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ABSTRACT

The fine structure of solar prominences and filaments appears as thin and long threads in high-resolution images.
In Hα observations of filaments, some threads can be observed for only 5–20 minutes before they seem to fade and
eventually disappear, suggesting that these threads may have very short lifetimes. The presence of an instability
might be the cause of this quick disappearance. Here, we study the thermal instability of prominence threads as an
explanation of their sudden disappearance from Hα observations. We model a prominence thread as a magnetic tube
with prominence conditions embedded in a coronal environment. We assume a variation of the physical properties in
the transverse direction so that the temperature and density continuously change from internal to external values in
an inhomogeneous transitional layer representing the particular prominence–corona transition region (PCTR) of the
thread. We use the nonadiabatic and resistive magnetohydrodynamic equations, which include terms due to thermal
conduction parallel and perpendicular to the magnetic field, radiative losses, heating, and magnetic diffusion. We
combine both analytical and numerical methods to study linear perturbations from the equilibrium state, focusing
on unstable thermal solutions. We find that thermal modes are unstable in the PCTR for temperatures higher than
80,000 K, approximately. These modes are related to temperature disturbances that can lead to changes in the
equilibrium due to rapid plasma heating or cooling. For typical prominence parameters, the instability timescale
is of the order of a few minutes and is independent of the form of the temperature profile within the PCTR of the
thread. This result indicates that thermal instability may play an important role for the short lifetimes of threads in
the observations.

Key words: instabilities – magnetic fields – magnetohydrodynamics (MHD) – Sun: corona – Sun: filaments,
prominences

1. INTRODUCTION

Solar prominences and filaments are large-scale magnetic
structures of the solar corona. The main issues regarding the
physics, dynamics, and modeling of these coronal inhabitants
have been recently reviewed by Labrosse et al. (2010) and
Mackay et al. (2010). High-resolution observations reveal that
prominences and filaments are formed by long (5′′–20′′) and thin
(0.′′2–0.′′6) fine structures, usually called threads. Although the
existence of the fine structure of prominences was discovered a
long time ago (e.g., Menzel & Wolbach 1960; Engvold 1976),
its properties and dynamics could only be studied in more detail
with recent high-resolution observations. The fine structures
show up as dark ribbons in Hα images of filaments on the solar
disk from the Swedish Solar Telescope (e.g., Lin 2004; Lin
et al. 2007, 2008, 2009) and as bright features in observations of
prominences in the solar limb from the Solar Optical Telescope
aboard the Hinode satellite (e.g., Okamoto et al. 2007; Berger
et al. 2008; Chae et al. 2008; Ning et al. 2009; Schmieder et al.
2010). Statistical studies show that the orientation of threads
with respect to the filament long axis can significantly vary
within the same filament (Lin 2004), with 20◦ a mean value
typically reported. Vertical threads are more commonly seen
in quiescent prominences (e.g., Berger et al. 2008; Chae et al.
2008) whereas horizontal threads are usually observed in active
region prominences (e.g., Okamoto et al. 2007). Schmieder et al.
(2010) recently pointed out that vertical threads might actually
be a pileup of horizontal threads which seem to be vertical
structures when projected on the plane of the sky. However,
this is still a matter of controversy. Since threads are observed
in both spines and barbs, it is believed that they are the basic
building blocks of prominences and filaments (Engvold 2004).

Theoretically, the fine structures have been modeled as
magnetic flux tubes anchored in the solar photosphere (e.g.,
Ballester & Priest 1989; Rempel et al. 1999), which are
only partially filled with the cool (∼104 K) filament material,
while the rest of the tube is occupied by hot coronal plasma.
Therefore, the magnetic field is oriented along the axis of the
fine structure. This model is conceptually in agreement with the
idea that the dense prominence material is trapped in dips near
the apex of a magnetic arcade connecting two photospheric
regions of opposite magnetic polarity. The dips are supposed
to correspond to the observed threads, which are piled up to
form the prominence body. It has also been suggested from
differential emission measure studies that each thread might
be surrounded by its own prominence–corona transition region
(PCTR) where the plasma physical properties would abruptly
vary from prominence to coronal conditions (Cirigliano et al.
2004).

Prominence threads are highly dynamic (see, e.g., Heinzel
2007; Engvold 2008). For example, transverse thread oscil-
lations and propagating waves along the threads seem to be
ubiquitous in prominences, which have been interpreted in terms
of magnetohydrodynamic (MHD) waves (see the reviews by
Ballester 2006; Oliver 2009; Arregui & Ballester 2010). Mass
flows along threads, with typical flow velocities of less than
30 km s−1, have also been frequently reported (e.g., Zirker et al.
1994, 1998; Lin et al. 2003; Chae et al. 2008). An interest-
ing property of the observations is the apparent short lifetime of
some threads when they are observed in Hα sequences (e.g., Lin
2004; Lin et al. 2005, 2009). Typically, the threads can be fol-
lowed for only 5–20 minutes before they seem to fade with time
and eventually disappear. The cause of this quick disappearance
is unknown, although several explanations have been proposed.
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A possible explanation is related to the presence of flows and
mass motions (e.g., Chae et al. 2008; Chae 2010; Schmieder
et al. 2010), which may trigger a Kelvin–Helmholtz instability
(KHI). Recently, Soler et al. (2010b) investigated the KHI in
magnetic flux tubes due to shear flows generated by transverse
motions of the tube, while Zaqarashvili et al. (2010) studied the
KHI in twisted tubes due to longitudinal flows. When the results
of both papers are applied to prominences, one obtains that nei-
ther the observed transverse velocity amplitudes of oscillating
threads nor the longitudinal flow velocities are large enough to
trigger a KHI on timescales consistent with the apparent lasting
time of the threads. On the other hand, a different explanation
was suggested by Lin (2004) and Lin et al. (2005). According
to these authors, rapid cooling or heating may cause the maxi-
mum of the plasma emission to fall outside the bandpass of the
filter, and so the thread would become invisible in Hα images.
A mechanism that could lead to a rapid heating or cooling of the
prominence material is a thermal instability. Here, we explore
this possibility by studying the thermal instability of prominence
threads.

Thermal or condensation modes have been extensively inves-
tigated in homogeneous plasmas (e.g., Parker 1953; Field 1965;
Heyvaerts 1974). A relevant work in the context of prominences
was performed by Carbonell et al. (2004) who studied the ther-
mal mode in homogeneous plasmas with prominence, PCTR,
and coronal conditions, considering parallel thermal conduction
to magnetic field lines and the optically thin radiative loss func-
tion of Hildner (1974). Carbonell et al. (2004) obtained that,
for long wavelengths, the thermal mode is unstable for PCTR
temperatures since thermal conduction is not efficient enough
to stabilize the thermal disturbance. In the case of an inhomoge-
neous plasma, thermal modes were studied in detail in the works
by Van der Linden et al. (1991), Van der Linden & Goossens
(1991), and Van der Linden (1993). As the present investigation
is based on and inspired by these previous works, we summarize
their relevant results in the following paragraph. This will also
enable us to clearly define the advancement made in the present
paper compared with these previous investigations.

