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ABSTRACT

Prominence threads are expected to be cold plasma condensations in a long magnetic tube. Because of this density
inhomogeneity along the magnetic field, the ratio of the fundamental transverse mode period to twice that of its first
overtone, P1/2P2, must differ from 1. We investigate the dependence of this ratio on the equilibrium parameters
of prominence threads and its possible use as a diagnostic tool for prominence seismology. Using the low-beta
plasma approximation, we follow the procedure of previous works to obtain the frequencies and spatial distribution
of the modes. We also check the thin tube approximation and find it reasonably accurate. The period ratio P1/2P2
is found to be greater than unity, in contrast with coronal loops, for which the effect of inhomogeneities is to make
this ratio smaller than 1. The ratio is very sensitive to the thread length, while the dependence on other parameters
is less important for threads than for coronal loops. Hence, the period ratio can be used to obtain an estimation of
the length of the supporting magnetic tube, since the thread length is known from observations. The obtained value
of the tube length does not depend on other parameters, so their potential for prominence seismology may be great.
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1. INTRODUCTION

Prominences or filaments are basically clouds of dense and
cold plasma located in the corona. The magnetic field seems to
be responsible for sustaining the dense material against gravity
and for thermally isolating it from the surrounding hot coronal
material. However, there is no clear picture of their equilibrium,
creation, and eruption or disappearance, since their dynamics is
quite complex and it is difficult to measure certain parameters
(such as the magnetic field strength or its orientation).

These objects are known to be composed of many small
thread-like structures, named fibrils or threads, which are
piled up to form the body of the prominence. High-resolution
observations in absorption in the Hα line have clearly shown
the existence of these structures, whose thickness seems to
be less than 0.′′3 (and could be even lower, because of the
limited spatial resolution), while their lengths are on the order
of 1000–10000 km. Flows are also present in threads with
velocities of 10–40 km s−1 (Lin et al. 2003, 2005, 2007,
2009; Okamoto et al. 2007; Ning et al. 2009), and the dense
region seems to be moving at the same time the oscillations are
displayed (Lin et al. 2007, 2009; Okamoto et al. 2007; Ning
et al. 2009).

There are many reports of oscillatory behavior in prominence
threads (see Oliver 2009; Mackay et al. 2010 for recent sum-
maries of observational and theoretical works). Here we con-
centrate on the transverse thread oscillations. Very recently, Lin
et al. (2009) and Ning et al. (2009) have reported both using the
Swedish Solar Telescope (SST) in La Palma and instruments on
board the Hinode satellite that threads oscillate independently.
Reported periods are around 5 minutes, while drifts and flows
are sometimes seen together with the oscillatory behavior, and
clear signs of damping (Arregui & Ballester 2010). These oscil-
lations are consistent with trapped fast magnetohydrodynamic
(MHD) modes of the thread (Joarder et al. 1997; Dı́az et al.
2001, 2002, 2005; Dı́az & Roberts 2006a; Terradas et al. 2008).

Therefore, it is suggested that the reported periods from
observations could be used to perform prominence seismology
and to estimate the value of equilibrium quantities, such as

the magnetic field strength or the plasma density (Dı́az 2004;
Terradas et al. 2008; Oliver 2009; Lin et al. 2009; Soler et al.
2010). However, the available information is not enough to
obtain each unknown parameter, so some assumptions need to
be made, such as choosing an ad hoc value for the prominence
density. The situation does not improve if the information about
the wave attenuation is taken into account, since the dissipation
mechanisms require extra parameters; for example, resonant
absorption needs a measure of the thread transitional layer
thickness, thus adding another unknown parameter (Arregui
et al. 2008; Soler et al. 2010). Moreover, the frequency of
the transverse fundamental mode depends at least on the
thread length, its thickness, and its density contrast with the
surrounding atmosphere (Dı́az et al. 2002). At best, after
some assumptions on these parameters we can obtain the
dimensionless ratio ωL/cAc, with L being the length of the
magnetic tube and cAc = B0/

