer the reader to Terradas
et al. (2010b) for details. Finally, we arrive at the expression for
the ratio of the damping length to the wavelength as

LD

λ
≈

(
π

ωη̄C

c2
k

+
m

F
l

a

ρp − ρc

ρp + ρc

)−1

, (20)

where the first term within the parentheses accounts for
Cowling’s diffusion and the second term for resonant absorption.

The factor F in the second term takes different values depend-
ing on the density profile within the inhomogeneous layer. For
example, F = 4/π2 for a linear profile (Goossens et al. 2002),
while F = 2/π for a sinusoidal profile with rA ≈ a (Ruderman
& Roberts 2002). If the term related to resonant absorption is ab-
sent, Equation (20) reverts to Equation (17). On the other hand, if
the term related to Cowling’s diffusion is dropped, Equation (20)
coincides with Equation (13) of Terradas et al. (2010b).

The relative importance of the two terms in Equation (20) can
be assessed by performing their ratio as

ε ≡ (LD/λ)RA

(LD/λ)C
≈ πF

a

l

ωη̄C

c2
km

ρp + ρc

ρp − ρc
= πF

a

l

ωηC

c2
km

ρp

ρp − ρc
,

(21)
where (LD/λ)RA and (LD/λ)C stand for the damping ratio
by resonant absorption and Cowling’s diffusion, respectively.
By considering as before P = 3 minutes, B = 5 G, and
ρp/ρc = 200, and adopting a linear profile with l/a = 0.2, we
obtain ε ≈ 8 × 10−8 for μ̃p = 0.5 and ε ≈ 0.12 for μ̃p = 0.99,
meaning that in the TT limit resonant absorption dominates
the kink mode spatial damping for typical parameters of thread
oscillations. This result is equivalent to that obtained by Soler
et al. (2009b) in the case of temporal damping.

4. NUMERICAL RESULTS

Now, we solve the dispersion relation (Equation (7)) by means
of standard numerical procedures. In the following figures, both
the wavelength, λ, and the damping length, LD, are plotted in
dimensionless form with respect to the thread mean radius, a.
The period, P, is computed in units of the internal Alfvén travel
time, τAp = a/vAp. Unless otherwise stated, the results have
been computed with ρp = 5 × 10−11 kg m−3, ρp/ρc = 200, and
B = 5 G. With these parameters, vAp ≈ 63 km s−1 and, for
a = 100 km, τAp ≈ 1.59 s.

Figure 2 displays λ/a, LD/a, and LD/λ versus P/τAp for the
case l/a = 0, i.e., the damping is due to Cowling’s diffusion
exclusively. We compute the results for different values of μ̃p.
The shaded areas in Figure 2 and in the other figures represent
the range of observed periods of transverse thread oscillations,
i.e., 1–10 minutes, corresponding to 40 � P/τAp � 400,
approximately. Regarding the wavelength, we see that the effect
of Cowling’s diffusion is only relevant for periods much shorter
than those observed. This is in agreement with Equations (15)
and (18). On the other hand, an almost neutral plasma, i.e.,
μ̃p → 1, has to be considered to obtain an efficient damping
and to achieve small values of LD/λ within the relevant range of
periods. Although we do not know the exact ionization degree in
prominence threads, such very large values of μ̃p are probably
unrealistic (see, e.g., Gouttebroze & Labrosse 2009; Labrosse
et al. 2010). The analytical expressions for λ, LD, and LD/λ in
the TT case given by Equations (12), (13), and (14), respectively,
are in good agreement with the full results in the whole range
of periods (see symbols in Figure 2).

Next, we study the general case l/a 	= 0. We adopt a
sinusoidal density profile within the inhomogeneous transitional
layer (Ruderman & Roberts 2002). As the Alfvén resonance
position, rA, is needed for the computations of the resonant
damping, we follow a two-step procedure. First, we solve
the dispersion relation for a fixed ω in the case l/a = 0
and determine kzR. Then, we assume that the value of kzR is
approximately the same in the case l/a 	= 0, meaning that
the resonant condition is ω = kzRvA (rA). In the case of a
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(a) (b)

(c)

Figure 2. Results for the kink mode spatial damping in the case l/a = 0: (a) λ/a, (b) LD/a, and (c) LD/λ vs. P/τAp for μ̃p = 0.5, 0.6, 0.8, and 0.95. Symbols in
panels (a), (b), and (c) correspond to the analytical solution in the TT approximation given by Equations (12), (13), and (14), respectively, while the horizontal dotted
line in panel (c) corresponds to the limit of LD/λ for high frequencies (Equation (19)). The shaded area denotes the range of observed periods of thread oscillations.