Van der Linden et al. (1991) studied the linear nonadiabatic
MHD spectrum of a magnetic cylinder taking into account the
effect of plasma inhomogeneity in the transverse direction. They
included radiative losses, heating, and thermal conduction par-
allel to the magnetic field lines but neglected perpendicular
thermal conduction. These authors pointed out the important
result that, along with the classical Alfvén and slow continua,
there exists an additional thermal continuum, which can be un-
stable depending on the physical properties of the equilibrium.
Subsequently, Van der Linden & Goossens (1991) investigated
the effect on the thermal continuum of thermal conduction per-
pendicular to the magnetic field lines and showed that perpen-
dicular thermal conduction replaces the continuum by a dense
set of discrete quasi-continuum modes. These quasi-continuum
modes retain the basic stability properties and growth rates of
the continuum and are confined within thin conductive layers
around the position of the continuum singularities. The width
of the conductive layer, and so the spatial scale of the quasi-
continuum modes, depends on the value of the perpendicular
thermal conductivity. Van der Linden & Goossens (1991) and
Van der Linden (1993) applied these results to the context of
solar prominences and showed that the spatial scales related to
the most unstable quasi-continuum modes of the spectrum are
consistent with the size of the prominence threads reported from
high-resolution observations. This suggests that perpendicular

thermal conduction may be responsible for the formation of
prominence fine structure. In subsequent works, Ireland et al.
(1992, 1998) investigated the influence of magnetic diffusion on
the thermal continuum. These authors concluded that magnetic
diffusion plays a similar role to that of perpendicular thermal
conduction as both mechanisms replace the continuum by dis-
crete modes.

In the present work, we follow the method of Van der
Linden et al. (1991) and Van der Linden & Goossens (1991)
and investigate the thermal stability of an inhomogeneous
prominence thread model. The equilibrium model adopted here
is a cylindrical magnetic tube, representing a prominence thread,
embedded in a coronal environment. The plasma physical
properties, i.e., temperature, density, etc., are inhomogeneous
in the transverse direction and vary from prominence to PCTR
and coronal values. In this investigation, we assume that the
equilibrium is uniform in the longitudinal direction. The effect of
longitudinal plasma inhomogeneity is relegated to a forthcoming
study. We use the nonadiabatic and resistive MHD equations
and superimpose linear perturbations on the equilibrium state.
Parallel and perpendicular thermal conduction, radiative losses,
heating, and magnetic diffusion are the nonideal effects included
in our equations. We combine both analytical methods and
numerical computations to study the properties of the discrete
thermal continuum modes, focusing on the unstable modes with
largest growth rates.

This paper is organized as follows. Section 2 contains the
basic equations and a description of the equilibrium configu-
ration. Then, Sections 3–5 contain a theoretical study of the
properties of the thermal instability. The stability of the thermal
continuum in the absence of perpendicular thermal conduction
and magnetic diffusion is discussed in Section 3 by following
the analysis of Van der Linden et al. (1991), while the unstable
thermal modes are investigated in Section 4 when both perpen-
dicular thermal conduction and magnetic diffusion are included.
A parametric study of the growth rate of the most unstable solu-
tion is performed in Section 5. Then, we discuss in Section 6 the
physical implication of our theoretical results for the stability
and lifetime of prominence threads. Finally, the summary of our
results is given in Section 7.

2. BASIC EQUATIONS AND EQUILIBRIUM

The basic MHD equations governing the dynamics of a
nonadiabatic and resistive plasma are

Dρ

Dt
+ ρ∇ · v = 0, (1)

ρ
Dv
Dt

= −∇p +
1

μ
(∇ × B) × B, (2)

∂B
∂t

= ∇ × (v × B) − ∇ × (η∇ × B) , (3)

Dp

Dt
− γp

ρ

Dρ

Dt
+ (γ − 1) [ρL(T , ρ) − ∇ · (κ · ∇T )

−η|∇ × B|2] = 0, (4)

p = ρR
T

μ̃
, (5)
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Table 1
Values in MKS Units of the Parameters in the Radiative Loss Function (Equation (8)) Corresponding to Several Temperature Regimes

Regime Temperature Range χ∗ α

Prominence-1.1 T � 15×103 K 1.76 × 10−13 7.4
Prominence-1.2 T � 15×103 K 1.76 × 10−53 17.4
Prominence-1.3 T � 15×103 K 7.01 × 10−104 30
PCTR-2 15×103 K < T � 8×104 K 4.29 × 1010 1.8
PCTR-3 8×104 K < T � 3×105 K 2.86 × 1019 0.0
PCTR-4 3×105 K < T � 8×105 K 1.41 × 1033 −2.5
Corona-5 T > 8×105 K 1.97 × 1024 −1.0

Klimchuk–Raymond-1 T � 104.97 K 3.91 × 109 2.0
Klimchuk–Raymond-2 104.97 < T � 105.67 K 3.18 × 1024 −1.0
Klimchuk–Raymond-3 T > 105.67 K 6.81 × 1018 0.0

Notes. Prominence-1.1, PCTR-1, PCTR-2, PCTR-3, and Corona-5 regimes are parameterizations from Hildner
(1974). Prominence-1.2 and Prominence-1.3 regimes are taken from Milne et al. (1979) and Rosner et al.
(1978), respectively. The three Prominence regimes represent different plasma optical thicknesses, Prominence-
1.1 corresponding to optically thin plasma, while Prominence-1.2 and Prominence-1.3 are for optically thick and
very thick plasmas, respectively. The three Klimchuk–Raymond regimes are adapted from Klimchuk & Cargill
(2001), where we have only taken into account the range of temperatures considered in our equilibrium.

along with the condition ∇ · B = 0, where D
Dt

= ∂
∂t

+ v · ∇ is
the material derivative for time variations following the motion.
In Equations (1)–(5), ρ, p, T, v, and B are the mass density,
gas pressure, temperature, velocity vector, and magnetic field
vector, respectively. In addition, μ = 4π × 10−7 N A−2 is
the magnetic permeability, γ = 5/3 is the adiabatic index,
R = 8.3 × 103 m2 s−2 K−1 is the ideal gas constant, L(T , ρ) is
the heat-loss function, κ is the thermal conductivity tensor, η is
the magnetic diffusivity, and μ̃ is the mean atomic weight. In a
fully ionized medium, μ̃ = 0.5.

2.1. Nonideal Terms

The induction (Equation (3)) and energy (Equation (4)) equa-
tions contain several nonideal terms whose physical meaning
is explained next. The term with the factor η in Equation (3)
corresponds to Ohm’s magnetic diffusion, while the equivalent
term in Equation (4) accounts for Ohm’s heating. The other
nonideal terms in Equation (4) correspond to nonadiabatic ef-
fects, i.e., thermal conduction, radiative losses, and an arbitrary
heating input.

As for thermal conduction, the thermal conductivity tensor, κ ,
can be expressed in terms of its parallel, κ‖, and perpendicular,
κ⊥, components to the magnetic field, namely, κ = κ‖êB êB +
κ⊥(Î − êB êB), where êB = B/ |B| is the unit vector in the
magnetic field direction and Î is the identity tensor. The parallel
and perpendicular conductivities are dominated by the effect
of electrons and ions, respectively. The perpendicular electron
conductivity and the parallel ion conductivity are negligible
in fully ionized plasmas. Expressions for the conductivities in
MKS units for a hydrogen plasma are (see, e.g., Parker 1953;
Spitzer 1962; Braginskii 1965)

κ‖ = 1.8 × 10−10 T 5/2

ln Λ
, (6)

κ⊥ = 1.48 × 10−42 ln Λ ρ2

m2
i |B|2T 1/2

, (7)

where mi is the proton mass and ln Λ is the Coulomb logarithm,
whose value is generally between 5 and 20 and has a weak
dependence on temperature and density (see, e.g., Priest 1982).