√
μρc the value for the Alfvén

speed in the corona, but to obtain a value of the magnetic field
we need more information about the tube length and the plasma
density. Following Dı́az et al. (2002), we take for example the
observations in Lin et al. (2007) who report periods around
5 minutes. In the simple slab-like thread model, the normalized
frequency ωL/cAc depends only on three parameters: the
prominence–corona density ratio, ρp/ρc, the ratio of the thread
length to the magnetic tube length, W/L, and very slightly on
the ratio of the thread thickness to the magnetic tube length, a/L
(since it is a small number). However, to obtain an estimated
period value we need two more parameters, the Alfvén velocity
in the corona or prominence (which involves the magnetic
field and the density) and the tube length L. Using the values
L ≈ 105 km and ρc ≈ 10−12 kg m−3 (in the expected range for
prominences) we obtain a value of B0 ≈ 10 G, which is again in
the expected range, supporting the claim that these oscillations
are fast MHD modes.

On the other hand, the ratio of the fundamental mode period
to twice that of its first overtone, P1/2P2, has proved useful
in coronal loop seismology, since it depends mainly on the
density structure along magnetic field lines (see Andries et al.
2009b for a review on the topic). The first overtone itself
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Figure 1. Sketch of a simple equilibrium configuration for prominence threads.

presents the same difficulties as the fundamental mode: too
many unknown parameters, but taking the ratio P1/2P2 many
of these parameters cancel out, and only the structure along the
field has an impact for a thin structure, so it is a direct probe of
the density scale length (since the loop length can be crudely
obtained from observations). The reason for this dependence is
that the first overtone has shorter scales, and it is more sensitive
to variations along the field line than the fundamental mode. It is
interesting to note that only in an unbounded homogeneous loop
the ratio is equal to 1, since the boundaries (and finite width)
lower it.

Regarding prominence threads, the ratio P1/2P2 must deviate
from unity too, since they have a strong inhomogeneity along
their supporting field lines. Hence, our aim is to study this de-
pendence and to check whether similar studies can be performed
in prominence seismology, despite the second period not clearly
being reported yet in any observations so far.

2. EQUILIBRIUM AND NORMAL MODES

We consider a zero-β plasma embedded in a uniform mag-
netic field B = B0ẑ. The plasma density outside the magnetic
tube that contains the thread (with radius a) is a constant ρc,
while inside the tube the density jumps to ρp for −W � z � W
and is equal to ρc in the rest of the tube, modeling the den-
sity enhancement of the thread in the central region (see also
Figure 1):

ρ0(r, z) =
{

ρp, |z| � W and r � a,

ρc, r � a or W < |z| � L.
(1)

Note that the Alfvén speed, termed cAj = B0/
√

μ0ρj with
j = p, c, is constant in each region.

The main difference of this equilibrium with that of coronal
loops is that here the density enhancement is located in a small
region near the top of the tube (the center of our domain), while
in loops the enhancement is near the footpoints (modeling the
density stratification due to gravity or the lower and denser
layers of the solar atmosphere). This will become important in
the ratio P1/2P2.

To obtain solutions for an arbitrary radius, we follow the same
procedure detailed in Dı́az et al. (2002, 2005). The boundary
conditions can be satisfied if we expand the general solution as
sums of the eigenfunctions in the z-direction. This leads to a
system of equations for the coefficients of each eigenfunction,
so the condition to have solutions different from the trivial one
is that the determinant of the system vanishes and this provides
us with a dispersion relation. This infinite-order determinant
is then truncated so its roots can be found by using numerical
algorithms.

On the other hand, Dymova & Ruderman (2005, 2006) have
shown that in the thin tube limit for non-axisymmetric kink

oscillations the radial velocity, vre
iωt , satisfies an equation of

the form
d2vr

dz2
+

ω2

c2
k(z)

vr = 0, (2)

where

ck(z) =
[

2B2
0

μ0 [ρi(z) + ρe(z)]

]1/2

(3)

denotes the kink speed in a tube with internal plasma density
ρ0(z) = ρi(z) for r � a and environment density ρe(z) for
r > a. In our model, the kink speed is only different from cAc
inside the region filled with dense plasma

c2
kp = 2B2

0

μ0(ρp + ρc)
= c2

Ac

2

ρp/ρc + 1
. (4)

