Accretion in BHB and AGN

Chris Done, University of Durham

SPUPASIC

Two Canonical XRB States

→ High luminosity, spectrally soft state is fairly simple.
→ We understand this state *relatively* well.
→ Very little fast variability.
→ Well explained by a thermal disc with a Comptonising atmosphere (Shakura & Sunyaev 1973).

Two Canonical XRB States

more complex.

 \rightarrow Highly variable on short

Everyone agrees on data

Inhomogeneous compton Makishima et al 2008

ionised, blurred reflection Fabian et al 2012

log v f(v)

Log v

hybrid (thermal-nonthermal) Gierlinski et al 1999

Jet

Markoff,

Nowak

Origin of broad band variability

Fluctuations start at large radii – first, soft and slow with R propagate down to smaller radii – lagged, harder and faster less R

- Mass accretion rate fluc. ۲
- Starts in soft region ullet

 $\log[fP(v)]$

propagates down to hard •

- Fluctuations as function of R:
- shape+normalization
- Shape is Lorenzian fvisc
- Fvar(R) is normalisation

- Fluctuations as function of R:
- Propagate into each other
- Speed v=r fvisc
- But correlated so add

- Fluctuations as function of R:
- Propagate into each other
- Speed v=r fvisc
- But correlated so add

- Fluctuations as function of R:
- Propagate into each other
- Speed v=r fvisc
- But correlated so add

- Fluctuations as function of R:
- Propagate into each other
- Speed v=r fvisc
- But correlated so add

- Fluctuations as function of R:
- Propagate into each other
- Speed v=r fvisc
- But correlated so add

log[f]

- Fluctuations as function of R:
- Propagate into each other
- Speed v=r fvisc
- But correlated so add

- Actually not so easy as lags decorrelate!!
- Arevelo & Uttley 2006
- Ingram & Done 2011
- HF break not simply fvisc(R)
- LF break IS fvisc(R)
- Speed=distance/time
- So still ambiguous as don't know Rout!!

f_b

- LF QPO from Lense-Thirring gives size
- So then use LF break to get speed v=Rfvisc(R)
- $Fvisc(R)=0.03f^{-1/2} f\phi(R)$
- Ingram & Done 2011

T_h

10-4

- Could be different in different regions
- $Fvisc(R)=B_H f^{-mH} f\phi(R)$
- Bs =0.03 ms=0.5

Simplest spectral Model: **2** Comptonisation Zones

- Fluctuations Fvar(R)
- Emissivity $\varepsilon(R)$
- Propagation speed v(R)

Mahmoud & Done 2018b

Mahmoud & Done 2018a

- bumpy power spectra
- Need more power generated at specific radii otherwise get smooth power spectra! Mahmoud & Done 2018a
- Turbulent transition from disc to flow?

- Propagation needs to be damped at some radius
- Otherwise high energy power spectra ALWAYS bigger than low energy at low frequency

Mahmoud & Done 2018a

Mahmoud & Done 2018a

- Propagation and generation:
- $Fvisc(R) = Bf^{-m} f\phi(R)$
- B=0.03 m=0.5 soft
- B=0.27 m=1 hard
- Decorrelation at high f means RSH VERY SMALL 3Rg

Assumptions!!! Spectral shape

- Only norms change
- But might expect spectral shape to change as well - pivoting
- Seed photons on light speed, Mdot dissipation on propagation speed
- Veledina /Poutanen
- Mastreoserio / Ingram

Assumptions!! Viscous timescale

T_h

f_b

• We want fvisc(R) for SAME geometry – same average Mdot

 $f_b (c/R_g)$

Assumptions!! Viscous timescale

We got fvisc(Rout) for f_h f_b changing Mdot / Rout What if geometry changed as well?? Ē $f_{qro}^{f}(c/R_{r})$ log[fP(v)] Ŀ 10-6 10-5 10-4 $f_{h}(c/R_{s})$ log[1]

Thermal Reverberation in X-ray Binaries: GX 339-4

De Marco+ 2

Thermal Reverberation in X-ray Binaries: GX 339-4

Hard lags in continuum (propagating fluctuations?)

De Marco+ 2

GX 339-4: Data Selection

- we select *dim* hard state data and extend our model to include reverberation.
 Bright hard state
- Bright hard state more complex!

Dim Hard State GX 339-4

Dim Hard State GX 339-4

- Big turbulent region at transition from disc to Compton!
- Big hump of emissivity there as well
- Highly peaked to low R as need to get enough high f and high E luminosity
- Damping as not all disc shredding power transmitted into Compton

Dim Hard State GX 339-4

- Big turbulent region at transition from disc to Compton!
- Big hump of emissivity there as well
- Highly peaked to low R as need to get enough high f and high E luminosity
- Damping as not all disc shredding power transmitted into Compton

PREDICTED Lag vs. Energy

Mahmoud, Done + De Marco 20

Reflection – changes ionisation!

 REFLECTION is not simply changing norm

Reflection – changes ionisation!

 REFLECTION is not simply changing norm

Comparison to J1820 NICER data

Mahmoud, Done + De Marco 20

Conclusions:

- IT'S VERY HARD TO FIT EVERYTHING!!!
- But at least we tried!!
- Lamppost modellers see if you can model the lags and PSD(E) and frequency resolved spectra!!
- Fundamental issue propagation doesn't add coherently when lagged
- Makes it very hard to get high frequency power needs enormous emissivity at small radii
- Power law fvisc in compton?
- Spectral changes pivoting and reflection xi?