Finally, the heat-loss function L(T , ρ) accounts for the bal-
ance between radiative cooling and heating. The determination
of an analytical function of the temperature and density that de-
scribes radiative losses of the prominence plasma is a very diffi-
cult work that requires the numerical solution of nonlocal ther-
modynamic equilibrium (NLTE) radiative transfer equations.
This is beyond the purpose and scope of the present study. One
reasonable semi-empirical approximation to an expression for
the radiative loss function was obtained by Hildner (1974). This
author assumed an optically thin plasma (e.g., Cox & Tucker
1969) and performed a piecewise fit of the radiative losses previ-
ously computed by several authors as a function of temperature.
Here, we adopt Hildner’s approach. The functional expression
of L(T , ρ) considered by Hildner (1974) is

L(T , ρ) = ρχ∗T α − h, (8)

where χ∗ and α are piecewise constants depending on the tem-
perature and h is an arbitrary heating function. The assumption
of an optically thin plasma seems a reasonable approximation
for coronal and PCTR temperatures, whereas cool prominence
plasmas may be considered optically thick. Some authors (e.g.,
Rosner et al. 1978; Milne et al. 1979) have proposed correc-
tions to the values of χ∗ and α in the range of cool prominence
temperatures, i.e., T < 15,000 K, in order to represent ra-
diation losses in optically thick plasmas using Equation (8).
In the literature, there are more recent parameterizations
for χ∗ and α which update Hildner’s values. In particular,
the so-called Klimchuk–Raymond parameterization (see, e.g.,
Klimchuk & Cargill 2001) may be a better representation of the
radiative losses in the hotter part of the PCTR and in the so-
lar corona. On the contrary, the Klimchuk–Raymond function
may not be adequate in the cool part of the thread. We use the
Klimchuk–Raymond function as an alternative to Hildner’s pa-
rameterization in the hotter part of the equilibrium. The values
of the parameters χ∗ and α for various temperature ranges and
regimes are given in Table 1.

2.2. Equilibrium Configuration

Equations (1)–(5) are applied to the following equilibrium
configuration. The prominence thread model is composed of a
straight and cylindrical magnetic flux tube embedded in a coro-
nal environment. We use cylindrical coordinates, namely, r, ϕ,
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Figure 1. (a) Equilibrium temperature profiles, T0, normalized to the internal temperature, Tp, in the case l/R = 1. The different line styles correspond to the linear
profile (solid), the sinusoidal profile (dashed), and the Gaussian profile (dot-dashed). (b) Corresponding density profiles, ρ0, normalized to the internal density, ρp.
The vertical dotted lines in both panels denote the boundaries of the transitional zone. Note that the vertical axis in panel (b) is in the logarithmic scale.

and z for the radial, azimuthal, and longitudinal coordinates, re-
spectively. In this configuration, the equilibrium quantities are
invariant in the azimuthal and longitudinal directions, so they
depend on the radial direction only. Hereafter, the equilibrium
quantities are denoted by a subscript 0. The equilibrium mag-
netic field is straight and homogeneous, B0 = B0êz, where, for
simplicity, B0 is the same constant everywhere. Magnetic twist
and longitudinal plasma inhomogeneity are effects that will be
included in future investigations.

Since the magnetic field is straight and homogeneous, the
equilibrium gas pressure, p0, is also homogeneous. The equilib-
rium density, ρ0, and temperature, T0, profiles must verify the
condition of energy balance, which from Equation (4) is

1

r

d

dr

(
rκ⊥

dT0

dr

)
= ρ2

0χ∗T α
0 − ρ0h, (9)

where we have assumed that there are no flows in the equilib-
rium, i.e., v0 = 0. Note that for the present equilibrium mag-
netic field, Ohm’s heating term is absent from Equation (9). The
density is related to the temperature and gas pressure through
Equation (5). We can use Equation (9) to obtain the tempera-
ture profile and later use Equation (5) to compute the density
profile. Unfortunately, the heating function h is unknown in
prominences and in the corona, which makes it impossible to
apply this procedure. Instead, we follow an alternative method
that has been adopted in a number of previous works (e.g.,
Van der Linden & Goossens 1991; Ireland et al. 1992, 1998).
We choose an ad hoc temperature profile and compute from
Equation (9) the corresponding heating function that satisfies
energy balance. The temperature profile adopted in this work
is in agreement with theoretical models of prominence threads
(see, e.g., Cirigliano et al. 2004, Figure 12).

Thus, the equilibrium temperature profile is

T0 (r) =
{

Tp, if r � R − l/2,
TPCTR (r) , if R − l/2 < r < R + l/2,
Tc, if r � R + l/2.

(10)

We consider that the prominence thread is composed by a central
and cool region with homogeneous temperature, Tp, surrounded
by a transverse transitional layer where the temperature abruptly
increases until the homogeneous coronal medium with temper-
ature Tc is reached. Following the idea explained by Cirigliano
et al. (2004), this transitional layer represents the particular
PCTR of the prominence thread. The mean radius of the thread

is denoted by R and is located at the center of the PCTR. The
thickness of the PCTR is denoted by l and corresponds to the re-
gion R − l/2 < r < R + l/2. So, the cases l/R = 0 and l/R = 2
correspond to a thread without transitional layer and a radi-
ally full inhomogeneous thread, respectively. In Equation (10)
and in the following expressions, the subscripts p, PCTR, and
c denote the central prominence region, the transitional layer,
and the coronal medium, respectively. Unless otherwise stated,
we consider the following values of the equilibrium quantities:
Tp = 8000 K, Tc = 106 K, B0 = 10 G, and R = 100 km. The
central prominence density is fixed to ρp = 5 × 10−11 kg m−3,
thus the gas pressure is p0 = 6.64×10−3 Pa, which corresponds
to β = p0/

(
B2

0/2μ
) = 0.008.

In order to assess whether or not the form of the tempera-
ture profile influences the results, we consider three different
expressions of TPCTR (r), which correspond to a linear profile,

TPCTR (r) = Tp +
Tc − Tp

l
(r − R + l/2) , (11)

a sinusoidal profile,

TPCTR (r) = Tp

2

{(
1 +

Tc

Tp

)
−

(
1 − Tc

Tp

)
sin

[π

l
(r − R)

]}
,

(12)
and a Gaussian profile

TPCTR (r) = Tc − (
Tc − Tp

)
exp

[
−

(
r − R + l/2

l/2

)2
]

. (13)

In the case of the Gaussian profile (Equation (13)), note that
the exponential factor is exp (−4) ≈ 0.018 for r = R + l/2, so
the temperature is not strictly Tc when the corona is reached.
For consistency, Equation (13) also applies for r > R + l/2
in order to avoid this small jump of the temperature when the
Gaussian profile is used. Figure 1 displays a plot of the three
different temperature profiles assumed in this work and their
corresponding density profiles.

