

Some open questions rejet formation

what is the dissipation mechanism?

origin of plasma source in the

magnetosphere? (external pp, spark gap, etc)

what is the loading process?

Vacuum Wald solution

Rotating BH in an asymptotically uniform magnetic field

Robert Wald 1974

Courtesy Benoit Cerutti

 $F_{\mu\nu} = \xi_{\mu;\nu} - \xi_{\nu;\mu}$ - Electric field: $\vec{E} \cdot \vec{B} \neq 0$ -Injection of plasma will screen out the E field. $-\Delta V \sim 10^{21} M_9 B_4$ volt - The minimum energy state has a charge $Q = 2B_0 J$

When plasma is injected

2D GRPIC simulations with artificial pair production

Parfrey+19

How much plasma is needed?

Charge density needed to screen out E field:

Plasma density must satisfy: $n > \rho_{GI}/e$

Otherwise the magnetospere becomes charge starved, $\vec{E} \cdot \vec{B} \neq 0$

GJ density in Kerr geometry

Where plasma should be injected?

- plasma source between inner and outer Alfven surfaces
- escape time \approx few r_q/c

Mass flux not conserved ! There can be no continuous ideal MHD solution that extends from the horizon to infinity.

> $\gamma\gamma \rightarrow e^{\pm}$ in AGNs $\nu\nu \rightarrow e^{\pm}$ in GRBs mass loading ?

A snapshot from a simulation showing streamlines.

stagnation surface

Limitations of GRMHD simulations

- Can't handle well force-free regions, particularly in dissipative regions
- Artificial plasma injection (floor density)
- No microphysics
- Limited initial states
- No radiation processes
- Runtime, box size, resolution

How to produce the required charge density?

Protons from RIAF ?
Protons from n decay ?
e[±] from γγ annihilation ?
Other source ?

Protons have to cross magnetic field lines. Diffusion length over accretion time extremely small.

> instabilities or field reversals. But intermittent spark gaps may still form.

Direct pair injection by $\gamma\gamma \rightarrow e^+e^-$

Requires emission of MeV photons:

- Low accretion rates: from hot accretion flow
- High accretion rate: from corona?

Direct pair injection

Low accretion rates (RIAF): AC may be hot enough to produce gamma-rays above threshold (Levinson +Rieger 11, Hirotani + 16)

Conditions for gap formation (From Hirotani+16)

Starvation

Electric flux along a starved fieldline

Activation of a spark gaps

AL 00; Neronov + '07, AL + Rieger '11, Broderick + 15; Hirotani+ 16, 17

• activated when n < n_{GJ} . Expected in M87 when accretion rate < 10⁻⁴ Edd.

 must be intermittent (Segev+AL 17).

particle acceleration to
 VHE by potential drop.

Analysis of gap dynamics requires GRPIC simulations

Multi-scale problem:

$Global: > 10r_{q}$

Radiation (Thomson length): $\lambda = r_a/\tau$

Plasma (skin depth): $l = \frac{c}{\omega_{pe}} < \sqrt{\frac{\langle \gamma_e \rangle m_e c^3}{4\pi e^2 n_{GI}}} \sim 10^{-7} \sqrt{\langle \gamma_e \rangle} r_g$

Possible in 1D for local gaps. Needs rescaling in global 2D sim.

GRPIC Simulations

With Benoit Cerutti and his Zeltron code

- Fully GR (in Kerr geometry)
- Inverse Compton and pair production are
 - treated using Monte-Carlo approach.
- Curvature emission + feedback included
- Currently 1D local gaps
- Goal: 2D global simulations

1D model AL + Cerutti 18

•

 \bullet

Global structure

Solves GRPIC equations along a particular field line

Magnetospheric current is a given parameter

External radiation field

$au_0 = \sigma_T n_{ph} r_g \sim$ Pair-production opacity across gap

 $\varepsilon_{min} = h \nu_{min} / m_e c^2$

- p

 v_{min}

F

$\frac{\mathsf{Example}}{\tau_0 = \sigma_T n_{ph} r_g \sim \text{Pair-production opacity across gap}}$

$au_0=10$, $arepsilon_{min}=10^{-8}$, p=2

Radiation reaction limit

γ Light curve

 $\overline{ au_0}=10$, $arepsilon_{min}=10^{-8}$, p=2

Shota Kisaka+AL

Gap oscillations Shota Kisaka+AL

$\tau_0 = 100$

$\tau_0 = 30$

.

Global 2D GRPIC experiments: Challenges

• System is rescaled to resolve skin depth

f f

Radiation: $\lambda = r_a/\tau$

Plasma (skin depth):

 $l = \frac{c}{\omega_{pe}} < 10^{-7} \sqrt{\langle \gamma_e \rangle} r_g$

Conclusions

- spark gaps may form if survival time of coherent magnetic domains exceeds a few dynamical times. May be the production sites of variable VHE emission.
- > gaps are inherently intermittent, or cyclic.
- > strong TeV flares can be produced if gap is restored
- Future, global GRPIC sims, may shade more light, but need careful rescaling.