

Comparison of spectral models for disc truncation in the hard state of GX 339-4

Marta Dziełak A. Zdziarski, M. Szanecki, B. De Marco, A. Niedźwiecki and A. Markowitz

Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences Warsaw, Poland

X-ray binary - GX 339-4

- accreting black hole

min. $M=5.8M_{\odot}$ (Hynes et al. 2003)

- low mass companion fills Roche lobe

Flaring Black Hole (Artist's Concept) Credit: NASA

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

Outburst of X-ray activity

Dziełak et al. 2019

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

Outburst of X-ray activity

Sombreros and lampposts, Bern

Zdziarski et al. 2002

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

Outburst of X-ray activity

Sombreros and lampposts, Bern

Hard state

M. Dziełak - Analysis of GX 339-4 during its hard state

Hard state

M. Dziełak - Analysis of GX 339-4 during its hard state

16th January '20

Sombreros and lampposts, Bern

Hard state

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

13

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

- averaged spectrum

- probed disc truncation:

M. Dziełak - Analysis of GX 339-4 during its hard state **Sombreros and lampposts, Bern**

- averaged spectrum

- probed disc truncation:

- reflection and relativistic broadening

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

- averaged spectrum

- probed disc truncation:

- reflection and relativistic broadening

- two sets of codes:

relxill (Garcia, et al. 2014)

reflkerr¹ (Niedźwiecki, Szanecki, Zdziarski, 2019)

M. Dziełak - Analysis of GX 339-4 during its hard state **Sombreros and Iampposts, Bern**

1) https://users.camk.edu.pl/mitsza/reflkerr/

reflkerr¹:

- spectrum computed in the local frame and redshifted.

relxill:

- spectrum fitted in the observer frame and blueshifted.

1) https://users.camk.edu.pl/mitsza/reflkerr/

reflkerr¹:

19

- spectrum computed in the local frame and redshifted.
- \rightarrow photoionization
- the detailed calculations of **xillver at low energies**,
- the relativistically correct treatment of **ireflect at high energies** (Magdziarz & Zdziarski 1995).

1) https://users.camk.edu.pl/mitsza/reflkerr/

20

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

23

el x'ill

reflker¹

24

Model: relativistic + static Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;

Models 1 and 2: relxill + xillver;

```
Model 3: relxillD + xillverD;
```

→ two different iron abundances

Model 0 follows the Models 4 and 5: reflkerrExp + hreflectExp; original assumptions of Garcia, et al. 2015.

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

Model: relativistic + static

Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;

relxill

Models 1 and 2: relxill + xillver;

 \rightarrow one iron abundance

Model 3: relxillD + xillverD;

refikerr

25

Models 4 and 5: reflkerrExp + hreflectExp;

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

Model: relativistic + static

Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;

relxill

reflker¹

Models 1 and 2: relxill + xillver;

```
Model 3: relxillD + xillverD;
```

 \rightarrow one iron abundance

Data allow for ionization parameters interchange.

Models 4 and 5: reflkerrExp + hreflectExp;

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

Model: relativistic + static

Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;

Models 1 and 2: relxill + xillver;

Model 3: relxillD + xillverD;

 \rightarrow one iron abundance

 \rightarrow high density of the disc

elxill

Models 4 and 5: reflkerrExp + hreflectExp;

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

elxill

28

Model: relativistic static +

```
Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;
```

Models 1 and 2: relxill + xillver;

 \rightarrow one iron abundance

Model 3: relxillD + xillverD;

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

Model: relativistic static +

Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;

Models 1 and 2: relxill + xillver;

Model 3: relxillD + xillverD;

 \rightarrow one iron abundance

 \rightarrow incident e-folded power law

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

16th January '20

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

29

elxill

Model: relativistic + static

Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;

Models 1 and 2: relxill + xillver;

Model 3: relxillD + xillverD;

 \rightarrow one iron abundance

 \rightarrow incident e-folded power law

elxill

Models 4 and 5: reflkerrExp + hreflectExp; Data allow for ionization parameters interchange. Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

