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ABSTRACT

Aims. We study the joint effect of ion-neutral collisions and thermal mechanisms on the damping of MHD waves in a partially ionised
prominence plasma.
Methods. Thermal conduction, radiation, and heating were included in the energy equation of the one-fluid MHD set of equations we
derived earlier for an adiabatic, partially ionised plasma. Then, assuming small perturbations, these equations were linearised and the
dispersion relation for magnetoacoustic, Alfvén, and thermal waves obtained.
Results. Compared with the non-adiabatic, fully ionised, and the adiabatic, partially ionised cases, the main result is that there
is an increase in the efficiency of the damping of magnetoacoustic waves in prominence oscillations within the observed range
of wavelengths for the magnetoacoustic waves. On the other hand, the Alfvén wave is only damped by the ion-neutral collision
mechanism, and this damping becomes important for almost neutral plasmas.
Conclusions. The coupling of non-adiabatic mechanisms with the ion-neutral collisions mechanism offers a more complete model for
the damping of magnetoacoustic waves with those values compatible with those observed in prominence oscillations. Furthermore,
the ion-neutral collisions mechanism is able to damp the Alfvén wave in an efficient way.
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1. Introduction

Prominences are dense and relatively cool coronal structures that
appear as thin dark ribbons on the solar disc or as bright fea-
tures above the limb when observed in Hα. These structures are
supported against gravity by the magnetic field, which is also be-
lieved to be responsible forf the thermal isolation from the hotter
corona.

Prominence material seems to be partially ionised, with an
ionisation degree that varies over a wide range (Patsourakos &
Vial 2002). In general, models of prominences invoke a sup-
port mechanism for the prominence material consisting of an
upward magnetic force, which balances the downward gravita-
tional force. However, if the prominence plasma is only partially
ionised, one might wonder how the neutral component of the
plasma is supported against the gravity. For a plausible explana-
tion of how neutrals are supported, we refer the reader to Gilbert
et al. (2002).

There is strong observational evidence of small-amplitude
oscillations in quiescent solar prominences. These oscillations
have typical amplitudes going from less than 0.1 km s−1 to
2−3 km s−1, and they have been historically classified according
to their periods in short- (P < 10 min), intermediate- (10 min <
P < 40 min), and long-period oscillations (P > 40 min), al-
though there are reported observations of very short-period of
less than 1 min (Balthasar et al. 1993) and extremely ultra-long-
periods of more than 8 h (Foullon et al. 2004). On the other hand,
observations have also pointed out the damping of the oscilla-
tions in Doppler velocity time series, obtaining a damping time

usually between 1 and 3 times the corresponding oscillation
period (Molowny-Horas et al. 1999; Terradas et al. 2002).

Under prominence conditions, the plasma is described
reasonably well by the equations of magnetohydrodynamics
(MHD), so from the theoretical point of view, small-amplitude
prominence oscillations can be interpreted in terms of linear
MHD waves, whose attenuation has been studied by consid-
ering non-adiabatic effects, assuming radiative losses based on
the Newtonian cooling with a constant relaxation time (Terradas
et al. 2001) or by assuming a more complete treatment with the
incorporation of optically thin radiation, heating, and thermal
conduction (Carbonell et al. 2004, hereafter Paper I; Terradas
et al. 2005). The main conclusion that arises from these works
is that only the slow wave is damped by thermal effects in an
efficient way, radiation being the dominant attenuation mecha-
nism in the observed range of wavelengths; in contrast, the fast
wave remains practically unaffected. On the other hand, Forteza
et al. (2007), hereafter Paper II, proposed ion-neutral collisions
as a damping mechanism of prominence oscillations on the basis
that prominences, as noted previously, are partially ionised plas-
mas. This mechanism is efficient in attenuating the fast wave in
plasmas with a small fraction of ions, while the slow wave is not
affected. For more information about observations and theoret-
ical models of solar prominence oscillations, we refer to vari-
ous reviews on the topic (Oliver & Ballester 2002; Wiehr 2004;
Engvold 2004; Ballester 2006; Banerjee et al. 2007).

In this paper, our aim is to study the joint effect of ion-
neutral collisions and thermal mechanisms on the damping of
MHD waves in a partially ionised plasma. The layout of this
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paper is as follows. In Sect. 2 the equations for a non-adibatic
partially ionised plasma and the corresponding dispersion rela-
tion are presented. In Sect. 3 the results obtained by solving the
dispersion relation and a comparison with Papers I and II are
given. Finally, the main conclusions are summarised in Sect. 4.