The thin tube equation (Equation (2)) is amenable to an ana-
lytical treatment. This method has the advantage of simplifying
substantially the calculations but ignores the radial dependence
and other features, such as the appearance of cutoffs and leak-
age. In the piecewise-constant profile we are dealing with, the
thin tube approximation can be used to obtain algebraic equa-
tions for the frequencies of the modes (Dymova & Ruderman
2005; Terradas et al. 2008). In our variables, these equations are

f tan [f ω̃W/L] − cot [ω̃(1 − W/L)] = 0, (5)

f cot [ω̃W/L] − cot [ω̃(1 − W/L)] = 0, (6)

for the even and odd modes in the longitudinal direction,
respectively. We have used the dimensionless frequency ω̃ =
ωL/cAc and the definition

f =
√

ρp/ρc + 1

2
. (7)

It is also important to discuss briefly the spatial shape of
these modes. The fundamental mode, i.e., the lowest frequency
solution to Equation (5), has a maximum at the center (in the
region filled with dense material), while the first overtone, i.e.,
the lowest frequency solution to Equation (6), has a zero in
the center and two extrema, which can be inside or outside the
dense region depending on the values of the parameters (see
Figure 2). This makes the first overtone more difficult to detect,
since perturbations inside the thread take small values.

3. VALIDITY OF THE THIN TUBE APPROXIMATION

We first draw the dispersion relation for typical prominence
parameters, as it is shown in Figure 3 (kink modes only). We
can also see that the frequencies of both the fundamental mode
(an even mode) and the first overtone (which is an odd mode)
are close to the cutoff frequencies when W/L is very small,
but then they decrease as W/L is increased. We obtain that the
thin tube limit (Equation (2)) gives us reasonable values for the
frequencies of the modes.

Next, we consider the dependence of P1/2P2 on the thread
thickness a (Figure 4). The curve is almost flat for values below
a/L = 0.01, which is of the order of the expected value for
threads. This result confirms that the thin tube approximation
can be used with little loss of accuracy. The shape of the curve
(with a minimum as a/L is increased) is caused by the dispersion
of kink modes, as it was explained for coronal loops in McEwan
et al. (2006; Figures 2 and 3). Since the dispersion relation for
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Figure 2. Cuts of vr as a function of the normalized position along the tube z/L

at the tube surface r = a for two different values of W/L. Solid lines represent
the fundamental mode (which is an even mode in the z-direction), while dashed
lines correspond to the first overtone (which is an odd mode). The region with
prominence material has been shaded.

Figure 3. Dispersion diagram showing ωL/cAc against the thread length W/L

for the values ρp/ρc = 200 and a/L = 0.01. Only kink modes are shown. Solid
lines correspond to even modes about the middle point of the tube, while dashed
lines correspond to odd modes. The results of the thin tube approximation
(Equation (2)) have been overplotted in dotted lines. The horizontal dashed
lines represent the two cutoff frequencies of the system, one for the even modes
(ωL/cAc = π/2) and one for the odd modes (ωL/cAc = π ).

prominence threads has a similar mathematical form (Dı́az et al.
2002) using the thread thickness the curve resembles those plots.
Plotting similar curves for different values of W/L and ρp/ρc
would only change the value at the origin, with the shape of the
curve very similar to that in Figure 4.

Our next parameter is the density contrast between the promi-
nence and coronal material, ρp/ρc. We can see in Figure 5 that
the curve is close to flatness for density ratios over 100, which is
the expected range for the prominence material in threads. This
is important, since both the coronal and the prominence densi-
ties are difficult to measure simultaneously with the oscillatory
properties of the structure, but we can see that it is not a crucial

Figure 4. Ratio P1/2P2 against the thread radius for the values ρp/ρc = 200
and W/L = 0.1.

Figure 5. Ratio P1/2P2 against the density ratio for a radius a/L = 0.01 and
different values of W/L. The results from the thin tube approximation have
been overplotted as a dotted line.

Figure 6. Ratio P1/2P2 against the thread length for a radius a/L = 0.01 and
different values of ρp/ρc. The results from the thin tube approximation have
been overplotted as a dotted line.

parameter, and thus our parameter space is reduced. Again we
check that the thin tube limit gives reasonable results, although
for low values of the thread length, W, it is less accurate.