16th January '20

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

30

Model: relativistic + static

```
Model 0: [relxill (free Z<sub>Fe</sub>) + xillver (Z<sub>Fe</sub> = 1)]gabs;
```

Models 1 and 2: relxill + xillver;

 \rightarrow one iron abundance

Model 3: relxillD + xillverD;

elxill

Models 4 and 5: reflkerrExp + hreflectExp;

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

16th January '20

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

31

Model: relativistic + static

Model 0: [relxill (free Z_{Fe}) + xillver (Z_{Fe} = 1)]gabs;

Models 1 and 2: relxill + xillver;

Model 3: relxillD + xillverD;

 \rightarrow one iron abundance

→ incident thermal Comptonization

elxill

Models 4 and 5: reflkerrExp + hreflectExp;

Model 6: reflkerr + hreflect.

1) https://users.camk.edu.pl/mitsza/reflkerr/

	relxill				reflkerr			
Parameter/Model	0	1	2	3	4	5	6	
$N_{\rm H}/10^{21}{\rm cm}^{-2}$	$5.2^{+1.8}_{-1.2}$	$4.7^{+1.5}_{-0.3}$	$6.5^{+1.3}_{-1.7}$	$6.1^{+0.7}_{-0.6}$	$4.4^{+1.9}_{-0.4}$	$6.4^{+0.8}_{-1.1}$	$4.3^{+0.5}_{-0.3}$	
Г	$1.70^{+0.07}_{-0.04}$	$1.66^{+0.03}_{-0.04}$	$1.72^{+0.02}_{-0.03}$	$1.70_{-0.05}^{+0.01}$	$1.66^{+0.06}_{-0.02}$	$1.72\substack{+0.03\\-0.01}$	_	
У	_	-	_	-	_	_	$1.19^{+0.05}_{-0.08}$	
$E_{ m cut}$	200^{+130}_{-50}	250^{+50}_{-20}	300^{+80}_{-50}	300f	240^{+50}_{-50}	280^{+50}_{-20}	_	
$kT_{\rm e}/1{\rm keV}$	_	-	_	-	_	_	20^{+3}_{-2}	
$R_{\rm in}/R_{\rm ISCO}$	11^{+10}_{-10}	19^{+33}_{-6}	$53^{+\infty}_{-26}$	$55^{+\infty}_{-34}$	15^{+31}_{-12}	$58^{+\infty}_{-28}$	$47^{+\infty}_{-45}$	
$Z_{\rm Fe}$	$8.1^{+1.9}_{-5.5}$	$3.1^{+2.0}_{-0.3}$	$2.4^{+0.3}_{-0.2}$	$4.9^{+4.1}_{-0.9}$	$3.9^{+0.8}_{-1.4}$	$2.6^{+0.6}_{-0.4}$	$3.3^{+1.7}_{-1.0}$	
<i>i</i> [°]	29^{+31}_{-29}	3^{+33}_{-3}	43^{+17}_{-23}	3^{+43}_{-3}	9^{+32}_{-9}	43^{+21}_{-19}	49^{+34}_{-26}	
\mathcal{R} (inner)	$0.059\substack{+0.001\\-0.001}$	$0.170\substack{+0.004\\-0.005}$	$0.144^{+0.004}_{-0.003}$	$0.059\substack{+0.033\\-0.006}$	$0.25^{+0.04}_{-0.19}$	$0.35\substack{+0.06 \\ -0.12}$	$0.42^{+0.36}_{-0.12}$	
$\log_{10} \xi$ (inner)	$3.7^{+0.2}_{-0.5}$	$3.9^{+0.1}_{-0.1}$	0.0+2.3	$3.7^{+0.1}_{-0.1}$	$3.9^{+0.1}_{-0.1}$	$1.7^{+0.7}_{-1.7}$	$3.9^{+0.1}_{-0.3}$	
$\log_{10} \xi$ (outer)	Of	$1.7^{+0.5}_{-1.7}$	$3.8^{+0.2}_{-0.3}$	$0.7^{+1.0}_{-0.3}$	$2.0^{+0.3}_{-0.4}$	$3.7^{+0.1}_{-0.3}$	Of	
$n_{\rm e}/1{\rm cm}^{-3}$	$10^{15} f$	$10^{15} f$	$10^{15} f$	$10^{19} f$	$10^{15} f$	$10^{15} f$	$10^{15} f$	
$\delta(gabs)$	$0.011\substack{+0.011\\-0.009}$	_	_	_	_	_	_	
$kT_{\rm bb}/1~{\rm keV}$	_	_	_	_	_	_	$0.34^{+0.04}_{-0.09}$	
χ^2_{ν}	65.6/61	68.7/61	68.3/61	72.4/62	69.1/61	69.2/61	62.1/61	
p_i (AIC)	0.136	0.007	0.008	0.018	0.024	0.023	0.784	
$f_{ m sc}$	0 ^{+0.50}	0+0.15	0 ^{+0.95}	0 ^{+0.02}	0 ^{+0.13}	0+0.37	$0.20\substack{+0.27 \\ -0.20}$	