2. Basic equations

In the equilibrium configuration, we consider a homogeneous
hydrogen, prominence plasma (p0, ρ0, T0 = const.) threaded by a
uniform magnetic field along the x-direction, B0 = B0 x̂ = const.

The basic equations for a non-adiabatic partially ionised
plasma (Paper II), ignoring the effect of gravity, are

dρ
dt
+ ρ∇ · V = 0, (1)

ρ
dV
dt
= −∇p +

1
4π

(∇ × B) × B, (2)

dp
dt
− γp
ρ

dρ
dt
− γ j

eni
· ∇pi = −(γ − 1)[ρL(ρ, T )−∇ · (κ · ∇T )], (3)

∂B
∂t
= ∇ × (V × B) + η∇2B − Ξ∇ × (∇p × B)

+
ηC − η
|B|2 ∇ × {[(∇ × B) × B] × B} , (4)

∇ · B = 0, (5)

p =
ρRT
μ̃
, (6)

where d/dt = ∂/∂t + V · ∇ is the material derivative for time
variations following the motion and Ξ = ξiξ2n/(1 + ξi)αn. Here,
the variables p, ρ, T , and B have their usual meaning, while ni,
V, μ̃, ηC, ξi, and ξn are the density of ions, the centre of mass
velocity, the ionisation fraction, Cowling’s magnetic resistivity,
and the relative densities of ions and neutrals. Their definitions
can be found in Paper II.

The inclusion of non-adiabatic effects modifies the energy
equation, in which the thermal mechanisms (i.e., radiation, heat-
ing, and thermal conduction) are added, so we next concentrate
on this equation and refer to Paper II for a detailed derivation of
the MHD equations for an adiabatic partially ionised plasma and
an in-depth study of the corresponding damping of the magne-
toacoustic waves.

2.1. Radiation and heating

The heat-loss function represents the difference between an arbi-
trary heat input and radiative losses. In our case, we have chosen
to represent these radiative losses by means of the optically thin
radiative loss function (Hildner 1974). Then, our heat-loss func-
tion is given by

L(ρ, T ) =
Lr

ρ
− hρaT b. (7)

The last term in Eq. (7) represents an arbitrary heating func-
tion that can be modified by taking different values for the ex-
ponents a and b, while Lr represents radiative losses and can be
written as (Priest 1984)

Lr = nenHQ(T ), (8)

Table 1. Parameter values of the radiative loss function for prominence
plasmas with different optical thicknesses, expressed in cgs units.

Regime χ∗ α Reference

Prominence 1 1.76 × 10−6 7.4 Hildner (1974)
Prominence 2 1.76 × 10−46 17.4 Milne et al. (1979)
Prominence 3 7.01 × 10−97 30 Rosner et al. (1978)

where ne is the electron density and nH = nn + ni the density of
hydrogen atoms and ions. The function Q(T ) has been evaluated
by different authors (Cox & Tucker 1969; Tucker & Koren 1971;
McWhirter et al. 1975; Raymond & Smith 1977; Rosner et al.
1978) and can be approximated by Q(T ) = χTα, χ, and α be-
ing piecewise functions depending on the temperature (Hildner
1974).

After some simple calculations and taking into account that
χ∗ = χ/m2

p and that the relative density of ions, ξi, is defined as
in Paper II (ξi = 1/μ̃ − 1), the heat loss-function for a partially
ionised plasma takes the form

L(ρ, T ) = ξiρχ∗Tα − hρaT b. (9)

In the case of an equilibrium with uniform temperature, such as
the one we consider here, the heat-loss function is

L(ρ0, T0) = 0.

Of all the heating scenarios (Rosner et al. 1978; Dahlburg &
Mariska 1988), and taking into account that the different heating
mechanisms do not affect the damping time in a significant way
(Paper I), we have chosen a constant heating per unit volume
(a = b = 0), so

h = ξiρ0χ
∗Tα0 . (10)

The use of an optically thin radiative loss function seems to be
a reasonable approach for coronal conditions, while it may not
be valid for prominence conditions because they are optically
thick at least in part. In prominences, the radiative losses from
the internal part are greatly reduced, and this can be represented
by changing the values of χ∗ and α in the cooling function. The
regimes considered in Table 1 reduce the losses by two orders
of magnitude when we go from regime prominence 1 (Hildner
1974) to prominence 3 (Rosner et al. 1978).