(A color version of this figure is available in the online journal.)

sinusoidal profile, the expression of the resonant position can
be analytically obtained from the resonant condition as

rA = a +
l

π
arcsin

(
ρp + ρc

ρp − ρc
− 2v2

Apk
2
zR

ω2

ρp

ρp − ρc

)
. (22)

Finally, we compute |∂rρ|rA
using the previously determined rA

by means of Equation (22) and solve the dispersion relation with
these parameters to obtain the actual kzR and kzI. Figure 3 shows
the results of these computations for different values of l/a
when the ionization degree has been fixed to μ̃p = 0.8, whereas
Figure 4 displays the equivalent computations for different
values of μ̃p when the transverse inhomogeneity length scale
has been fixed to l/a = 0.2. Since the wavelength is not affected
by the value of l/a and has the same behavior as in Figure 2(a),
both Figures 3 and 4 focus on LD/a and LD/λ. We obtain two
different behaviors of the solutions depending on the period.
For small P/τAp, the damping length is independent of l/a
and is governed by the value of μ̃p. On the contrary, for large
P/τAp the damping length depends on l/a but is independent
of μ̃p. This result indicates that resonant absorption dominates
the damping for large P/τAp, whereas Cowling’s diffusion is
more relevant for small P/τAp. The approximate transitional
period, namely, Ptr, in which the damping length by Cowling’s
diffusion becomes smaller than that due to resonant absorption
can be estimated by setting ε ≈ 1 in Equation (21) and writing

Ptr = 2π/ω. Then, one obtains

Ptr ≈ 2π2F
a

l

η̄C

c2
km

ρp + ρc

ρp − ρc
= 2π2F

a

l

ηC

c2
km

ρp

ρp − ρc
. (23)

This transitional period is in good agreement with the numerical
results (see the vertical dotted line in Figure 3(b)). In addition,
we see that Ptr is much smaller than the typically observed
periods, indicating that resonant absorption is the dominant
damping mechanism in the relevant range.

Finally, we check that the analytical approximation of LD/λ
given by Equation (20) provides an accurate description of the
kink mode spatial damping in the relevant range of periods
(compare the symbols and the solid lines in Figures 3(b)
and 4(b)).

5. DISCUSSION AND CONCLUSION

In this paper, we have studied the spatial damping of
kink waves in prominence threads. Resonant absorption and
Cowling’s diffusion are the damping mechanisms taken into
account. Both analytical expressions and numerical results in-
dicate that, in the range of typically observed periods of promi-
nence thread oscillations, the effect of Cowling’s diffusion (and
so the ionization degree) is negligible. Our results are consis-
tent with previous studies on the damping of MHD waves by
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(a) (b)

Figure 3. Results for the kink mode spatial damping in the case l/a 	= 0: (a) LD/a and (b) LD/λ vs. P/τAp for l/a = 0.05, 0.1, 0.2, and 0.4, with μ̃p = 0.8. Symbols
in panel (b) correspond to the analytical solution in the TT approximation given by Equation (20), while the vertical dotted line is the approximate transitional period
given by Equation (23) for l/a = 0.1. The shaded area denotes the range of observed periods of thread oscillations.

(A color version of this figure is available in the online journal.)

(a) (b)

Figure 4. Results for the kink mode spatial damping in the case l/a 	= 0: (a) LD/a and (b) LD/λ vs. P/τAp for μ̃p = 0.5, 0.6, 0.8, and 0.95, with l/a = 0.2. Symbols
in panel (b) correspond to the analytical solution in the TT approximation given by Equation (20). The shaded area denotes the range of observed periods of thread
oscillations.

(A color version of this figure is available in the online journal.)

ion–neutral collisions in the solar photosphere and chromo-
sphere when periods similar to those of prominence oscilla-
tions are taken into account (see, e.g., De Pontieu et al. 2001;
Goodman 2004; Khodachenko et al. 2004; Leake et al. 2005;
Pandey et al. 2010). On the other hand, resonant absorption
provides an efficient damping in agreement with the study of
Terradas et al. (2010b) in the context of coronal loop oscilla-
tions. These conclusions are equivalent to those obtained by
Soler et al. (2009b) in the case of temporal damping.

We point out that small values of LD/λ are obtained by
resonant absorption in the observationally relevant range of
periods, which is consistent with the reported strong damping
of the oscillations. The analytical estimation of LD/λ given
by Equation (20) is very accurate in the observationally relevant
range of periods, and the contribution of Cowling’s diffusion can
be dropped from Equation (20) because the plasma ionization
degree turns out to be irrelevant for the damping. Therefore, for
kink modes (m = 1) the radio LD/λ simplifies to

LD

λ
≈ F

a

l

ρp + ρc

ρp − ρc
, (24)

which coincides with the expression provided by Terradas
et al. (2010b). As ρp+ρc

ρp−ρc
→ 1 for typical prominence and

coronal densities, this factor can be dropped from Equation (24),
meaning that the ratio LD/λ depends almost exclusively on the
transverse inhomogeneity length scale, l/a, and the form of the
density profile through F as