2.3. Linear Perturbations

We superimpose perturbations on the equilibrium state.
Hence, ρ1, T1, and p1 denote the density, temperature, and gas
pressure perturbations, respectively, whereas v1 = (vr, vϕ, vz)
and b1 = (br, bϕ, bz) are the velocity and magnetic field pertur-
bations. Next, we assume that these perturbations are small, so
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we restrict ourselves to the linear regime and Equations (1)–(5)
are linearized. Since the equilibrium is invariant in the azimuthal
and longitudinal directions, we write all perturbations propor-
tional to exp (st + imϕ − ikzz), where m and kz are the az-
imuthal and longitudinal wavenumbers, respectively, and s is the
growth (or damping) rate of the perturbation. Equations (1)–(5)
become

sρ1 = −ρ ′
0vr − ρ0

(
v′

r +
1

r
vr +

m

r
vϕ + kzvz

)
, (14)

svr = −c2
s

γ

(
ρ ′

1

ρ0
+

T ′
1

T0
− ρ ′

0

ρ2
0

ρ1 − T ′
0

T 2
0

T1

)
+

v2
A

B0
(kzbr − b′

z),

(15)

svϕ = c2
s

γ

m

r

(
ρ1

ρ0
+

T1

T0

)
− v2

A

B0

(
kzbϕ − m

r
bz

)
, (16)

svz = c2
s

γ
kz

(
ρ1

ρ0
+

T1

T0

)
, (17)

sbr = −B0kzvr + η

(
m

r
b′

ϕ +
m

r2
bϕ − m2

r2
br − k2

z br + kzb
′
z

)
,

(18)

sbϕ = B0kzvϕ

+ η

(
b′′

ϕ +
1

r
b′

ϕ − 1

r2
bϕ − m

r
b′

r +
m

r2
br − k2

z bϕ + kz

m

r
bz

)

− η′
(

m

r
br − b′

ϕ − 1

r
bϕ

)
, (19)

sbz = − B0

(
v′

r +
1

r
vr +

m

r
vϕ

)

+ η

(
b′′

z +
1

r
b′

z − m2

r2
bz +

m

r
kzbϕ − kz

r
br − kzb

′
r

)
+ η′(b′

z − kzbr ), (20)

s

[
p0

T0
T1 − (γ − 1)

p0

ρ0
ρ1

]
= c2

s ρ
′
0vr

− (γ − 1)

[
p0

ρ0
ωρρ1 +

(
p0

T0
ωT + κ⊥

m2

r2
+ κ‖k2

z

)
T1

]

+ (γ − 1)

[(
κ⊥

1

r
+ κ ′

⊥

)
T ′

1 + κ⊥T ′′
1 + (κ‖ − κ⊥)

T ′
0

B0
kzbr

]

+ (γ − 1)

[(
T ′′

0 +
1

r
T0

)
κ̃⊥ + T ′

0 κ̃
′
⊥

]
, (21)

where the prime denotes the derivative with respect to r,
c2

s = γp0

ρ0
is the sound speed squared, v2

A = B0
μρ0

is the Alfvén
speed squared, and the quantities ωρ , ωT , and κ̃⊥ are defined as
follows:

ωρ = ρ0

p0

[
L (ρ0, T0) + ρ0

(
∂L

∂ρ

)
ρ0,T0

]
, (22)

ωT = ρ0

p0
T0

(
∂L

∂T

)
ρ0,T0

, (23)

κ̃⊥ =
(

∂κ⊥
∂ρ

)
ρ0,T0

ρ1 +

(
∂κ⊥
∂T

)
ρ0,T0

T1 +

(
∂κ⊥

∂ |B0|
)

ρ0,T0

B0 · b1

|B0| .

(24)
Equations (14)–(21) form an eigenvalue problem, with s

being the eigenvalue. To eliminate one variable and simplify
matters, we have used the linearized version of Equation (5)
to write the gas pressure perturbation, p1, in terms of the
density, ρ1, and the temperature, T1, perturbations. In addition, to
express Equations (14)–(21) in terms of real quantities, we have
performed the substitutions ivϕ → vϕ , ivz → vz, and ibr → br .
Note that the term related to Ohm’s heating in Equation (4) does
not contribute in the linear regime and so it is absent from the
linearized energy equation (Equation (21)). In addition, since
the heating function h represents an external, arbitrary heating
source, no perturbations of this function have been considered.

We numerically solve Equations (14)–(21) and compute the
eigenvalues and their corresponding perturbations by means
of the PDE2D code (Sewell 2005) based on finite elements.
The numerical integration of Equations (14)–(21) is performed
from the thread axis, r = 0, to the finite edge of the numerical
domain, r = rmax, which is located far enough to obtain a good
convergence of the solution and to avoid numerical errors. We
use a nonuniform grid with a large density of grid points within
the inhomogeneous transitional layer, where the equilibrium
properties vary by several orders of magnitude. The nonuniform
grid also allows us to correctly describe the small spatial scales
of the eigenfunctions within the transitional layer. The PDE2D
code uses a collocation method, and the generalized matrix
eigenvalue problem is solved using the shifted inverse power
method. The output of the program is the closest eigenvalue to
an initial provided guess and its corresponding perturbations.

In the present investigation, we restrict ourselves to the study
of thermal quasi-continuum eigenmodes. For real kz and m, these
solutions correspond to real values of s. When the eigenmode
is a stable, damped solution, s < 0, while unstable thermal
modes have s > 0. As shown by Van der Linden & Goossens
(1991) and Ireland et al. (1992), some of the basic properties
regarding the stability of the thermal quasi-continuum modes
can be deduced from the properties of the thermal continuum in
the absence of perpendicular thermal conduction and magnetic
diffusion. We perform this analysis in the next section.

3. THE THERMAL CONTINUUM

In our equilibrium configuration, the full spectrum of ideal
eigenmodes, i.e., when nonideal effects are absent, contains
solutions related to two different continua, namely, the Alfvén
and slow (or cusp) continua (see, e.g., Appert et al. 1974). These
continua are modified or removed if nonideal effects are taken
into account. The effect of the different nonideal mechanisms
on the continua has been studied by a number of authors whose
relevant results for our investigation are briefly summarized
next.

If magnetic diffusion is included but nonadiabatic terms are
neglected, both Alfvén and slow continua are replaced by a set of
discrete modes with complex s and whose properties depend on
the value of the diffusivity (see, e.g., Poedts & Kerner 1991). In
the presence of radiation losses and parallel thermal conduction
but for κ⊥ = η = 0, the Alfvén continuum remains unaffected
and the slow continuum is only slightly modified becoming a
nonadiabatic slow continuum with complex s. In addition, a new
thermal continuum is present, which corresponds to real values
of s (Van der Linden et al. 1991). When perpendicular thermal
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conduction is included, the thermal continuum is replaced by
a dense set of eigenmodes, i.e., a quasi-continuum (Van der
Linden & Goossens 1991). Finally, if both perpendicular thermal
conduction and magnetic diffusion are taken into account, the
three continua are removed and replaced by discrete eigenmodes
(Ireland et al. 1992).

To study the properties of the thermal continuum before
solving the full problem numerically, we fix κ⊥ = η = 0
in Equations (14)–(21). After a lengthy but straightforward
process, it is possible to combine Equations (14)–(21) to obtain
the two coupled, first-order differential equations of Van der
Linden et al. (1991, Equations (2) and (3)), which depend on
the coefficient C0 defined as

C0 = r
ρ3

0p0

T0

(
s2 + k2

z v
2
A

)
Ct, (25)

with Ct being the following third-order polynomial in s:

Ct = c2
s + v2

A

γ − 1
s3 +

[(
c2

s

γ
+ v2

A

)(
T0

p0
κ‖k2

z + ωT

)
− p0

ρ0
ωρ

]
s2

+
c2

s v
2
A

γ − 1
k2
z s +

c2
s

γ
v2

Ak2
z

(
T0

p0
κ‖k2

z + ωT − ωρ

)
. (26)

Van der Linden et al. (1991) showed that the roots of C0 = 0,
i.e., the singularities in their Equations (2) and (3), correspond
to the three continua. Note that Equations (25) and (26) are
independent of the azimuthal wavenumber m, and so the three
continua do not depend on the value of m. For a fixed r, the
roots of C0 = 0 are two purely imaginary solutions given by
s2 = −k2

z v
2
A, that correspond to the Alfvén continuum, and the

solutions of Ct = 0. Since Ct is a third-order polynomial and
the nonadiabatic terms are assumed to be small, the roots of
Ct = 0 are two complex conjugate solutions corresponding to
the nonadiabatic slow continuum, and a real root corresponding
to the thermal continuum. It is straightforward to check that in
the ideal case κ‖ = ωρ = ωT = 0, so Ct becomes

Ct = s

γ − 1

[(
c2

s + v2
A

)
s2 + c2

s v
2
Ak2

z

]
. (27)

The roots of Ct = 0 are then s2 = − c2
s v

2
A

c2
s +v2

A
k2
z , which correspond

to the ideal slow continuum, while the thermal continuum
disappears and becomes the trivial solution s = 0.

