Spectral-timing of low frequency quasiperiodic oscillations

Adam Ingram – Royal Society URF

Matthew Liska, Casper Hesp, Sara Motta, Michiel van der Klis, Jakob van den Eijnden, Iris De Ruiter, Sasha Tchekovskoy, Phil Uttley, Ed Nathan, Sera Markoff

UNIVERSITY OF

Quasi periodic oscillations

Wijnands et al (1999); Sobszak et al (2000); Casella et al (2005)

Frequency (Hz)

Inclination dependence

Energy spectrum

5

Comptonized emission oscillates more than the disk emission From corona!

Sobolewska & Zycki (2005); (2006)

Energy spectrum

Comptonized emission oscillates more than the disk emission From corona!

Sobolewska & Zycki (2005); (2006)

Geometric QPO models

- Accretion Ejection Instability: spiral standing wave from perturbations in poloidal B-field strength (Tagger & Pellat 1999).
- Relativistic precession model: Lense-Thirring (LT) preccesion at a characteristic radius (e.g. truncation radius) (Stella & Vietri 1999).
- Corrugation modes: standing wave between R_{in} and inner vertical resonance (R_{ivr}) at LT frequency of R_{ivr} (Kato & Fuke 1980)
- Precessing corona / jet: LT precessing of corona (Ingram et al (2009)
 - ...*all* models assume QPO frequency changes because of a moving disc inner radius!

6

Review: Ingram & Motta (2020)

Lense-Thirring precession

Ingram, Done & Fragile (2009)

Numerical simulations

Corona – solid body precession (Fragile et al 2007)

Disc – Bardeen-Petterson effect (Bardeen & Petterson 1975)

Rest mass density $\log(\rho)$ at 49745 R_g/c

Liska, Hesp, Tchekovskoy, Ingram, van der Klis & Markoff (2018)

Liska, Tchekovskoy, Ingram & van der Klis (2019)

Numerical simulations

9

Thinner disk, high tilt – Disk breaking and tearing (Nixon & King 2012)

Liska, Hesp, Tchekovskoy, Ingram et al (2020)

Nealon et al (2016)

Numerical simulations

10

Latest H-AMR run: H/R=0.02, tilt = 65 degrees, duration 1.4e5 Rg/c https://drive.google.com/file/d/1lbGBmoLOcHnq3WDwRhQqSLjXpuA8iBTx/view

Periodic function: constant phase difference 1st Harmonic 2nd Harmonic Total 3 0 2 **Cycles**

Ingram & van der Klis (2015)

Periodic function: constant phase difference 1st Harmonic 2nd Harmonic Total 3 2 0 ycles

Ingram & van der Klis (2015)

Ingram & van der Klis (2015)

QPO waveform¹²

- High inclination "better behaved" than low inclination?
- XTE J1859+226 QPOs behave like high inclination source
- High inc: Doppler effects dominate over seed photon variations? De Ruiter, van den Eijnden, Ingram & Uttley (2019)

14

Type B:

- Looked like all have the same phase difference!
- ...but H 1743-322 and XTE J1817-330 spoiled this!
- Very simple precessing jet model gives $\psi \simeq \pi/2$

De Ruiter, van den Eijnden, Ingram & Uttley (2019)

Phase-resolved spectroscopy

15

Tell-tale sign of precession: a rocking iron line

Phase-resolved spectroscopy

UNIVERSITY OF Phase-resolved spectroscopy XFORD

0.02

4

Rocking iron line creates "wiggles" in the rms-energy and lag-energy spectrum

Ingram & van der Klis (2015); Ingram et al (2016)

Energy (keV)

8

6

Second harmonic -

10

OXFORD Rocking iron line in H 1743-322¹⁸

Ingram et al (2016)

Energy (keV)

8

6

4

OXFORD Rocking iron line in H 1743-322¹⁹

Interpretation

Tomographic modeling

https://figshare.com/articles/Tomographic_modelling_of_H_1743-322/3503933

Ingram et al (2017)

 $A_1 = A_2 = 0$ ruled out with 2.4 σ confidence

Ingram et al (2017)

- Super-bright *NICER* discovery
- Very bright and beautiful QPOs perfect for tomography
- Lots of data!

Days since 1st Sep 2017

- Spectral shape correlates nicely with QPO frequency
- So create bins of QPO frequency and stack cross-spectra on those bins

Uttley et al (in prep); Ingram et al (in prep)

Days since 1st Sep 2017

24

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 – this is *not* reverberation

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 – this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

25

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 — this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 — this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

25

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 — this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

25

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 – this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 — this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

25

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 – this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

25

- Can see the iron line feature very clearly!
- Big thermal feature (\sim 1-2 keV)
- Iron line time lag ~10× line feature in MAXI J1820 – this is *not* reverberation
- Can study how the lag spectrum evolves with QPO frequency — i.e. moving truncation radius?

$$1.5~\text{Hz} < \nu_{qpo} < 2~\text{Hz}^{^{26}}$$

Thermal reprocessing

27

Some fraction of irradiating flux thermalizes: $F_{th} = \sigma T_{irr}^4 \approx f F_{irr}$ N Use low density XILLVER grid ($n_e = 10^{15} \text{ cm}^{-3}$) Blackbody temperature of a disc patch: 1 1 $T^{4}(r,\phi,\gamma) = T^{4}_{irr}(r,\phi,\gamma-\Delta\gamma) +$ $T_{visc}^4(r)$ 0.5 i.e. thermalization timescale: $t_{th} = \Delta \gamma / (2\pi v_{qpo})$ Energy (keV) Model parameters are $T_{irr,max}(\gamma)$ and 10 100 $T_{visc,max}(\gamma)$ 0.2 Could get big thermal component using high n_e Lag (cycles) 0 0.1 grid, BUT: no intrinsic disc flux, no thermal lag, and First harmonic model wouldn't be as fast! Energy (keV) 0.1 Ingram et al (in prep) 2 5 10

$$1.5 \text{ Hz} < v_{qpo} < 2 \text{ Hz}^{28}$$

 $\Delta \gamma = 0.02^{+0.05}_{-0.38}$ cycles (~10 ms)

Reflection fraction (~reflected flux / continuum flux - excuse the arbitrary units)

Disk heating temperature (i.e. peak irradiating

...what is

precessing?

Bolometric continuum flux

Differential precession?

In some sources, QPO frequency depends on energy $(\Delta v = hard X - rays frequency - soft X - rays frequency)$

van den Eijnden, Ingram & Uttley (2016)

H/R = 0.1 run:

jet lags corona, which lags disc!

Liska, Hesp, Tchekovskoy, Ingram et al (submitted)

Differential precession? ³⁰

Conclusions

- Inclination dependencies: Type C QPOs are geometric effect
- All QPO models in the literature assume frequency changes driven by moving radius
- GRMHD: GR can cause jets and thick discs to precess, and tear very thin discs
- QPO waveform evolves smoothly with centroid frequency, hints of an inclination dependence
- Iron line centroid energy modulation + reflection fraction modulation => QPOs driven by precession
- Even stronger evidence in MAXI J1535-571, broad iron line requires small disc inner radius: what is precessing, or what is the spectral model missing?
- Need some differential precession to explain energy dependence of QPO frequency (even more spectacular in HXMT data)