Our results are significantly modeldependent.

Dziełak et al. 2019

M. Dziełak - Analysis of GX 339-4 during its hard state

16th January '20

Sombreros and lampposts, Bern

33

	relxill				reflkerr			
Parameter/Model	0	1	2	3	4	5	6	
$N_{\rm H}/10^{21}{\rm cm}^{-2}$	$5.2^{+1.8}_{-1.2}$	$4.7^{+1.5}_{-0.3}$	$6.5^{+1.3}_{-1.7}$	$6.1^{+0.7}_{-0.6}$	$4.4^{+1.9}_{-0.4}$	$6.4^{+0.8}_{-1.1}$	$4.3^{+0.5}_{-0.3}$	
Γ	$1.70\substack{+0.07 \\ -0.04}$	$1.66\substack{+0.03\\-0.04}$	$1.72\substack{+0.02\\-0.03}$	$1.70\substack{+0.01 \\ -0.05}$	$1.66^{+0.06}_{-0.02}$	$1.72\substack{+0.03\\-0.01}$	_	
у	-	-	-	-	_	_	$1.19\substack{+0.05\\-0.08}$	
$E_{\rm cut}$	200^{+130}_{-50}	250^{+50}_{-20}	300^{+80}_{-50}	300f	240^{+50}_{-50}	280^{+50}_{-20}	_	
$kT_{\rm e}/1{\rm keV}$	_	-	_	-	-	_	20^{+3}_{-2}	
$R_{\rm in}/R_{\rm ISCO}$	11^{+10}_{-10}	19^{+33}_{-6}	$53^{+\infty}_{-26}$	$55^{+\infty}_{-34}$	15^{+31}_{-12}	$58^{+\infty}_{-28}$	$47^{+\infty}_{-45}$	
Z _{Fe}	$8.1^{+1.9}_{-5.5}$	$3.1^{+2.0}_{-0.3}$	$2.4^{+0.3}_{-0.2}$	$4.9^{+4.1}_{-0.9}$	$3.9^{+0.8}_{-1.4}$	$2.6^{+0.6}_{-0.4}$	$3.3^{+1.7}_{-1.0}$	
<i>i</i> [°]	29^{+31}_{-29}	3^{+33}_{-3}	43^{+17}_{-23}	3^{+43}_{-3}	9^{+32}_{-9}	43^{+21}_{-19}	49^{+34}_{-26}	
\mathcal{R} (inner)	$0.059\substack{+0.001\\-0.001}$	$0.170\substack{+0.004\\-0.005}$	$0.144^{+0.004}_{-0.003}$	$0.059^{+0.033}_{-0.006}$	$0.25^{+0.04}_{-0.19}$	$0.35\substack{+0.06 \\ -0.12}$	$0.42^{+0.36}_{-0.12}$	
$\log_{10} \xi$ (inner)	$3.7^{+0.2}_{-0.5}$	$3.9^{+0.1}_{-0.1}$	0.0+2.3	$3.7^{+0.1}_{-0.1}$	$3.9^{+0.1}_{-0.1}$	$1.7^{+0.7}_{-1.7}$	$3.9^{+0.1}_{-0.3}$	
$\log_{10} \xi$ (outer)	Of	$1.7^{+0.5}_{-1.7}$	$3.8^{+0.2}_{-0.3}$	$0.7^{+1.0}_{-0.3}$	$2.0^{+0.3}_{-0.4}$	$3.7^{+0.1}_{-0.3}$	Of	
$n_{\rm e}/1{\rm cm}^{-3}$	$10^{15} f$	$10^{15} f$	$10^{15} f$	$10^{19} f$	$10^{15} f$	$10^{15} f$	$10^{15} f$	
$\delta(\texttt{gabs})$	$0.011\substack{+0.011\\-0.009}$	_	_	_	_	_	_	
$kT_{\rm bb}/1~{\rm keV}$	_	_	_	_	_	_	$0.34^{+0.04}_{-0.09}$	
χ^2_{ν}	65.6/61	68.7/61	68.3/61	72.4/62	69.1/61	69.2/61	62.1/61	
p_i (AIC)	0.136	0.007	0.008	0.018	0.024	0.023	0.784	
$f_{ m sc}$	0 ^{+0.50}	0+0.15	0 ^{+0.95}	0 ^{+0.02}	0+0.13	0+0.37	$0.20\substack{+0.27 \\ -0.20}$	