Finally, we study the effect of the thread length, W, shown in
Figure 6. First of all, the dependence is quite more important
and the period ratio shows variations up to a factor of three,
while as W/L tends to 1 (so the whole tube is filled with dense
material) the ratio tends to a value slightly less than 1 because
of the finite value of the thread thickness used (this is not shown
in the plot).

It is also important to note that the curve is multivaluated: for
a given value of the period ratio, there are two possible values of
the thread length. This is caused by the first overtone becoming
a mode with amplitude mainly on the evacuated part of the loop,
with its frequency very close to π (and a sinusoidal shape) and
not sensitive to the amount of dense material near the center,
while the fundamental mode is still affected by this material.
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This transition can be seen in Figure 2: in the top panel (W/L
in the expected range) both modes are affected by the dense
material; on the other hand, in the bottom panel (W/L small)
the second overtone is very close to a sinusoidal form, while the
fundamental mode still reflects the prominence material and its
far from a sinusoidal form.

4. ANALYTICAL APPROXIMATIONS TO P1/2P2

4.1. Series Expansion for Small Frequencies

The relations in Equations (5) and (6) can be used to obtain a
series expansion and a simple approximated formula for P1/2P2.
If we assume that ω̃ is less than unity, we can use the series
expansion of the trigonometric functions and obtain analytical
approximations from these transcendental equations:

ω̃1 ≈ [(1 − W/L)(W/Lf 2 − W/3L − 1/3)]−1/2,

ω̃2 ≈ [W/L(1 − W/L)(W/Lf 2 − W/L − 1)/3]−1/2. (8)

Then, the period ratio turns out to be

P1/2P2 ≈ 1

2
√

W/L

√
1 + W/L (3f 2 − 1)

1 + W/L (f 2 − 1)
. (9)

We can further simplify these expressions if we assume that the
density ratio ρp/ρc is much bigger than unity, so f � 1 and
these expressions give

ω̃1 ≈ [W/L(1 − W/L)]−1/2/f,

ω̃2 ≈ 31/2[(W/L)2(1 − W/L)]−1/2/f. (10)

Hence,

P1/2P2 ≈
√

3

4W/L
, (11)

which does not depend on the density ratio showing that the
dependence on this parameter is not crucial.

Note however that this expansion is only valid when the
frequencies are small compared with π/2. We can see in Figure 3
that the fundamental mode satisfies this condition except for
small W/L, but the first overtone does not, and hence the
approximation is quite poor. We can compute similar formulae
adding an extra term in the expansion of the trigonometric
functions in Equations (5) and (6) and then using again f � 1,
obtaining the next order correction:

P1/2P2 ≈
√

3

4W/L

√
1 +

√
(1 + W/L/3)/(1 − W/L)

1 +
√

(9/5 − W/L)/(1 − W/L)
. (12)

4.2. Series Expansion for Small Thread Length

The formulae in the previous subsection are valid only if the
frequency is small ω̃ � π/2. However, we see in Figure 3 that
for small values of the thread length W/L this assumption is no
longer valid. Instead, in this range the frequencies are close to
the cutoff frequencies, so this suggests using their values as the
center of the expansions in Equations (5) and (6). Then we use
another series expansion for W/L � 1 to obtain the following
expressions:

ω̃1 ≈ π

2

4 + π2(W/L)2

8 + 2W/L(π2(W/L)2 + 4W/L(f 2 − 1) + 4)
,

ω̃2 ≈ π
3 + π2(W/L)2

3 + π2(W/L)2(1 + W/L(f 2 − 1)
. (13)

Figure 7. Ratio P1/2P2 against the thread center position Lc for a density
contrast ρp/ρc = 200 and different values of the thread width W/L (thin tube
approximation).

Then, the period ratio gives

P1/2P2 ≈ 1 + (f 2 − 2) W/L − (f 2 + 1) (W/L)2. (14)

In this range there is a dependence on the density ratio, as we
expected from the curves in Figure 6. However, the range where
this formula can be applied is small, since the fundamental mode
differs rapidly from π/2 as W/L is increased, so the condition
for the expansion is no longer met and the curve of P1/2P2
reaches the maximum in Figure 6, with the decrease after the
maximum reasonably described by the approximations in the
previous subsection (Equation (12)).