LD

λ
≈ F

a

l
. (25)

In the case of coronal loop oscillations studied by Terradas et al.
(2010b), the factor ρp+ρc

ρp−ρc
cannot be dropped from their expres-

sions, meaning that in coronal loops the ratio LD/λ significantly
depends on the density contrast. Therefore, information about
the parameters l/a and F in prominence threads could be deter-
mined by using Equation (25) along with accurate measurements
of the damping length and the wavelength provided from the
observations. However, since the precise form of the transverse
density profile in prominence threads is unknown, we have to
assume an ad hoc profile, i.e., a value ofF , to infer the transverse
inhomogeneity length scale from the observations, which can

6
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introduce some uncertainties in the estimation of l/a. The value
of l/a inferred by seismology may be used to test thread models,
as the transverse inhomogeneity length scale is crucial for the
energy balance in the particular Prominence-Corona Transition
Region of the threads (see, e.g., Pojoga 1994; Cirigliano et al.
2004; Labrosse et al. 2010).

For example, let us assume that the ratio LD/λ has been
determined from an observation of damped kink waves in a
prominence thread and we want to compute the transverse
inhomogeneity length scale of the thread. For simplicity, we
consider that the transverse density profile in the inhomogeneous
layer is either linear or sinusoidal. Denoting as (l/a)lin the
value of l/a computed assuming a linear profile and (l/a)sin
the corresponding value for a sinusoidal profile, the relation
between both of them is

(l/a)lin

(l/a)sin
= π

2
≈ 1.57, (26)

pointing out that the relative uncertainty of l/a is larger than
50%, and the inaccuracy could be even larger if other profiles
are considered. This fact should be taken into account in future
seismological determinations of this parameter.

The present investigation is a first step for the study of the
spatial damping of kink waves in prominence fine structures.
Here, we have adopted a simple model of a prominence thread.
Some effects that might influence the kink mode propagation
and damping are not included in the present paper. Among them,
plasma inhomogeneity along the thread may affect somehow the
amplitude of a propagating kink mode, whereas the presence of
flows affects the damping by resonant absorption (see Terradas
et al. 2010a). The influence of these and other effects will be the
subject of forthcoming works.

R.S. acknowledges support from a postdoctoral fellowship
within the EU Research and Training Network SOLAIRE
(MTRN-CT-2006-035484). R.O. and J.L.B. acknowledge the
financial support received from the Spanish MICINN and
FEDER funds (AYA2006-07637). R.S. and J.L.B. acknowledge
discussion within the ISSI Team on Solar Prominence Formation
and Equilibrium: New Data, New Models.

REFERENCES

Abramowitz, M., & Stegun, I. A. 1972, Handbook of Mathematical Functions
(New York: Dover)

Arregui, I., & Ballester, J. L. 2010, Space Sci. Rev., in press
Arregui, I., Soler, R., Ballester, J. L., & Wright, A. N. 2010, ApJ, submitted

(arXiv:1011.5175)
Arregui, I., Terradas, J., Oliver, R., & Ballester, J. L. 2008, ApJ, 682, L141
Ballester, J. L. 2006, Phil. Trans. R. Soc. A, 364, 405
Braginskii, S. I. 1965, Rev. Plasma Phys., 1, 205
Carbonell, M., Forteza, P., Oliver, R., & Ballester, J. L. 2010, A&A, 515, A80
Carbonell, M., Oliver, R., & Ballester, J. L. 2004, A&A, 415, 739
Carbonell, M., Terradas, J., Oliver, R., & Ballester, J. L. 2006, A&A, 460, 573
Cirigliano, D., Vial, J.-C., & Rovira, M. 2004, Sol. Phys., 223, 95
Cowling, T. G. 1956, MNRAS, 116, 114

Engvold, O. 2008, in IAU Symp. 247, Waves & Oscillations in the Solar
Atmosphere: Heating and Magneto-Seismology, ed. R. Mendoza-Briceño
& C. A. Erdélyi (Cambridge: Cambridge Univ. Press), 152

De Pontieu, B., Martens, P. C. H., & Hudson, H. S. 2001, ApJ, 558, 859
Dı́az, A J., Oliver, R., & Ballester, J. L. 2002, ApJ, 580, 550
Dymova, M. V., & Ruderman, M. S. 2005, Sol. Phys., 229, 79
Forteza, P., Oliver, R., & Ballester, J. L. 2008, A&A, 492, 223
Forteza, P., Oliver, R., Ballester, J. L., & Khodachenko, M. L. 2007, A&A, 461,

731
Goodman, M. L. 2000, ApJ, 533, 501
Goodman, M. L. 2004, A&A, 416, 1159
Goossens, M. 2008, in IAU Symp. 247, Waves & Oscillations in the Solar

Atmosphere: Heating and Magneto-Seismology, ed. R. Mendoza-Briceño &
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