2.2. Thermal conduction

The term ∇ · (κ · ∇T ) in the energy equation (Eq. (3)) represents
thermal conduction, where κ is the conductivity tensor that can
be decomposed in its perpendicular and parallel components to
the magnetic field,

κ = κ‖ b̂b̂ + κ⊥(I − b̂b̂), (11)

where I is the identity tensor and b̂ the unitary vector in the
direction of the magnetic field.

Following Parker (1953) and Ibáñez & Mendoza (1990), the
thermal conduction coefficient in a partially ionised plasma can
be expressed as the sum of the contribution of the electrons and
the contribution of the neutrals

κ = κe + κn. (12)

For prominence applications the perpendicular component of
the electron’s contribution to the thermal conduction can be
neglected, so

κe = κe‖ b̂b̂, (13)
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with

κe‖ = 1.84 × 10−5 ξi
lnΛC

· (14)

On the other hand, given that neutrals do not feel the mag-
netic field influence, their contribution to thermal conduction is
isotropic, so

κn = κnI, (15)

with

κn = 2.5 × 103(1 − ξi). (16)

2.3. Dispersion relation

To obtain the dispersion relation for the MHD waves, we con-
sider small perturbations from the equilibrium in the form

B(t, r) = B0 + B1(t, r), p(t, r) = p0 + p1(t, r),

ρ(t, r) = ρ0 + ρ1(t, r), T (t, r) = T0 + T1(t, r),

V(t, r) = V1(t, r).

Then we linearise the basic Eqs. (1)−(6) and, since the medium
is unbounded, we perform a Fourier analysis in plane waves and
assume that perturbations behave as

f1(r, t) = f ei(ωt+k·r). (17)

With no loss of generality, we choose the z-axis so that the
wavevector k lies in the xz-plane (k = kx x̂ + kz ẑ). Then, the
following scalar equations are obtained.

ωρ1 + ρ0(kxV1x + kzV1z) = 0, (18)

ωρ0V1x + kx p1 = 0, (19)

ωρ0V1y − B0x

4π
kxB1y = 0, (20)

ωρ0V1z + kz p1 +
B0x

4π
(kzB1x − kxB1z) = 0, (21)

iω
(
p1 − c2

sρ1

)
+ (γ − 1)

(
κe‖k2

x + κnk2 + ρ0LT

)
T1

+(γ − 1)(L + ρ0Lρ)ρ1 = 0, (22)

B1x

(
iω + k2

xη + k2
z ηC

)
+ (η − ηC)kxkzB1z

+B0xkz(iV1z + kzΞp1) = 0, (23)

B1y

(
iω + k2

xηC + k2
zη

)
− iB0xkxV1y = 0, (24)

B1z

(
iω + k2

xηC + k2
zη

)
+ (η − ηC)kxkzB1x

−B0xkx(iV1z + kzΞp1) = 0, (25)

kxB1x + kzB1z = 0, (26)

p1

p0
− ρ1

ρ0
− T1

T0
= 0. (27)

Equations (20) and (24) are decoupled from the rest and from
them we can obtain the dispersion relation for Alfvén waves

ω2 − k2
xΓ(θ)

2 = 0, (28)

where Γ(θ) is a modified and complex Alfvén speed (Γ(θ) = ΓR+
iΓI) defined as

Γ(θ)2 = v2a + iω
(
ηC + η tan2 θ

)
. (29)

From the rest of the equations and when imposing that the deter-
minant of this algebraic system be zero, we obtain our general
dispersion relation for thermal and magnetoacoustic waves,

a5ω
5 + a4ω

4 + a3ω
3 + a2ω

2 + a1ω + a0 = 0, (30)

whose coefficient are given by

a0 = − ik2k2
xv

2
a

ρ0
(AT0 − Hρ0),

a1 = k2

[
c2

s v
2
ak2

x +
(AT0 − Hρ0)Ψ

ρ0

]
,

a2 = ik2

[
AT0 − Hρ0

ρ0
+

AT0v
2
a

p0
+ c2

sΨ

]
,

a3 = −k2

[(
c2

s + v
2
a

)
+

AT0ηC

p0

]
,

a4 = −i

(
AT0

p0
+ k2ηC

)
,

a5 = 1.