Our results are significantly modeldependent.

Dziełak et al. 2019

M. Dziełak - Analysis of GX 339-4 during its hard state

16th January '20

Sombreros and lampposts, Bern

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

	relxill				reflkerr			
Parameter/Model	0	1	2	3	4	5	6	
$N_{\rm H}/10^{21}{\rm cm}^{-2}$	$5.2^{+1.8}_{-1.2}$	$4.7^{+1.5}_{-0.3}$	$6.5^{+1.3}_{-1.7}$	$6.1^{+0.7}_{-0.6}$	$4.4^{+1.9}_{-0.4}$	$6.4^{+0.8}_{-1.1}$	$4.3^{+0.5}_{-0.3}$	
Г	$1.70\substack{+0.07 \\ -0.04}$	$1.66^{+0.03}_{-0.04}$	$1.72^{+0.02}_{-0.03}$	$1.70_{-0.05}^{+0.01}$	$1.66^{+0.06}_{-0.02}$	$1.72\substack{+0.03 \\ -0.01}$	_	
у	-	-	-	-	-	-	$1.19^{+0.05}_{-0.08}$	
$E_{\rm cut}$	200^{+130}_{-50}	250^{+50}_{-20}	300^{+80}_{-50}	300f	240^{+50}_{-50}	280^{+50}_{-20}	_	
$kT_{\rm e}/1{\rm keV}$	_	-	-	-	-	-	20^{+3}_{-2}	
$R_{\rm in}/R_{\rm ISCO}$	11^{+10}_{-10}	19^{+33}_{-6}	$53^{+\infty}_{-26}$	$55^{+\infty}_{-34}$	15^{+31}_{-12}	$58^{+\infty}_{-28}$	$47^{+\infty}_{-45}$	
$Z_{ m Fe}$	$8.1^{+1.9}_{-5.5}$	$3.1^{+2.0}_{-0.3}$	$2.4^{+0.3}_{-0.2}$	$4.9^{+4.1}_{-0.9}$	$3.9^{+0.8}_{-1.4}$	$2.6^{+0.6}_{-0.4}$	$3.3^{+1.7}_{-1.0}$	
<i>i</i> [°]	29^{+31}_{-29}	3^{+33}_{-3}	43^{+17}_{-23}	3^{+43}_{-3}	9^{+32}_{-9}	43^{+21}_{-19}	49^{+34}_{-26}	
\mathcal{R} (inner)	$0.059^{+0.001}_{-0.001}$	$0.170^{+0.004}_{-0.005}$	$0.144^{+0.004}_{-0.003}$	$0.059^{+0.033}_{-0.006}$	$0.25^{+0.04}_{-0.19}$	$0.35^{+0.06}_{-0.12}$	$0.42^{+0.36}_{-0.12}$	
$\log_{10} \xi$ (inner)	$3.7^{+0.2}_{-0.5}$	$3.9^{+0.1}_{-0.1}$	0.0+2.3	$3.7^{+0.1}_{-0.1}$	$3.9^{+0.1}_{-0.1}$	$1.7^{+0.7}_{-1.7}$	$3.9^{+0.1}_{-0.3}$	
$\log_{10} \xi$ (outer)	Of	$1.7^{+0.5}_{-1.7}$	$3.8^{+0.2}_{-0.3}$	$0.7^{+1.0}_{-0.3}$	$2.0^{+0.3}_{-0.4}$	$3.7^{+0.1}_{-0.3}$	0f	
$n_{\rm e}/1{\rm cm}^{-3}$	$10^{15} f$	10 ¹⁵ f	10 ¹⁵ f	$10^{19} f$	$10^{15} f$	10 ¹⁵ f	$10^{15} f$	
$\delta(\texttt{gabs})$	$0.011\substack{+0.011\\-0.009}$	-	-	-	-	-	-	
$kT_{\rm bb}/1~{\rm keV}$	_	-	-	-	_	-	$0.34^{+0.04}_{-0.09}$	
χ^2_{ν}	65.6/61	68.7/61	68.3/61	72.4/62	69.1/61	69.2/61	62.1/61	
p_i (AIC)	0.136	0.007	0.008	0.018	0.024	0.023	0.784	
$f_{ m sc}$	0 ^{+0.50}	0 ^{+0.15}	0 ^{+0.95}	0+0.02	0+0.13	0+0.37	$0.20^{+0.27}_{-0.20}$	

