

Magnetospheric dissipation and outflow formation: numerical experiments

1. Yuan, Blandford, Wilkins 2019

2. Yuan, Spitkovsky, Blandford, Wilkins 2019

Mechanism for lamppost formation

3. Parfrey, Giannois, Beloborodov 2015

4. Mahlmann, Levinson, Aloy 2020

Striped B-Z jets from small scale magnetic fields

Yuan, Blandford, Wilkins 2019

2D axisymmetric solutions of small scale, dischole linking flux tubes. What happens in 3D?

Yuan, Spitkovsky, Blandford, Wilkins 2019

Dynamics in 3D: Main result: small scale magnetic fields near BH can lead to dissipation on a few horizon scales under certain conditions

Setup

- 3D special relativistic FFE
- Inner membrane of radius r_1 representing the BH angular velocity: $\Omega = 0.9 c/r_1$
- Perfectly conducting disk extending over $r > r_2 > r_1$ angular velocity: $\Omega_d(r)$, no accretion

Boundary conditions

- Inner membrane is resistive

$E_r = -\eta \frac{B_{\varphi}}{\gamma} - \frac{\Omega r}{c} B_z$, $E_{\varphi} = \eta \gamma \left(B_r - \frac{\Omega r}{c} E_z \right)$,

$R = 4\pi\eta$ is the resistivity

$\eta = 0$: perfectly conducting star

$\eta = 1$: BH

 $E_r = -\frac{\Omega_d(r)r}{c}B_z,$

- Perfectly conducting disk

Initial B field configuration

$$i_{\phi} = \begin{cases} i_0 \cos\left(\frac{2\pi}{r_0}(r-r_2)\right) \left(\frac{r_2}{r}\right) \\ 0, \end{cases}$$

$$r_2 \le r \le r_2 + \frac{3}{4}r_0$$
,
otherwise.

 α quantifies relative strength of inner and outer flux tubes

1'/2

α

evolution: $\Omega_d = \eta = 0$ (color shows B_y)

Small α : jet inside light cylinder \rightarrow kink unstable

large α : jet outside light cylinder \rightarrow stability

Small α : jet inside light cylinder \rightarrow kink unstable

large α : jet outside light cylinder \rightarrow stability

Lorentz factor

Effect of resistivity

α=1

Fully GR version (Mahlmann + 2020)

Solid lines: power from the membrane dotted lines: power at a larger radius

Poynting flux

• • • • • • • • • • •

Summary of Yuan+19 results

• Inner loop relatively strong (large α) \rightarrow outflow

• Inner loop relatively weak (small α) \rightarrow dissipation by kink in the inner magnetosphere

Inner loop very weak: stable, close configuration

Mahlmann, Levinson, Aloy 2020

Motivation: How do magnetic jets dissipate

their energy at small scales?

Dissipation of magnetized jets

Large scale (ordered) B fields:

efficient jet production (MAD, MCAF, etc.) dissipation requires rapid growth of instabilities

<u>Small scale B field</u>:

quasi-striped configuration (good for dissipation and loading) Can relativistic jets form ?

Dissipation of ordered field Small angle reconnection via CD kink inst.

3D simulations of a magnetic jet propagating in a star

kink instability requires strong collimation. Develops fastest in a collimation nozzle (Mizuno+12, Bromberg+19, Davelaar+19)

CD kink experiment (Bromberg +19)

Jet is stable below the collimation break

Stratified flow

Mertens + 16

M87-TeV emission

Strong flares observed in 2005, 2008, 2010

$L_j \approx 10^{43} \,\mathrm{erg}\,s^{-1}$, $L_\gamma \approx 10^{41} \,\mathrm{erg}\,s^{-1}$

Variability time $\approx 1 \text{ day} \sim r_s$

TeV emission from inner region or a remote, small region?

quasi-striped jet

Reconnection of non-symmetric component

svn

Can a jet form upon advection of small scale field?

photon field

external

Accretion Disk

Romanova + Lovelace 92 AL + Van Putten 97 Drenkhahn + Spruit '02 AL+Globus '16

reconnection sites

Accretion of magnetic loops

Spruit, uzdenski, goodman

Reconnection can lead to electron acceleration in the jet + sheath. Potential site of VHE emission.

2D simulations by Parfrey + '15

Mahlmann, Levinson, Aloy 2020

Fully 3D GRFFE

- Resistive disk extending from ISCO

Keplerian angular velocity

prescribed radial velocity (accretion)

$$J_{\rm disk}^{\phi}\left(r_{c},t\right) = J_{0} \times \cos\left(\pi \frac{r_{c} - r_{\rm ISCO} + tv_{0}}{l}\right) \times \frac{\alpha}{\sqrt{g}\sqrt{g_{rr}g_{\phi\phi}}}$$

Field advection inside ergosphere

- BH spin: a=0.9

Initial state

Counter-rotating disk

3D impression of accretion of one flux tube

Colored ribbons represent outgoing Poynting flux

Emergent power from BH: counter-rotating disk

Each panel corresponds to a different model (different loop size and height)

Poloidal field components on eq plane

 B^r / Φ (eq. plane) at t = 306.00 r_g

 $\mathbf{x}(r_g)$

 B^{θ} / Φ (eq. plane) at t = 306.00 r_g

 $\mathbf{x}(r_g)$

Development of 3D structures during advection of magnetic field

Co-rotating disk

Emergent power: corotating disk

Emergence of a striped jet

Summary

- Small scale dipolar field can lead to substantial BZ outflows
- Larger power for counter-rotating disk (but needs more study)
- Enhanced dissipation in current sheets due to interaction of consecutive loops (jet sheath).
- Striped relativistic jet in polar region (good for dissipation)
- Comparison with GRMHD simulations is underway