Here

A = (γ − 1)
(
κe‖k2

x + κnk2 + ρ0LT

)
, (31)

H = (γ − 1)(L + ρ0Lρ), (32)

Ψ = k2ηC − k2
z v

2
aΞρ0, (33)

and Lρ and LT are defined as in Paper I. Using the propagation
angle, θ, between k and B0, the wavenumber components can be
expressed as kx = k cos θ and kz = k cos θ.

This dispersion relation is consistent with the limit cases
studied in previous works. We can obtain the dispersion rela-
tion for non-adiabatic, magnetohydrodynamic waves (Paper I)
by making the plasma fully ionised, Ξ = 0, and assuming in-
finite conductivity, ηC = η = 0. In a similar way, one can ob-
tain the dispersion relation for adiabatic partially ionised plas-
mas (Paper II) by imposing A = H = 0.

Soler et al. (2007) introduces a modified sound speed for
the pure non-adiabatic case which, using Eq. (22), can be ex-
tended to the case of partial ionisation. This modified and com-
plex sound speed, Λ = ΛR + iΛI, is given by

Λ2 =

T0
ρ0

A − H + ic2
sω

T0

ρ0
A + iω

· (34)

Using this modified sound speed the magnetoacoustic waves dis-
persion relation can be written in a more compact form as

(
ω2 − k2Λ2

) (
ik2ηCω − ω2

)
+ k2v2a

(
ω2 − k2

xΛ
2
)

+ik2k2
z v

2
aΛ

2Ξρ0ω = 0. (35)
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Fig. 1. Period, damping time, and ratio of the
damping time to the period as a function of
wavenumber k for fast (top) and slow (bot-
tom) waves in a non-adiabatic partially ionised
plasma with μ̃ = 0.8. The shade region corre-
sponds to the interval of observed wavelengths
in prominences.

3. Results

3.1. Magnetoacoustic waves

We have numerically solved the dispersion relation (Eq. (30))
using symbolic software and considering a magnetic field B0 =
10 G and a propagation angle θ = π/4. Since we are interested
in the temporal damping of magnetoacoustic waves, we consider
the wavenumber, k, to be real and seek complex solutions of the
frequency ω expressed as ω = ωR + iωI. Then, the period and
damping time of the waves can be calculated as P = 2π/ωR and
τD = 1/ωI. We also calculate the ratio of the damping time to the
period, τD/P, in order to compare the model with observations,
which indicate that this parameter takes values around 3.

The values of the density and temperature in the equilib-
rium configuration have been taken as ρ0 = 5 × 10−14 g/cm3

and T0 = 8000 K. Unless otherwise stated, for the radiative loss
function, we use the parameter values corresponding to promi-
nence 1 regime in Table 1.

Figure 1 shows the results obtained for P, τD, and τD/P
corresponding to fast and slow waves. The shaded region de-
fines the interval of observed wavelengths in prominence oscil-
lations, which corresponds to the wavenumber interval k = 10−8

to 10−6 m−1. The thermal mode does not correspond to a propa-
gating wave (ωR = 0), and its behaviour is quite similar to that
of the non-adiabatic fully ionised case. For this reason, it is not
considered in this work.

The slow mode curves qualitatively resemble those obtained
in Paper I, but perhaps the most interesting feature is that the
fast wave disappears at a certain wavenumber (∼7 × 10−4 m−1).
In order to understand this effect, let us consider the dispersion
relation Eq. (35) for parallel propagation (kz = 0, k = kx),(
ω2 − k2

xΓ(0)2
) (
ω2 − k2

xΛ
2
)
= 0, (36)

so that the fast wave is decoupled from the thermal and slow
waves and its frequency is obtained by imposing that the first
factor of the previous equation vanishes. Then, solving this dis-
persion relation for ω we obtain

ω =
ik2ηC

2
± k

2

√
4v2a − k2η2

C.

Then, to have ωR � 0, 4v2a − k2η2
C must be greater than zero,

which leads to

k <
2va
ηC
≡ kc. (37)

Hence, in a partially ionised plasma the fast mode only exists as
a damped propagating wave for wavenumbers below the critical
value, kc. For wavenumbers greater than this critical value, we
have a damped disturbance instead of a propagating wave.