3.1. Approximate Growth Rates and Stability Criterion

An approximation to the thermal continuum growth rate
can be obtained by neglecting the terms with s2 and s3 in
Equation (26). Then, the equation Ct = 0 gives the approximate
solution

s ≈ −γ − 1

γ

(
T0

p0
κ‖k2

z + ωT − ωρ

)
. (28)

Equation (28) is equivalent to Equation (4.12) of Van der Linden
& Goossens (1991). It is worth mentioning that Equation (28)
is similar to the expression obtained by Carbonell et al. (2009)
and Soler (2010) for the imaginary part of the frequency of
propagating thermal waves in a flowing medium.

The sign of the constant term in Equation (26) provides us
with the instability criterion of the thermal continuum, i.e., the
combination of parameters that causes s > 0. When we use the

definitions of ωρ and ωT (Equations (22) and (23)) and take into
account that the cooling function at equilibrium is L (ρ0, T0) = 0
when κ⊥ = 0, the instability criterion is

κ‖k2
z + ρ0

(
∂L

∂T
− ρ0

T0

∂L

∂ρ

)
< 0, (29)

which turns out to be the same instability criterion given by
Field (1965) in his Equation (25a), although Field’s criterion
was derived for thermal modes in a homogeneous medium and
our equilibrium quantities depend on r. Therefore, the stability
of the continuum also depends on r, and Equation (29) must
be computed for all r to assess the absolute instability of the
continuum. In addition, magnetic diffusion may play a role
for stability. This issue was addressed by Ireland et al. (1992)
who showed that, when magnetic diffusion is included, the
contribution of Ohm’s heating to the equilibrium energy balance
has to be taken into account. However, since the magnetic field
is homogeneous in our case, Ohm’s heating plays no role in
the energy balance of our equilibrium (Equation (9)). This fact
points out that, in our present application, Equation (29) remains
valid even when magnetic diffusion is present, and the thermal
continuum growth rates are not modified by diffusion.

Equation (29) can be rewritten in terms of parameters χ∗ and
α of the cooling function, namely,

κ‖k2
z + (α − 1) ρ2

0χ∗T α−1
0 < 0. (30)

In the absence of parallel thermal conduction, i.e., κ‖ = 0, the
instability criterion is satisfied for α < 1. According to the
different radiative regimes of Table 1, the condition α < 1 takes
place for T0 > 80,000 K in Hildner’s parameterization, meaning
that the thermal continuum is unstable in the PCTR-3, PCTR-4,
and Corona-5 regimes. Considering the Klimchuk–Raymond fit,
instability is present for T0 � 93,325 K. This result agrees with
the instabilities found by Van der Linden & Goossens (1991)
in the range of coronal temperatures studied by these authors.
When parallel thermal conduction is present, the unstable part of
the continuum is stabilized by a critical value of the longitudinal
wavenumber, namely, k∗

z , given by

k∗
z =

[
1 − α

κ‖
ρ2

0χ∗T α−1
0

]1/2

. (31)

Note that k∗
z is also a function of r and Equation (31) only

applies when α < 1. The absolute stability of the continuum is
guaranteed for kz larger than the maximum value of k∗

z in the
equilibrium.

3.2. Properties of the Continuum

Figure 2 shows the thermal continuum computed from
Equation (28) for our equilibrium configuration in the case of
the sinusoidal temperature profile with l/R = 1, and consid-
ering Hildner’s parameterization for the radiative loss function.
The growth rate has been plotted in dimensionless form com-
puted as s̃ = sR/csp, where s̃ is the dimensionless growth rate
and csp is the sound speed of the central, homogeneous part of
the thread. At first sight, we notice the jumps of the growth rate
at the boundaries of the zones where different parameteriza-
tions of the cooling function are used. According to Hildner’s fit
(see Table 1), the cooling function L (ρ, T ) is continuous at the
boundaries between the zones with different radiation regimes,
but the derivatives of L (ρ, T ) with respect to density and tem-
perature are discontinuous. As Equation (28) depends on these
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Figure 2. Normalized thermal continuum as a function of r/R in the case of the sinusoidal temperature profile with l/R = 1 for (a) kzR = 10−2 and (b) kzR = 10−1.
The vertical dotted lines denote the boundaries between the different parameterizations of the radiation function. Each zone is indicated by a number from 1 to 5 that
corresponds to the different regimes of Hildner’s piecewise fit (Table 1). The horizontal dotted line represents s̃ = 0. The different line styles in zone 1 correspond to
the Prominence-1.1 (solid), Prominence-1.2 (dashed), and Prominence-1.3 (dot-dashed) parameterizations.

Figure 3. Maximum growth rate of the normalized thermal continuum as a
function of kzR. The different line styles represent the result for the linear
(solid), sinusoidal (dashed), and Gaussian (dot-dashed) temperature profiles
with l/R = 1. The vertical dotted line corresponds to the maximum value of
the dimensionless critical wavenumber k∗

z R for the linear temperature profile.
Hildner’s parameterization for the radiative loss function has been used.

derivatives, the thermal continuum has the apparent form of five
separated continuous spectra. If the actual cooling function of
prominences is known and is used here instead of the present
parameterization, the jumps would be replaced by continuous
but very abrupt variations of the growth rate at the boundaries
between the different regimes. We must point out that the jumps
in the thermal spectrum do not affect the stability of the solu-
tions (see Figures 1 and 3 of Van der Linden et al. 1991, where
this issue is also commented). An alternative radiative cooling
function computed numerically (e.g., Schure et al. 2010) instead
of the present piecewise parameterization might be considered
in future applications.

In Figure 2(a), corresponding to kzR = 10−2, we see that
s̃ > 0 in zone 3 and part of zone 4, meaning that the continuum
is unstable in these regions. This is consistent with the result
from the instability criterion (Equation (30)). For the particular
longitudinal wavenumber considered in Figure 2(a) parallel
thermal conduction can suppress the instability in zone 5 and
part of zone 4. If the longitudinal wavenumber is increased
to kzR = 10−1 (see Figure 2(b)), the instability is also
suppressed in zone 4 and part of zone 3. To completely suppress
the instability in the whole continuum, we must increase the
longitudinal wavenumber until the maximum value of k∗

zR,
given by Equation (31), is reached. Figure 3 displays the

Figure 4. Same as Figure 2(a) but using Klimchuk–Raymond’s fit for the
radiative loss function.

maximum growth rate of the spectrum as a function of kzR. As
expected, the maximum growth rate decreases as kzR increases,
until absolute stability of the thermal continuum is achieved for
a critical longitudinal wavenumber. This critical wavenumber
is in perfect agreement with Equation (31). The result for the
three different temperature profiles does not show significant
differences. We must mention that the various parameterizations
of the radiative regime Prominence-1, which aim to represent
different optical thicknesses of the cool prominence plasma, are
not relevant for the instability of the continuum. The thermal
spectrum in the cool part of the equilibrium, namely, zone 1, is
always stable independently of the considered parameterization
(indicated by different line styles in Figure 2).

