Accretion in BHB and AGN

Chris Done, University of Durham

SPUPASIC

Black hole binaries

GRO J1655-40

Observe dramatic changes in SED with mass accretion rate onto black hole

Uncontroversial

- No-one talks much about the very high state!!
- Disc dominated state Shakura-Sunyaev disc equations!!
- TRANSITIONS??
- Hard-soft not fixed
- Soft-hard mainly 0.02LEdd
- L<0.001LEdd, X-ray hot flow, no inner disc
- steady compact jet (bulk Γ~1.5-2)

Moving disc with iron line - YES

- Iron line should be very small and narrow for low L/LEdd
- Gets bigger and broader as disc moves in
- XMM-Newton timing mode Kolehmainen Done & Diaz Trigo 2011 cf Tomsick et al 2010

What is the structure on this branch?

GX339-4 Corbel et al 2013

- TRANSITIONS??
- Hard-soft not fixed
- Soft-hard mainly 0.02LEdd

Truncated disc/hot inner flow

• Energy spectra need disc to move from 50-6ish Rg as make transition

DGK07

Variability of disc:short timescale

- No rapid variability of disc in disc dominated states!
- Disc very stable

Variability of disc:short timescale

- Timescale to change mass accretion rate through disc
- tvisc= α^{-1} (H/R)⁻² torb =5 α^{-1} (H/R)⁻² (r/6) ^{-3/2} ms
- $\sim 500s$ at last stable orbit for 10M
- No rapid variability of disc

Low/hard state variability

- Low/Hard state variability down to few 10s of ms
- tvisc= α^{-1} (H/R)⁻² tdyn = 5 α^{-1} (H/R)⁻² (r/6) ^{-3/2} ms
- IF viscous timescale then H/R~1

Accretion flows without discs

- Other stable state
- hot, optically thin, geometrically thick inner flow replacing the inner disc (Shapiro et al. 1976; Narayan & Yi 1995)
- Hot electrons Compton upscatter photons from cyclo-sync in optical ? Veledina et al 2013; Gardner & Done 2013

Accretion flows without discs

- But see some disc as well in bright low/hard states
- not easy to put it under flow as hard spectra required Ls<<Lh
- so truncate disc radially

No inner disc

- Hot electrons Compton upscatter photons from outer cool disc
- Few seed photons, so spectrum is hard
- Jet from large scale height flow

No inner disc

- Hot electrons Compton upscatter photons from outer cool disc
- Few seed photons, so spectrum is hard
- Jet from large scale height flow

Collapse of hot inner flow

- Hot electrons Compton upscatter photons from outer cool disc
- Few seed photons, so spectrum is hard
- Jet from large scale height flow
- collapse of flow=collapse of jet

Low/hard state variability

- Low/Hard state variability down to few 10s of ms
- tvisc= α^{-1} (H/R)⁻² tdyn = 5 α^{-1} (H/R)⁻² (r/6) ^{-3/2} ms
- viscous timescale then H/R~1
- Fluctuations stirred up by MRI
- WE NEED FULL MRI!!!

Low/hard state variability- QPO

Quantifying variability: the power spectral density (PSD) of Cyg X-1

Moving disc – moving QPO

- Energy spectra need disc to move from 50-6ish Rg as make transition
- Power spectra: low frequency break moves, high frequency power more or less constant! Large radius moves, Small radii constant
- Low frequency QPO moves with low frequency break
- QPO big, must be fundamental

DGK07

Origin of variability: MRI

Moving disc

- Disc closer in, more soft photons from disc so softer spectra
- Disc down to last stable orbit and collapse of hot flow gives physical mechanism for hard/soft transition + jet collapse

Ibragimov et al 2005

Not single T compton spectrum!

Everyone agrees on data

Inhomogeneous compton Makishima et al 2008

ionised, blurred reflection Fabian et al 2012

log v f(v)

Log v

hybrid (thermal-nonthermal) Gierlinski et al 1999

Jet

Markoff,

Nowak

During transition?