Data allow for ionization parameters interchange.

Dziełak et al. 2019

M. Dziełak - Analysis of GX 339-4 during its hard state

16th January '20

Sombreros and lampposts, Bern

37

	relxill				reflkerr			
Parameter/Model	0	1	2	3	4	5	6	
$N_{\rm H}/10^{21}{\rm cm}^{-2}$	$5.2^{+1.8}_{-1.2}$	$4.7^{+1.5}_{-0.3}$	$6.5^{+1.3}_{-1.7}$	$6.1^{+0.7}_{-0.6}$	$4.4^{+1.9}_{-0.4}$	$6.4^{+0.8}_{-1.1}$	$4.3^{+0.5}_{-0.3}$	
Г	$1.70\substack{+0.07 \\ -0.04}$	$1.66^{+0.03}_{-0.04}$	$1.72^{+0.02}_{-0.03}$	$1.70^{+0.01}_{-0.05}$	$1.66^{+0.06}_{-0.02}$	$1.72\substack{+0.03 \\ -0.01}$	-	
у	-	-	-	-	_	-	$1.19^{+0.05}_{-0.08}$	
$E_{\rm cut}$	200^{+130}_{-50}	250^{+50}_{-20}	300^{+80}_{-50}	300f	240^{+50}_{-50}	280^{+50}_{-20}	-	
$kT_{\rm e}/1{\rm keV}$	_	-	-	-	_	-	20^{+3}_{-2}	
$R_{\rm in}/R_{\rm ISCO}$	11^{+10}_{-10}	19^{+33}_{-6}	$53^{+\infty}_{-26}$	$55^{+\infty}_{-34}$	15^{+31}_{-12}	$58^{+\infty}_{-28}$	$47^{+\infty}_{-45}$	
$Z_{\rm Fe}$	$8.1^{+1.9}_{-5.5}$	$3.1^{+2.0}_{-0.3}$	$2.4^{+0.3}_{-0.2}$	$4.9^{+4.1}_{-0.9}$	$3.9^{+0.8}_{-1.4}$	$2.6^{+0.6}_{-0.4}$	$3.3^{+1.7}_{-1.0}$	
<i>i</i> [°]	29^{+31}_{-29}	3^{+33}_{-3}	43^{+17}_{-23}	3^{+43}_{-3}	9^{+32}_{-9}	43^{+21}_{-19}	49^{+34}_{-26}	
\mathcal{R} (inner)	$0.059^{+0.001}_{-0.001}$	$0.170^{+0.004}_{-0.005}$	$0.144^{+0.004}_{-0.003}$	$0.059^{+0.033}_{-0.006}$	$0.25^{+0.04}_{-0.19}$	$0.35^{+0.06}_{-0.12}$	$0.42^{+0.36}_{-0.12}$	
$\log_{10} \xi$ (inner)	$3.7^{+0.2}_{-0.5}$	$3.9^{+0.1}_{-0.1}$	0.0+2.3	$3.7^{+0.1}_{-0.1}$	$3.9^{+0.1}_{-0.1}$	$1.7^{+0.7}_{-1.7}$	$3.9^{+0.1}_{-0.3}$	
$\log_{10} \xi$ (outer)	Of	$1.7^{+0.5}_{-1.7}$	$3.8^{+0.2}_{-0.3}$	$0.7^{+1.0}_{-0.3}$	$2.0^{+0.3}_{-0.4}$	$3.7^{+0.1}_{-0.3}$	Of	
$n_{\rm e}/1{\rm cm}^{-3}$	$10^{15} f$	10 ¹⁵ f	10 ¹⁵ f	$10^{19} f$	$10^{15} f$	10 ¹⁵ f	$10^{15} f$	
$\delta(\texttt{gabs})$	$0.011\substack{+0.011\\-0.009}$	-	-	-	_	-	-	
$kT_{\rm bb}/1~{\rm keV}$	_	-	-	-	_	_	$0.34_{-0.09}^{+0.04}$	
χ^2_{ν}	65.6/61	68.7/61	68.3/61	72.4/62	69.1/61	69.2/61	62.1/61	
p_i (AIC)	0.136	0.007	0.008	0.018	0.024	0.023	0.784	
$f_{ m sc}$	0 ^{+0.50}	0 ^{+0.15}	0 ^{+0.95}	0 ^{+0.02}	0+0.13	0 ^{+0.37}	$0.20^{+0.27}_{-0.20}$	
				-			D_!.!.	