Using the parameter values mentioned before we obtain kc ∼
7.3 × 10−4 m−1, very similar to the value ∼7 × 10−4 m−1 derived
from Fig. 1. Given that Eq. (37) has been derived using adiabatic
conditions and θ = 0, this agreement indicates that non-adiabatic
effects and non-parallel propagation do not produce a substantial
modification of kc.

3.1.1. Effect of the ionisation degree

Now, we study the effect of the ionisation fraction on the magne-
toacoustic waves period and damping time. Figure 2 shows the
results for fast and slow waves for four different values of the
ionisation fraction going from fully ionised plasma (μ̃ = 0.5)
to almost neutral plasma (μ̃ = 0.99). In the case of fast waves
we observe that, for a fixed wavenumber, the damping time de-
creases when the ionisation degree is decreased, in agreement
with Paper II. Moreover, the curve representing the period of
the fast wave stops at different critical wavenumbers, kc, when
the ionisation fraction is modified. The reason is that the criti-
cal wavenumber (Eq. (37) and Fig. 3) depends on the ionisation
fraction through ηC (see Paper II for more details).

In the case of slow waves, the behaviour is more complex.
First, the minimum of τD/P at long wavelengths suffers a dis-
placement towards longer wavelengths when μ̃ is increased, and
when μ̃ > 0.8 it is located within the interval of observed wave-
lengths in prominence oscillations. This means that a higher at-
tenuation efficiency is obtained for lower ionisation degrees. In
addition, the minimum of τD/P at short wavelengths displays
two different features. On one hand, such as happens with the
other minimum, there is a displacement towards longer wave-
lengths, although it is less pronounced. On the other hand, for
μ̃ > 0.8 this minimum splits into two different minima that be-
come more separated as μ̃ is increased. The presence of a new
minimum in τD/P yields the possibility of achieving very high
damping rates for three wavelength ranges centred about the
three minima.

3.1.2. Effect of damping mechanisms

In this section we assess the influence of the different damp-
ing mechanisms on the ratio of the damping time to the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810370&pdf_id=1
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Fig. 2. Period, damping time, and ratio of the
damping time to the period as a function of
wavenumber k for the fast (top) and slow (bot-
tom) waves for different ionisation fractions:
μ̃ = 0.5 (dashed), μ̃ = 0.8 (solid), μ̃ = 0.95
(dash-dotted), and μ̃ = 0.99 (dotted). The shade
region corresponds to the interval of observed
wavelengths in prominences.

Fig. 3. Variation of the fast wave critical wavenumber, kc, versus the
ionisation fraction, μ̃.

period (τD/P). First of all, we focus on the fast wave, and ac-
cording to the top left panel of Fig. 4 (corresponding to μ̃ = 0.8),
the wavenumber interval considered can be divided in two re-
gions with different dominant damping mechanisms. For small
wavenumbers, i.e. long wavelengths, the ratio of the damping
time to the period is dominated by radiative cooling (according
to Paper I thermal conduction is negligible for small wavenum-
bers compared to radiative cooling), while it is dominated by
ion-neutral collisions for large wavenumbers. This behaviour is
similar for μ̃ = 0.99, but the wavenumber at which the dominant
mechanism changes is larger. Thermal conduction by neutrals
and electrons does not influence the damping of the fast wave in
a significant way.

The slow wave presents a more complex behaviour and we
consider the two different values of the ionisation fraction sep-
arately. For almost neutral plasmas (μ̃ = 0.99), the ratio of the
damping time to the period presents three minima of maximum
attenuation, each of them corresponding to a different dominant
damping mechanism. The first one, situated at long wavelengths,
is caused by radiative cooling (see Paper I); the second one, in
the mid range of the wavenumber interval, is due to ion-neutral
collisions mechanisms; and finally, the last peak, corresponding
to short wavelengths, is produced by neutral thermal conduction.
As mentioned in Sect. 2.2, the expression of κ has two terms in
a partially ionised plasma(Eq. (12)), corresponding to the con-
tributions of neutrals and electrons. For a typical prominence
temperature, the contribution of electrons to thermal conduc-
tion is negligible compared that of neutrals. In Fig. 4, the curve

corresponding to the neutrals contribution to the thermal con-
duction is indistinguishable from the curve considering the joint
contribution of neutrals and electrons.