- Overlap softer (and more reflection)
- Inner region harder (and less reflection)
- WE SEE THIS!!

During transition?

- Overlap softer (and more reflection)
- Inner region harder (and less reflection)
- WE SEE THIS!!

During transition?

- Overlap softer (and more reflection)
- Inner region harder (and less reflection)

Low/hard state variability

- Hard X-rays vary fast
- tvisc= α^{-1} (H/R)⁻² tdyn = 5 α^{-1} (H/R)⁻² (r/6) ^{-3/2} ms
- IF viscous timescale then H/R~1

- But emission depends on Mdot
- Mdot can't vary on shorter timescales than the local viscous timescale, t_{visc}(r)

MRI

- But emission depends on Mdot
- Mdot can't vary on shorter timescales than the local viscous timescale, t_{visc}(r)

- But emission depends on Mdot
- Mdot can't vary on shorter timescales than the local viscous timescale, $t_{visc}(r)$

- But emission depends on Mdot
- Mdot can't vary on shorter timescales than the local viscous timescale, $t_{visc}(r)$

- But emission depends on Mdot
- Mdot can't vary on shorter timescales than the local viscous timescale, t_{visc}(r)

- But emission depends on Mdot
- Mdot can't vary on shorter timescales than the local viscous timescale, t_{visc}(r)

Propagation not independent Lorenzians as decohere!

Origin of broad band variability

Fluctuations start at large radii – first, soft and slow with R propagate down to smaller radii – lagged, harder and faster less R

The rms-flux relation

Flux distribution of variability

Has very characteristic shape – not symmetric. Skewed to higher flux levels. Lightcurve is 'flare-y'

Uttley, McHardy & Vaughan 2005

Implies log normal flux distribution

Cannot get this from SHOTS, or any SUM of independent events Or from self organised criticality (wait till critical value to trigger) Uttley, McHardy & Vaughan 2005

Lags from Homogeneous Comptonisation?

Origin of broad band variability

Fluctuations start at large radii – first, soft and slow with R propagate down to smaller radii – lagged, harder and faster less R

- Mass accretion rate fluc.
- Starts in soft region
- propagates down to hard

- Mass accretion rate fluc.
- Starts in soft region
- propagates down to hard

- Mass accretion rate fluc.
- Starts in soft region
- propagates down to hard

- Mass accretion rate fluc.
- Starts in soft region
- propagates down to hard

- Mass accretion rate fluc.
- Starts in soft region
- propagates down to hard
- Long time lag (viscous)

Faster variability

- Can only start further in.
- So has less far to travel

faster variability

- Can only start further in.
- So has less far to travel

faster variability

- Can only start further in.
- So has less far to travel

Inhomogeneous close to transition

- Overlap softer, slower variability
- Fluctuations
 propagate down to
 inner region –
 lagged. But this
 has harder
 spectrum. So hard
 lags soft. But
 smaller region so
 faster variability.
- Miyamoto & Kitamoto 1988; Kotov et al 2001, Nowak et al 1999, Arevalo & Uttley 2006

Can they test this also? Need propagation from down through the flow....

Can they test this also? Need propagation from down through the flow.... orona

Origin of broad band variability

Slow fluctuations propagate – soft with R and hard no R Fast fluctuation only from smaller radii – hard and no R

Single spectrum from Cyg x-1

- Overlap softer, and more reflection, slow
- Fluctuations propagate down to inner region – smaller so faster variability. Fewer seed photons so harder spectrum and less reflection
- WE SEE THIS IN SINGLE SPECTRUM OF Cyg X-1 Revnivtsev et al 1999

Power spectra more complex

Axelsson & Done 2018

Power spectra more complex

Axelsson & Done 2018

Both bumpiness and energy dependence increase in transition

Grinberg et al 2014

Conclusions:

- Truncated disc models can really give a framework to explain a lot of spectral-timing behaviour in transitions
- Coupled to inhomogeneous Compton
- Becomes more inhomogeneous during transition