5. DEPENDENCE OF THE PERIOD RATIO ON
THE THREAD POSITION ALONG THE

MAGNETIC STRUCTURE

So far we have dealt with threads which are positioned in
the center of the magnetic structure (Figure 1). However, in
a solar prominence this is not necessarily true, so we explore
the dependence of the ratio on the thread position. We define
Lc as the position of the center of the thread with respect to
the center of the structure (which is situated at z = 0), so
|Lc| � L − W . Hence, the density along the magnetic structure
is ρp if Lc − W � z � Lc + W and ρc otherwise, instead of the
profile in Equation (1).

Using both the thin tube approximation and the numerical
code we can obtain the eigenmodes for different values of this
new parameter. The results of the numerical code are shown in
Figure 7.

There are two types of behavior for these curves: either a
slight dependence on Lc or a definite drop. This can be related
with the two regimes that appear in Figure 6: if the value of W/L
is smaller than the position of the maximum, then the ratio is
highly dependent on the position of the thread; however, if the
value of W/L is greater than the position of the maximum then
the value of the period ratio is only slightly modified when Lc is
changed. These two different shapes of the P1/2P2 curve can be
explained looking at the spatial shape of the modes (Figure 2).
For high values of W/L the mode amplitude is higher in the
dense region, and moving it does not affect too much the shape
(and period) of the modes. On the other hand, for lower values
of W/L the amplitude of the first overtone peaks outside the
dense region, and moving it distorts its shape (it is no longer
quasi-sinusoidal), changing significantly its period and hence
the period ratio.

Therefore, the effect of modifying the thread position along
the magnetic structure is only important for small thread lengths
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Figure 8. Plots of the lines satisfying P1/2P2 = constant in the space parameter.
The upper line corresponds to P1/2P2 = 1.25 and the lower one P1/2P2 = 3,
with each line showing an increment of 0.25 from the previous one.

(smaller than the position of the maximum in Figure 6), so the
series in Section 4.2 are only valid for Lc < W . On the other
hand, the results for larger thread lengths are accurate enough if
this effect is not considered.

6. THE P1/2P2 PERIOD RATIO AS A
SEISMOLOGICAL TOOL

One of the main problems in prominence and coronal seis-
mology is that normally there are too many parameters on which
the frequency depends, and hence, it is difficult to extract in-
formation from the observation without making assumptions on
the values of unknown quantities. However, the situation is a
bit different if we consider the period ratio, since all the de-
pendence on the dimensionless frequency is canceled, leaving
only the dependence on the parameters that describe the inho-
mogeneity along the field lines (McEwan et al. 2008). Since the
thread thickness is small we are only left with two parameters:
ρp/ρc and W/L. The dependence of the period ratio on these
parameters is shown in Figure 8. Note that the dependence on
the thread density ratio is very small; the curves are almost flat.
Also not all the values can be reached: if the density becomes
too small a big value of P1/2P2 might not be reached.

Hence, we can see the potential use of this seismological
tool: given the period ratio from an observation, it only depends
on W/L in first approximation. This is plotted in Figure 9,
where the results of the series expansion have been overplotted.
These analytical formulae may be helpful, but the lack of
accuracy must be noticed. Using a simple expression such as
Equation (11) may be interesting theoretically, but for higher
precision the numerical solution must be used.

Finally, once W/L has been obtained we can estimate the
value of the magnetic field tube length, L, since the thread length
W can be determined quite accurately from the observations.
Moreover, the deduced tube length could be compared with
coronal magnetic field extrapolations and Michelson Doppler
Imager (MDI) photospheric magnetograms to test the validity
of our models and the structure of the prominence supporting
magnetic field.

The second period has not been unambiguously reported so
far, but there seem to be hints of it in some observations. As
an example, consider the results in Lin et al. (2007), where two
periods are present in their observations of a prominence region,
namely, P1 = 16 minutes and P2 = 3.6 minutes. Although the
identification of these periods with the fundamental mode and its
first overtone is not clear, let us assume that this was a detection
of these modes. Inverting the data of Figure 9, we obtain for the
observed period ratio the value W/L = 0.12. It is difficult to

Figure 9. Ratio P1/2P2 against the thread length for a radius a/L = 0.01
and a density contrast ρp/ρc = 200. The results from the thin tube series
approximation have been overplotted as a dotted line (Equation (11)), dashed
line (Equation (12)), and dot-dashed line (Equation (14)).

estimate the length of this particular thread, W, from the data
reported in the paper, but if we assume that it is about 18′′
(as for other threads studied in the paper), this would give an
approximate length W ≈ 13,000 km, and hence a tube length
L ≈ 110,000 km, which is consistent with the expected range
of this parameter.