For a higher ionisation fraction (μ̃ = 0.8; bottom left panel
of Fig. 4), the separation between the minima caused by ion-
neutral collisions and thermal conduction decreases. Because of
this, the two minima merge and both effects are important in the
same region of the considered wavenumber interval.

3.1.3. Comparison with Carbonell et al. (2004) and Forteza
et al. (2007)

Next, we compare our results with previous ones in which non-
adiabatic (Paper I) and partially ionised (Paper II) effects were
considered separately. Figure 5 shows the period, damping time,
and the ratio of the damping time to the period of the magnetoa-
coustic waves for three different cases: adiabatic partially ionised
plasma, non-adiabatic fully ionised plasma, and non-adiabatic
partially ionised plasma. We can observe that the wavenumber
at which the fast wave disappears is not affected by the non-
adiabatic terms because it arises from magnetic diffusion and is
determined by partial ionisation effects. On the other hand, non-
adiabatic and partial ionisation effects affect the period of the
waves only slightly, which remains basically the same as in the
ideal case. In Sect. 3.1.2 there is an explanation of the behaviour
of the two minima of τD/P of the slow wave.

Also, when comparing the three scenarios we observe that,
in the non-adiabatic partially ionised case, there is an increase
in the efficiency of the damping of fast and slow waves in the
observed wavelength range.

Now, we can compare the value of the real part of the mod-
ified sound speed, Eq. (34), for the non-adiabatic partially and
fully ionised plamas (Fig. 6). For the two ionisation degrees con-
sidered, ΛR has the same behaviour but suffers a displacement
towards smaller wavenumbers and the size of the top flat region,
where ΛR ∼ cs, is increased when the ionisation fraction is in-
creased. The different values of the height of the top flat region of
the real part of the modified sound speed stem from the adiabatic
sound speed, cs, depending on the ionisation fraction (Paper II).

We have studied the differences in the behaviour of the
magnetoacoustic waves produced by the change of the parame-
ters χ∗ and α corresponding to the different prominence regimes.
The results are very similar to those of Paper I for a fully
ionised plasma, and the only difference is that the different
prominence regimes only affect the region of the wavenumber

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810370&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810370&pdf_id=3
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Fig. 4. Ratio of the damping time to the period as a function of wavenumber k for fast (top) and slow (bottom) waves corresponding to different
ionisation fractions, μ̃ = 0.8 (left) and μ̃ = 0.99 (right). Different line styles correspond to: ion neutral collisions plus thermal mechanisms
(solid line), only ion-neutral collisions (dotted line), only thermal mechanisms (dashed line), and only radiation, heating, and electronic thermal
conduction (dash-dotted line). The shade region corresponds to the interval of observed wavelengths in prominences.

Fig. 5. Period, damping time, and ratio of the
damping time to the period as a function of
wavenumber k for the fast (top) and slow
(bottom) waves. Solid lines: non-adiabatic par-
tially ionised plasma; dashed lines: adiabatic
partially ionised plasma; dotted lines: non-
adiabatic fully ionised plasma. The shaded re-
gion corresponds to the interval of observed
wavelengths in prominences.

Fig. 6. Comparison of the real part of modified sound speed as a func-
tion of wavenumber k in a non-adiabatic partially ionised plasma (solid)
and in a non-adiabatic fully ionised plasma (dotted) with μ̃ = 0.8 (left)
and μ̃ = 0.99 (right). The two dotted curves are different because cs

depends on μ̃. The shade region corresponds to the interval of observed
wavelengths in prominences.

interval in which thermal mechanisms are the dominant damp-
ing mechanisms.

3.1.4. Dependence on the propagation angle

Figure 7 shows the ratio of the damping time to the period
for different propagation angles and the three different scenar-
ios considered in Sect. 3.1.3: non-adiabatic fully ionised plasma
(Paper I), adiabatic partially ionised plasma (Paper II) and non-
adiabatic partially ionised plasma (present work).