In Figure 4, we have plotted the thermal continuum growth
rate for kzR = 10−2 using the Klimchuk–Raymond radiative
loss function. By comparing Figures 2(a) and 4, we see that
slightly larger values of the growth rate are obtained using
Klimchuk–Raymond’s fit with respect to the values for Hildner’s
fit. However, the qualitative behavior of the continuum is similar
is both cases.

4. PROPERTIES OF THE UNSTABLE THERMAL MODES

4.1. Effect of Perpendicular Thermal Conduction

Here, we study how the unstable part of the thermal contin-
uum is modified when perpendicular thermal conduction and
magnetic diffusion are taken into account. Unless otherwise
stated, Hildner’s parameterization for the radiative loss function
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Figure 5. Temperature perturbation (in arbitrary units) of the four most unstable modes (from the left to the right) in the absence of magnetic diffusion. Computations
performed considering the sinusoidal temperature profile with l/R = 1, kzR = 10−1, and m = 0. The corresponding normalized growth rate, s̃, is displayed on top of
each panel.

is used in all the following computations. First, we set η = 0 and
focus our investigation on the effect of perpendicular thermal
conduction. We would like to stress that the real physical value of
κ⊥ given by Equation (7) is used in the following computations.
As stated by Van der Linden & Goossens (1991), the thermal
continuum is replaced by a set of discrete modes when κ⊥ �= 0.
The eigenfunctions of these solutions display large variations
in a region surrounding the position of the thermal continuum
singularity for κ⊥ = 0. Figure 5 displays the temperature pertur-
bation, T1, of the four most unstable modes of our equilibrium
in the case of the sinusoidal temperature profile with l/R = 1,
kzR = 10−1, and m = 0. For simplicity, Figure 5 shows the
temperature perturbation only, because T1 is between one and
two orders of magnitude larger than the other perturbations. This
means that the temperature perturbation is the dominant distur-
bance related to the thermal modes, although these solutions
produce also velocity and magnetic field perturbations. Figure 5
focuses on the region where the eigenfunctions show significant
variations, i.e., the conductive layer described by Van der Linden
(1993), whereas their amplitude outside the range plotted in
Figure 5 is negligible. When Figure 5 is repeated for the linear
and Gaussian temperature profiles, we find that the eigenfunc-
tions are shifted toward smaller r/R for the linear profile, and
to larger r/R for the Gaussian profile. However, the form of the
perturbations is very similar to those displayed in Figure 5 and,
for simplicity, we do not plot the perturbations again.

The order of the solutions can easily be identified by the
number of extrema (maxima and minima) of their temperature
perturbation. Thus, the most unstable mode has one maximum
only, the second most unstable mode has one maximum and
one minimum, and so on. The position of the largest extremum
is shifted toward larger values of r/R as the order of the mode
increases. In addition, the growth rate (indicated at the top of the
panels of Figure 5) decreases with the order of the mode. These
two results are represented together in Figure 6, which displays
the growth rate of the 20 most unstable modes as a function
of the position of their largest extremum. In comparison with
the thermal continuum, slightly smaller values of the growth rate
are obtained for the quasi-continuum modes. The displacement
of the largest extremum of the discrete modes toward larger
values of r/R as their growth rate decreases is consistent with
the behavior of the thermal continuum. From Figure 6 we also
see that the solutions are closer to each other as their order
increases. This result can be explained by taking into account
that the perpendicular thermal conductivity (Equation (7)) is
κ⊥ ∼ ρ2

0T
−1/2

0 . As we move toward larger r/R, T0 increases and
ρ0 decreases in the equilibrium, meaning that κ⊥ gets smaller.

Figure 6. Normalized growth rate of the 20 most unstable modes (symbol ×)
as a function of the position of their largest maximum or minimum. The solid
line represents the thermal continuum in the case κ⊥ = 0. Results are computed
for η = 0, kzR = 10−1, and m = 0. The sinusoidal temperature profile with
l/R = 1 has been used.

Thus, the characteristic perpendicular spatial-scale decreases,
causing the modes to cluster as r/R increases.

To shed more light on the behavior of the eigenfunctions
with κ⊥, we perform the substitution κ⊥ → λκ⊥ in the basic
equations, with λ being an enhancing factor. We can artificially
increase the value of κ⊥ by means of λ and assess its influence
on the eigenfunctions. We restrict ourselves to the most unstable
mode. Figure 7(a) shows the temperature eigenfunction of the
most unstable mode for different values of λ. As λ grows,
the temperature eigenfunction becomes broader. To quantify
this effect, we compute the width δ of the maximum of
the temperature perturbation measured at its half height. The
parameter δ is related to the thickness of the conductive layer.
Following the method by Sakurai et al. (1991) originally used for
Alfvén and slow resonances, Van der Linden (1993) obtained
that the thickness of the conductive layer is proportional to
κ

1/3
⊥ . In order to compare the analytical result of Van der Linden

(1993) with our numerical computations, Figure 7(b) shows δ/R
versus the enhancing parameter λ. We see that the dependence
of δ/R with λ is consistent with a scaling law of λ1/3, pointing
out that our numerical code works properly and recovers the
behavior analytically predicted by Van der Linden (1993).

We have also computed the eigenfunctions for other values
of the azimuthal wavenumber m. We do not have obtained vari-
ations of the spectrum of quasi-continuum modes for different
values of m. It is worth noting that for m = 0, the perturbations vϕ

and Bϕ are decoupled from the remaining perturbations, while
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Figure 7. (a) Temperature perturbation (in arbitrary units) of the most unstable mode. The different line styles correspond to different values of the perpendicular
conductivity enhancing factor: λ = 1 (solid), λ = 10 (dotted), and λ = 100 (dashed). (b) Width of the maximum of the normalized temperature perturbation, δ/R,
corresponding to the most unstable mode (symbol ×) vs. the perpendicular conductivity enhancing factor λ. The dotted line corresponds to the dependence δ/R ∼ λ1/3.
Results are computed for η = 0, kzR = 10−1, and m = 0. The sinusoidal temperature profile with l/R = 1 has been used.

Figure 8. (a) Ratio of the Alfvén timescale, τA, to the thermal continuum timescale, τT . The vertical dotted lines denote the boundaries between the different
parameterizations of the radiation function according to Table 1. (b) Normalized growth rate of the most unstable mode vs. the diffusivity enhancing factor ε. The
sinusoidal temperature profile with l/R = 1 has been used.

for m �= 0 all perturbations are coupled. The temperature per-
turbation is independent of m. The effect of m on the growth
rate is studied in Section 5.

4.2. Effect of Magnetic Diffusion

Here, we first consider magnetic diffusion and neglect per-
pendicular thermal conduction, i.e., κ⊥ = 0 and η �= 0. Ireland
et al. (1992, 1998) studied the effect of magnetic diffusion on
the thermal continuum. For their particular equilibrium, these
authors studied two limit cases of the relative values of the
thermal and Alfvén timescales. When the thermal timescale is
much longer than the Alfvén timescale, Ireland et al. (1992,
1998) found that the effect of diffusion is to replace the thermal
continuum by a dense set of discrete modes whose growth rate
is displaced with respect to the values of the thermal continuum.
The displacement of the growth rate is independent of the value
of the diffusivity. This is the case of the cool profile studied
by Ireland et al. (1992, 1998). On the other hand, if the thermal
timescale is much shorter than the Alfvén timescale, the thermal
continuum is not affected by diffusion and the discrete modes
are absent. This other possibility corresponds to the hot profile
of Ireland et al. (1992, 1998).