Finally, we can use this new seismological information to
obtain more values, namely, the Alfvén speed in the prominence.
Rearranging Equation (10), using Equation (4), and assuming
that ρp � ρc we find an expression for cAp which depends only
on known quantities, namely,

cAp = πL

P1

√
2W/L (1 − W/L). (15)

Finally, we perform this calculation with the observational data,
which give us an estimated value of cAp ≈ 160 km s−1.

7. DISCUSSION AND CONCLUSIONS

We have tested the thin tube approximation in Dymova &
Ruderman (2005) and have found that its results are quite accu-
rate. Then, we have explored the dependence of the P1/2P2 ratio
on the plasma parameters and equilibrium configuration. First
of all, the ratio does not depend on unknown quantities such as
the magnetic field or the coronal density (since the dependence
on the Alfvén speed is canceled). Moreover, the dependence
on the thread thickness is negligible, while the dependence on
the density ratio between the prominence and the surrounding
corona turns out to be small for typical prominence values. This
is caused by the large inertia of the prominence material filling
the central part of the magnetic tube compared to that of the
coronal plasma in the evacuated part of the tube. If the density
contrast is lower then its effect on the ratio must be taken into
account too.

Hence, we are left with only one important parameter: the
thread length over the magnetic field line length W/L, whose
influence on the period ratio can be seen in Figure 9; we have also
derived analytical approximations to this curve (Equation (11)).
The reason why this parameter is so important is because it
controls how the structure deviates from a homogeneous tube.
However, there is a maximum value of the ratio in this figure,
and then it decreases as W/L is further decreased. The reason
for this shape is that for tubes with a small dense region the first
overtone no longer feels it and becomes almost a mode of the
field line itself. In this case we have shown that deviations of
the thread position from the center of the field line may also
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modify significantly the period ratio, otherwise this ratio is not
too sensitive to the position of the thread, provided it is not too
close to the footpoints.

These results would allow us to perform prominence thread
seismology. A reported value of P1/2P2 would allow us to
deduce a value of W/L, so once the actual length of the thread
is determined from the observations the length of the magnetic
field line L could be deduced. The problem of multivaluation
in Figure 9 is still present, but some information about the
structure around the body of the prominence (such as surface
magnetograms) could help to rule out spurious values. Once
the value of the tube length L has been deduced, the local
Alfvén speed can be obtained from the actual value of P1
(Dı́az et al. 2002, assuming that the density ratio is large) or
with less precision with formulae from the series expansion
(Equation (15)), since P1 depends slightly on this parameter
too. To obtain a value for the magnetic field strength B0 we
need to know also the prominence plasma density ρp, but the
determination of W/L does not rely on unknown quantities,
and it can be a useful tool to help understand the complex
magnetic field that is the backbone of a prominence. The
seismological information that can be obtained from the P1
period alone is less precise; for example, in Terradas et al. (2008)
the ranges of the equilibrium quantities consistent with a given
observation were determined, while the ratio P1/2P2 leads to a
straight determination of some of these parameters (especially L
and cAp).

Regarding the observations, no measurement of the first
overtone period, P2, has been reported in the literature so far
for prominence threads, although there seems to be plenty of
periods and overtones when the prominence is observed as a
whole (see, for example, Pouget et al. 2006). The period of the
fundamental mode in prominence threads is around 5 minutes
(Lin et al. 2003, 2009), so for a typical set of values of the
parameters the first overtone period would be around 2 minutes,
which is close to the cadence of some instruments but can still
be observed with others. It is possible that this second period is
already present in more data sets, but has not been reported so
far. On the other hand, this overtone is an antisymmetric mode
with a node in the center of the dense region, so probably it is
difficult to detect near the thread center and easier to detect near
its edges. It must be mentioned that in Lin et al. (2007) a second
peak in the power spectrum is found, but the authors suggest
that it could be the fundamental mode of a overlaying thread;
however, it could also be a spurious peak from the data analysis.