For the non-adiabatic fully ionised plasma (left panels),
the damping of the slow wave presents a weak dependence
on the propagation angle, while the damping of the fast wave
is strongly affected by the value of the propagation angle

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810370&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810370&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810370&pdf_id=6
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Fig. 7. Ratio of the damping time to the pe-
riod as a function of wavenumber k for three
different scenarios: non-adiabatic fully ionised
plasma (left), adiabatic partially ionised plasma
(centre), and non-adiabatic partially ionised
plasma (right). The top panels correspond to
the fast wave, while the bottom ones corre-
spond to the slow wave. Different propagation
angles have been considered: θ = 0.01 (dot-
ted), θ = π/8 (dash-dotted), θ = π/4 (solid),
and θ = π/3 (dashed). The shade region corre-
sponds to the interval of observed wavelengths
in prominences.

Fig. 8. Period, damping time, and ratio of the
damping time to the period as a function of
wavenumber k for the Alfvén wave in a non-
adiabatic partially ionised plasma with μ̃ = 0.5
(dotted), μ̃ = 0.6 (dashed), μ̃ = 0.8 (solid), and
μ̃ = 0.99 (dash-dotted). The shade region corre-
sponds to the interval of observed wavelengths
in prominences.

(Carbonell et al. 2006). This behaviour is reversed in an adi-
abatic partially ionised plasma: the slow wave is considerably
affected, while the fast wave remains unaffected (centre panels).

In the non-adiabatic partially ionised case (right panels),
both waves are notably affected by the variation of the propaga-
tion angle. Fast waves present a dependence on the propagation
angle only in the wavenumber interval in which non-adiabatic
effects are the dominant damping mechanisms. Meanwhile, for
slow waves, the dependence on the propagation angle is stronger
in the region in which ion-neutral collisions and thermal conduc-
tion are important. We can observe that for large propagation an-
gles, the minimum caused by ion-neutral collisions is more pro-
nounced, while this minimum completely disappears for small
angles.

3.2. Alfvén waves

From the dispersion relation, Eq. (28), we know that the Alfvén
wave is not influenced by the non-adiabatic terms and that it
is only affected by the ion-neutral collisions terms. Since Γ is
a complex quantity, the real and imaginary parts of the Alfvén
frequency are given by

ωR = ±kxΓR,

and

ωI = ±kxΓI.

Figure 8 shows the results obtained for the period, the damp-
ing time, and the ratio of the damping time to the period. In this
figure the solution for a fully ionised plasma (μ̃ = 0.5) with mag-
netic resistivity (Ferraro & Plumpton 1961; Kendall & Plumpton
1964) is also shown.

The Alfvén wave behaviour is similar to that of the fast
wave in the adiabatic partially ionised case, although in the non-
adiabatic partially ionised case, both waves have a different be-
haviour in the wavenumber interval in which the behaviour of the
fast wave is dominated by radiative losses. When ion-neutral col-
lisions become the dominant mechanism, fast and Alfvén waves
have similar period and damping times and, like for the fast
wave, the ratio of the damping time to the period decreases when
going to almost neutral plasmas. Also, from Fig. 9 one can con-
clude that the frequency of the Alfvén wave depends slightly on
the angle of propagation.

On the other hand, from Eq. (28) we can obtain the critical
wavenumber for the Alfvén waves, which is

ka
c =

2va
cos θ

(
ηC + η tan2 θ

) · (38)

This quantity depends on the ionisation fraction (as the fast
wave critical wavenumber does) and on the propagation an-
gle (Fig. 10). Usually, ka

c is bigger than kc and both critical
wavenumbers become equal for parallel propagation. On the
other hand, when we consider ηC = η, we recover from Eq. (38)
the critical wavenumber of fully ionised and resistive plasmas
(Ferraro & Plumpton 1961; Kendall & Plumpton 1964), which
is given by

kFP
c =

2va
η

cos θ. (39)

The ratio between the critical wavenumber for a partially ionised
plasma, Eq. (38), and that of a fully ionised resistive plasma,
Eq. (39) is given by

kFP
c

ka
c
= sin2 θ +

ηC

η
cos2 θ, (40)
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Fig. 9. Period, damping time, and ratio of the
damping time to the period as a function of
wavenumber k for the Alfvén wave in a non-
adiabatic partially ionised plasma with θ =
0 (dash-dotted), θ = π/4 (solid), and θ =
7π/16 (dashed). The shade region corresponds
to the interval of observed wavelengths in
prominences.

Fig. 10. Critical wavenumber versus the ionisation fraction for the
Alfvén wave for different propagation angles: θ = 0 (dash-dotted),
θ = π/4 (solid), and θ = 7π/16 (dashed).