To assess the effect of magnetic diffusion on the thermal
continuum of our equilibrium, let us compare the Alfvén
timescale, τA = L/vA, with the thermal timescale, τT = 1/|s|,
where s is here the thermal continuum growth rate and L
is a typical length scale. We relate L with the longitudinal

wavelength of the perturbation, namely, L = 2π/kz. This is
done in Figure 8(a), which displays the ratio τA/τT versus r/R
with kzR = 10−1. We obtain that in the most unstable part of
the continuum, i.e., the beginning of zone 3, τT and τA are of the
same order. Therefore, we are in a situation between the limit
cases studied by Ireland et al. (1992, 1998). We have numerically
checked that the growth rates are not modified by the presence of
magnetic diffusion. In addition, by setting η �= 0 and κ⊥ = 0 in
the equations implemented in the PDE2D code, we have found
no discrete thermal solutions. Therefore, the behavior of our
equilibrium is similar to that of the hot profile of Ireland et al.
(1992, 1998), although in our case τT and τA are of the same
order.

A different issue is to determine how the previously described
modes for κ⊥ �= 0 and η = 0 (Section 4.1) are affected when
magnetic diffusion is included. Hence, we consider the general
case κ⊥ �= 0 and η �= 0. As was done for the perpendicular
thermal conduction, we perform the substitution η → εη in
the basic equations, with ε being an enhancing factor. We can
artificially increase the value of η by means of ε and assess its
influence. As before, we restrict ourselves to the most unstable
mode whose growth rate versus ε is displayed in Figure 8(b).
For ε � 50 the growth rate is constant and coincides with
the value for η = 0, while the growth rate increases for
ε � 50. For such large values of ε, magnetic diffusion governs
the behavior of the solutions. When the actual value of η is
considered, i.e., ε = 1, the growth rate is approximately the
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Figure 9. Temperature perturbation (in arbitrary units) of the most unstable mode for a diffusivity enhancing factor of (a) ε = 1, (b) ε = 50, (c) ε = 70, and (d)
ε = 100. Computations performed considering the sinusoidal temperature profile with l/R = 1, kzR = 10−1, and m = 0. The corresponding normalized growth rate,
s̃, is displayed on top of each panel.

Figure 10. Normalized growth rate of the most unstable mode as a function of (a) the azimuthal wavenumber, m, for kzR = 10−1, and (b) the dimensionless
longitudinal wavenumber, kzR, for m = 0. The results of both panels correspond to the sinusoidal temperature profile with l/R = 1.

same as that obtained in the absence of magnetic diffusion.
Thus, we need much larger, unrealistic values of η for the
growth rate to be affected by diffusion. On the other hand,
Figure 9 shows the evolution of the temperature perturbation
of the most unstable mode as ε increases. Again, the result for
ε = 1 is almost indistinguishable from the eigenfunction for
η = 0 (compare Figures 5(a) and 9(a)). When ε is increased
and so very large, unrealistic values of η are considered, the
eigenfunction is affected by an additional modulation caused by
magnetic diffusion and develops smaller spatial scales as ε is
increased. On the basis of these results, we conclude that, for
realistic values of the diffusivity, magnetic diffusion is irrelevant
for both the growth rate and the eigenfunctions of the most
unstable modes.

4.3. Comparison between the Hildner and Klimchuk–Raymond
Radiative Loss Functions

We have performed some test computations using
Klimchuk–Raymond’s fit for the radiative loss function in order
to compare with the results obtained using Hildner’s fit (dis-
cussed in the previous subsections). Regarding the form of the
temperature perturbations, we find no significant differences.
The maximum of the temperature perturbation is shifted to-
ward slightly larger values of r for Klimchuk–Raymond’s fit.
For the fundamental mode, the maximum of T1 takes place
at r/R ≈ 0.675 using Hildner’s fit and at r/R ≈ 0.69 us-
ing Klimchuk–Raymond’s fit for kzR = 10−1, l/R = 1, and
m = 0. On the other hand, the growth rate is larger for
Klimchuk–Raymond’s parameterization. This is in agreement
with the behavior of the thermal continuum (see Figures 2(a)
and 4). For the same set of parameters as before, the growth

rate of the most unstable mode is s̃ ≈ 0.1994 using Hildner’s
fit and s̃ ≈ 0.4370 using Klimchuk–Raymond’s fit. Apart from
this difference in the growth rate, the results for both Hildner’s
and Klimchuk–Raymond’s parameterizations are equivalent.

5. PARAMETRIC STUDY OF THE GROWTH RATES

In this section, we study the growth rate of the most unstable
mode as a function of the dimensionless longitudinal wavenum-
ber, kzR, the azimuthal wavenumber, m, and the thickness of
the transitional layer, l/R. Hildner’s fit for the radiative loss
function is used in all cases.

First, we assess the effect of the azimuthal wavenumber, m,
(see Figure 10(a)). Note that only positive integer values of
m are considered in Figure 10(a) as the results are equivalent
when negative values are used. As for the thermal continuum,
the value of m is irrelevant for the growth rate of the discrete
thermal modes. The almost negligible variation of the growth
rate with m shown in Figure 10(a) might not be physical and
might be attributed to the accuracy of the numerical code. On
the other hand, the dependence on the longitudinal wavenumber
is displayed in Figure 10(b). The maximum of the growth rate
takes place for kzR ≈ 0.4, while s̃ decreases as kzR is increased
or reduced. For kzR � 0.4, the growth rate decreases and the
thermal mode is stabilized by the effect of thermal conduction
parallel to magnetic field lines, as commented in Section 3.
The critical wavenumber for the stabilization is consistent with
the expression given in Equation (31) for the stabilization of
the thermal continuum. The growth rate also decreases with
respect to the maximum value when kzR � 0.4. This behavior is
different from the behavior of the thermal continuum (compare
Figures 3 and 10(b)). In addition, we find that for kzR → 0 a
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Figure 11. Normalized growth rate of the most unstable mode vs. the thickness
of the transitional layer, l/R. The different line styles in the panel, almost
superimposed, represent the linear (solid), sinusoidal (dashed), and Gaussian
(dot-dashed) temperature profiles. All computations are performed with kzR =
10−1 and m = 0.

rich collection of couplings between the different thermal modes
takes place. This complex system of couplings is not visible on
the scale of Figure 10(b). We do not explore these couplings in
detail here because they take place for very small kzR and far
from the maximum value of the growth rate.

Finally, the dependence on the thickness of the transitional
layer, l/R, is shown on Figure 11. In a real prominence thread,
the thickness of the transitional layer is probably determined
by the coefficient of thermal conduction perpendicular to the
magnetic field. In fully ionized coronal plasmas, the perpen-
dicular thermal conductivity is very small. However, for cool
prominence temperatures the plasma is only partially ionized
and the perpendicular thermal conductivity increases by several
orders of magnitude due to the effect of thermal conduction
by neutrals (see, e.g., Parker 1953; Ibáñez & Mendoza 1990;
Forteza et al. 2008). This effect might be important in the in-
ner part of the PCTR. Unfortunately, since the ionization de-
gree in prominence threads is unknown (see recent estimations
by Gouttebroze & Labrosse 2009), the thickness of the transi-
tional layer cannot be determined with confidence. For this rea-
son, we take l/R as a free parameter. The growth rate is almost
constant for l/R � 0.5, whereas s̃ decreases for l/R � 0.5.
When l/R → 0, s̃ → 0 because the transitional layer is absent
and the thermal continuum disappears. As in previous computa-
tions, the results for the different temperature profiles are almost
identical, hence the form of the temperature profile is not rele-
vant for the growth rate. This is an important result because it
means that our present conclusions apply for all possible tem-
perature profiles in the particular PCTR of prominence threads.