There are further additions to the model presented in this
work. First of all, field divergence is an important factor in
coronal loop seismology using P1/2P2 since it competes with
density structuring (Verth & Erdélyi 2008), but since its main
contribution is to rise a few % in prominence threads the effect
can be neglected, the density structuring being much stronger
and already raising the ratio. It is also known that flows are
present in threads (Lin et al. 2003, 2005, 2007, 2009). However,
the effect on the periods is small, since these flows are generally
small compared with the local Alfvén speed (Terradas et al.
2008; Soler et al. 2009), and hence its effect on the ratio should
also be small. More important deviations could come from
different equilibrium configurations, such as threads having the
dense part not centered in a field line (which we have seen that
is important for thin threads) or more than one dense part in the
same field line.

We have so far considered the ratio of the fundamental mode
period to twice that of its first overtone, P1/2P2, but a similar

study could be performed on the ratio of the fundamental mode
to three times that of its second overtone, P1/3P3, and its
deviation from unity. In principle, the second overtone is again
an even mode, so it is easier to detect, and P1/3P3 would give
similar results to the ones with P1/2P2. However, leakage turns
out to be an important factor. We see in Figure 3 that very
few modes are trapped. The rest of the modes are leaky (their
frequencies lie above the cutoff frequencies) and thus radiate
energy away from the structure. These leaky modes only appear
during the short transients at the moment of excitation and are
difficult to detect. We can also see that both the fundamental
mode (an even mode) and the first overtone (which is an odd
mode) are present in the whole range, while higher overtones
become leaky when the thread length is decreased. Hence, it
makes sense to compute the P1/2P2 diagram, while similar
diagrams for higher overtones would reach an end when the
overtone becomes leaky and would provide little information in
the expected range of W/L. One should realize that in the thin
tube limit one can obtain a value for all the range of parameters,
but this limit does not take into account that overtones may
become leaky.

It is also interesting to remark that the value of P1/2P2 is
above unity. This is opposite to its behavior in coronal loops:
for such systems the density structuring was found to lower
the value of this ratio (Andries et al. 2005, 2009a; McEwan
et al. 2006, 2008; Goossens et al. 2006; Dı́az & Roberts 2006b;
Erdélyi & Verth 2007; Verth et al. 2008; Morton & Erdélyi
2009), except if other effects are taken into account, such as
the divergence of the field lines that form the tube (Verth &
Erdélyi 2008). However, in the thread equilibrium the density
acts raising the ratio, and the reason is that now we have denser
material on the tube center, while for coronal loops the plasma
is denser near the footpoints. Also note that the ratio deviates
less than 20% from unity for coronal loops, but in prominence
threads the deviation is larger than 100%, since we have a clear
deviation from a homogenous loop. The effect of the magnetic
field is then less relevant, since it would increase a little this
ratio, but since it is already well above 1 the effect would be
less important than for coronal loops, for which it balances the
deviations due to structuring.
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Erdélyi, R., & Verth, G. 2007, A&A, 462, 743
Goossens, M., Andries, J., & Arregui, I. 2006, Phil. Trans. R. Soc. Ser. A, 364,

433
Joarder, P. S., Nakariakov, V. M., & Roberts, B. 1997, Sol. Phys., 176,

285
Lin, Y., Engvold, O., Rouppe van der Voort, L. H. M., & van Noort, M.

2007, Sol. Phys., 246, 65
Lin, Y., Engvold, O., Rouppe van der Voort, L., Wiik, J. E., & Berger, T. E.

2005, Sol. Phys., 226, 239
Lin, Y., Engvold, O. R., & Wiik, J. E. 2003, Sol. Phys., 216, 109
Lin, Y., Soler, R., Engvold, O., Ballester, J. L., Langangen, Ø., Oliver, R., &

Rouppe van der Voort, L. H. M. 2009, ApJ, 704, 870
Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., & Aulanier, G.

2010, Space Sci. Rev., 151, 333

McEwan, M. P., Dı́az, A. J., & Roberts, B. 2008, A&A, 481, 819
McEwan, M. P., Donnelly, G. R., Dı́az, A. J., & Roberts, B. 2006, A&A, 460,

893
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