Fig. 11. Real part of the modified Alfvén speed, ΓR, as a function of
wavenumber k in a partially ionised plasma with μ̃ = 0.5 (dash-3-
dotted), μ̃ = 0.6 (dashed), μ̃ = 0.8 (solid), and μ̃ = 0.99 (dash-dotted)
compared with the ideal Alfvén speed, va, (dotted). The shade region
corresponds to the interval of observed wavelengths in prominences.

which is equal to 1 for a fully ionised plasma (ηC = η) and goes
to infinity for μ̃→ 1.

Figure 11 shows the modified Alfvén speed, Eq. (29), com-
puted for different values of the ionisation fraction. One observes
that ΓR is equal to the ideal Alfvén speed, va, for wavenumbers
smaller than the critical wavenumber, ka

c. While for wavenum-
bers larger than ka

c, the modified Alfvén speed falls almost verti-
cally to 0, so there is no propagating wave since ωR = 0.

4. Conclusions

In this paper we have studied the time damping of Alfvén
and magnetoacoustic waves in a partially ionised plasma,
with prominence physical conditions, considering non-adiabatic
terms (thermal conduction, radiation losses and heating) in the
energy equation. Small-amplitude oscillations have been as-
sumed, so the linearised non-adiabatic one-fluid MHD equa-
tions for a partially ionised plasma have been considered and the
dispersion relations for Alfvén, slow and fast magnetoacoustic
waves have been found. Finally, the period and damping time of
these waves has been computed. Next, we summarise the main
conclusions and results of this work:

– The period of magnetoacoustic waves remains basically the
same as in the ideal case. The modification to this ideal value
introduced by non-adiabatic terms and ion-neutral collisions
is practically negligible.

– The ion-neutral collisions mechanism is able to damp effi-
ciently the three MHD waves (fast, slow and Alfvén) in dif-
ferent ways.

– From the model proposed in this work one can obtain values
of the ratio of the damping time to the period similar to the
ones obtained in observations, which range from 1 to 10.

– The inclusion of non-adiabatic terms in the partially ionised
set of equations increases the damping of fast and slow
waves in the interval of observed wavelegths as compared
with the results obtained for a non-adiabatic fully ionised
plasma (Paper I) and an adiabatic partially ionised plasma
(Paper II).

– For slow waves, the minima of τD/P, corresponding to
a maximum of attenuation, are displaced to longer wave-
lengths as compared to when only non-adiabatic effects are
considered. An increase of the neutral portion in the plasma
produces a displacement of these ranges of maximum damp-
ing to longer wavelengths. Radiative losses are dominant at
long wavelengths while the rest of the wavenumber interval
is dominated by thermal conduction and ion-neutral colli-
sions. For ionisation fractions with μ̃ < 0.8 both mechanisms
dominate in the considered wavelength interval (a single
minimum with maximum damping caused by the combina-
tion of the two effects appears), while for μ̃ > 0.8 the min-
imum splits and ion-neutral collisions dominate in the mid
range interval while thermal conduction dominates at short
wavelengths.

– For fast waves, radiation is the dominant damping mecha-
nism for long wavelengths, while in the rest of the consid-
ered wavenumber interval the damping is dominated by the
effect of ion neutral collisions mechanism.

– Fast waves only exist for wavenumber smaller than a criti-
cal value that depends on the ionisation fraction. In spite of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200810370&pdf_id=9
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this, the critical wavenumber is large in comparison with the
typical wavenumbers of waves in prominences.

– The Alfvén wave is damped by ion-neutral collisions and is
not affected by the non-adiabatic terms. The period and the
damping time of Alfvén waves depends on the angle of prop-
agation. In the case of almost neutral plasmas, the Alfvén
wave is very efficiently damped.

– As with the fast wave, the Alfvén wave also presents a crit-
ical wavenumber, which depends on the ionisation fraction
and the propagation angle and whose expression, in the fully
ionised limit, is equal to the one obtained by Ferraro &
Plumpton (1961).

– In the case of non-adiabatic and partially ionised plasmas,
the expression and behaviour of the modified sound and
Alfvén speeds have been obtained.

– Finally, for typical prominence temperature values, the con-
tribution of electrons to thermal conduction is negligible in
front of the contribution of neutrals.
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