6. IMPLICATIONS FOR THREAD LIFETIMES

In this paper, we have shown that prominence threads,
modeled as cool and dense magnetic flux tubes embedded in a
much hotter and less dense coronal environment, are not stable
because unstable thermal modes are present in their particular
PCTR. This statement qualitatively agrees with the results from
Karpen et al. (1989) who studied thermal instabilities in a
two-dimensional spatially random magnetic field distribution
and concluded that cool condensations cannot be in static
equilibrium with a hot exterior. However, in the work by
Karpen et al. (1989) the surrounding of the condensations
simply continue to cool down because these authors did not
consider the effect of thermal conduction perpendicular to the

magnetic field. The unstable discrete modes present in our model
appear due to the effect of thermal conduction perpendicular
to the magnetic field. Our results for the growth rate of the
unstable thermal modes have direct implications for the stability
and lifetime of prominence threads. In our analysis, we have
restricted ourselves to the linear stage of the thermal instability.
This stage represents the initial phase in which the unstable
thermal mode grows after its excitation. The combined influence
of the different unstable modes will affect the subsequent
nonlinear evolution of the plasma within the PCTR, because
many of the unstable modes have very similar growth rates
and the evolution will not be dominated by a single mode.
Significant changes in the equilibrium of the threads would
take place during the subsequent nonlinear evolution of the
thermal instability, because of the large temperature and density
gradients generated, which may be detected by the observations.
The growth rate of the linear phase provides us with a reasonable
estimation of the typical timescale on which the effect of
the thermal instability in the PCTR of the threads would be
observable and may affect the thread dynamics.

In the analysis of the previous sections, we have seen that the
most relevant parameter affecting the instability growth rate is
the longitudinal wavenumber, since it determines the efficiency
of parallel thermal conduction as stabilizing mechanism. If un-
stable thermal modes are excited in a prominence thread by an
arbitrary disturbance, the instability would be dominated by the
most unstable solution. We find that in our model the maximum
of the growth takes place for kzR ≈ 0.4 and corresponds to a di-
mensionless growth rate of s̃ ≈ 0.255 using Hildner’s radiative
loss function and s̃ ≈ 0.467 using Klimchuk–Raymond’s ra-
diative loss function. The corresponding instability timescale
is τT = 1/s, with s being the dimensional growth rate
computed from its dimensionless value as s = s̃csp/R. In
Figure 12, we plot τT as a function of the temperature at the
center of the thread, Tp, for different values of the thread radius,
R. We find that, for realistic values of Tp and R, the instability
timescale is of the order of a few minutes. We obtain that τT

decreases as Tp gets higher and increases as R gets larger, mean-
ing that cool and wide threads are more thermally stable than
hot and thin threads. We also see that Klimchuk–Raymond’s
parameterization produces smaller instability timescales than
with Hildner’s parameterization. The values of τT indicated in
Figure 12 are of the same order of magnitude as the typically
observed lasting time of the threads in sequences of Hα im-
ages of solar filaments (e.g., Lin 2004; Lin et al. 2005, 2009).
This result implies that the thermal instability may play a rel-
evant role for the dynamics and stability of prominence and
filament fine structures, because the timescale related to the
thermal instability is consistent with the observed timescale
on which threads seem to suffer important changes in their
equilibrium.

7. DISCUSSION AND SUMMARY

In this paper, we have studied the properties of quasi-
continuum thermal modes in a prominence thread model which
is transversely inhomogeneous. We have followed the method
of Van der Linden et al. (1991) and Van der Linden & Goossens
(1991) to investigate, first, the stability of the thermal continuum
and, later, the effect of cross-field thermal conduction and
magnetic diffusion. We have recovered the general results by
Van der Linden et al. (1991) and Van der Linden & Goossens
(1991) in all cases studied in the present paper. In particular, we
have found that the thermal continuum in prominence threads is

11



The Astrophysical Journal, 731:39 (13pp), 2011 April 10 Soler, Ballester, & Goossens

Figure 12. Thermal instability timescale, τT , computed from the maximum growth of the most unstable mode vs. the temperature of the thread core, Tp, using (a)
Hildner’s and (b) Klimchuk–Raymond’s parameterizations for the radiative loss function. The different line styles in both panels represent different values of the
thread radius: R = 100 km (solid), 200 km (dotted), 400 km (dashed), and 800 km (dot-dashed).

unstable for PCTR temperatures. In agreement with the results
of Van der Linden & Goossens (1991), the effect of cross-
field thermal conduction is to replace the thermal continuum
by discrete modes which retain the unstable character of the
continuum. On the contrary, the role of magnetic diffusion is
negligible in our model (see Ireland et al. 1992, 1998). We
have obtained the important result that the instability growth
rate of the most unstable mode is independent of the form of
the temperature profile within the PCTR of the thread, and the
instability timescale is consistent with the observed lifetime of
the threads in Hα observations of solar filaments (e.g., Lin et al.
2008, 2009). Considering our present results along with those
obtained by Van der Linden & Goossens (1991) and Van der
Linden (1993), we conclude that unstable thermal modes may
play a relevant role for both the formation of the prominence fine
structure and the subsequent instability of the thin prominence
threads.

Here we have considered a fully ionized prominence. How-
ever, due to the low temperature in the dense core of the threads,
the cool prominence plasma is expected to be partially ion-
ized (Gouttebroze & Labrosse 2009). If partial ionization is
taken into account, several additional effects have to be con-
sidered, namely, thermal conduction by neutrals, ambipolar (or
Cowling’s) diffusion caused by ion-neutral collisions, and a
modified radiation function (see, e.g., Forteza et al. 2008; Soler
et al. 2010a). The role of both effects depends strongly on
the plasma ionization degree. It requires complicated compu-
tations of NLTE radiative transfer and statistical equilibrium
of atomic level populations to obtain the precise profile of the
ionization degree in prominence threads (see extensive details
in, e.g., Gouttebroze & Labrosse 2009; Labrosse et al. 2010).
Nevertheless, some relevant conclusions can be obtained if one
reasonably assumes that the ionization degree in prominence
plasmas is mainly determined by the temperature and, to a
lesser extend, by the density. While the ionization degree of
the core of the thread is unknown, it is realistic to assume that
the condition of full ionization occurs in the PCTR for tem-
peratures higher than a critical temperature, namely, T ∗. The
results by Gouttebroze & Labrosse (2009) and Schure et al.
(2010) suggest realistic values for the critical ionizing tempera-
ture for the hydrogen plasma in prominences of T ∗ ≈ 2×104 K
and T ∗ ≈ 2.5 × 104 K, respectively, so only the inner part
of the transitional layer would be partially ionized. Accord-
ing to the instability criterion (Equation (30)), the unstable part
of the thermal continuum takes place at temperatures higher

than 8 × 104 K, which is higher than the critical ionizing tem-
perature. This suggests that the ionization degree of the cool
part of the fine structure is probably not relevant for the un-
stable quasi-continuum modes, because they are mainly con-
fined where hydrogen may be already fully ionized. However,
a detailed investigation of this issue is needed for more robust
conclusions.

The present investigation is a first step and should be improved
in the future by taking into account relevant effects that have not
been included in our model. Among these effects, the role of
density and magnetic longitudinal inhomogeneity and the effect
of magnetic twist will be assessed in forthcoming works. We
have also neglected the effect of mass flows. Previous studies
on linear thermal modes in flowing homogeneous prominence
plasmas (see, e.g., Soler et al. 2008; Carbonell et al. 2009, 2010;
Barceló et al. 2011) suggest that flows along magnetic field lines
do not affect the linear growth rate of the thermal instability.
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