Data allow for ionization parameters interchange.

- the relatively modest relativistic effects

Dziełak et al. 2019

one (green) and an outer one (red). The solid shows the total model.

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

16th January '20

39

40

Comptonization of the reflected component (Steiner et al. 2017)

- this effect is minor

Zdziarski et al. 2002

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

Reflector density

The model of Garcia et al. (2016) with $n_e = 10^{19} \text{ cm}^{-3}$

 increase of both the truncation radius and the Fe abundance

M. Dziełak - Analysis of GX 339-4 during its hard state Sombreros and lampposts, Bern

Conclusions

A2

Analysed spectra can be fitted with <u>similar quality with models</u> <u>allowing significantly different disc truncation radii</u>.

Still, all of the fitted models prefer the R_{in} much larger than R_{ISCO} at their best-fit values.

Breaking degeneracy

→ Use **spectral-timing analysis** to break degeneracy of spectral fitting alone.

- \rightarrow Use additional information from fast variability of the source.
- → Reconstruct the energy spectra of the different variability components.

43

Breaking degeneracy

→ Use **spectral-timing analysis** to break degeneracy of spectral fitting alone.

- \rightarrow Use additional information from fast variability of the source.
- → Reconstruct the energy spectra of the different variability components.

→ To study stratification of accretion flow and distinguish between different models (Axelsson & Done 2018, A B

ΔΔ

Conclusions

45

Analysed spectra can be fitted with <u>similar quality with models</u> <u>allowing significantly different disc truncation radii</u>.

Still, all of the fitted models prefer the R_{in} much larger than R_{ISCO} at their best-fit values.

Use **spectral-timing analysis** to break degeneracy of spectral fitting alone.

Satelites

Plant+15 – XMM and Suzaku

Kolehmainen+14 - XMM and RXTE

Petrucci+14 - Suzaku

Tomsick+08 – Swift and RXTE

Miller+06 - XMM and RXTE

Reis+08 - XMM and RXTE

Basak+Zdziarski16 - XMM

Garcia+15 - RXTE

Dziełak+19 - RXTE

