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ABSTRACT

High-resolution observations of solar filaments suggest the presence of groups of prominence threads, i.e., the fine
structures of solar prominences, which oscillate coherently (in phase). In addition, mass flows along threads have
been often observed. Here, we investigate the effect of mass flows on the collective fast and slow nonadiabatic
magnetoacoustic wave modes supported by systems of prominence threads. Prominence fine structures are modeled
as parallel, homogeneous, and infinite cylinders embedded in a coronal environment. The magnetic field is uniform
and parallel to the axis of threads. Configurations of identical and nonidentical threads are both explored. We
apply the T-matrix theory of acoustic scattering to obtain the oscillatory frequency and the eigenfunctions of linear
magnetosonic disturbances. We find that the existence of wave modes with a collective dynamics, i.e., those that
produce significant perturbations in all threads, is only possible when the Doppler-shifted individual frequencies of
threads are very similar. This can be only achieved for very particular values of the plasma physical conditions and
flow velocities within threads.
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1. INTRODUCTION

Prominences/filaments are fascinating coronal magnetic
structures, whose dynamics and properties are not well under-
stood yet. The long life of the so-called quiescent prominences
(several weeks) suggests that the cool and dense prominence
material is maintained against gravity and thermally shielded
from the much hotter and much rarer solar corona by means of
some not well known processes. However, it is believed that the
magnetic field must play a crucial role in both the support and
isolation of prominences. High-resolution observations of solar
filaments reveal that they are formed by a myriad of horizon-
tal structures called threads (e.g., Lin et al. 2005), which have
been observed in the spines and barbs of both active region and
quiescent filaments (Lin et al. 2008). The width of these fine
structures is typically in the range 0.′′2–0.′′6, which is close to the
resolution of present-day telescopes, whereas their lengths are
between 5′′ and 20′′ (Lin 2004). Threads are assumed to be the
basic substructures of filaments and to be aligned along mag-
netic field lines. From the point of view of theoretical modeling,
prominence threads are interpreted as large coronal magnetic
flux tubes, with the denser and cooler (prominence) region lo-
cated at magnetic field dips that correspond to the observed
threads. Although some theoretical works have attempted to
model such structures (e.g., Ballester & Priest 1989; Schmitt &
Degenhardt 1995; Rempel et al. 1999; Heinzel & Anzer 2006),
there are some concerns about their formation and stability that
have not been resolved yet.

Small-amplitude oscillations, propagating waves and mass
flows are some phenomena usually observed in prominences
and prominence threads (see some recent reviews by Oliver &
Ballester 2002; Ballester 2006; Banerjee et al. 2007). Periods
of small-amplitude prominence oscillations cover a wide range
from less than a minute to several hours, and they are usu-
ally attenuated in a few periods (Molowny-Horas et al. 1999;
Terradas et al. 2002). Focusing on prominence threads, some

works have detected oscillations and waves in such fine struc-
tures (e.g., Yi et al. 1991; Yi & Engvold 1991; Lin 2004;
Okamoto et al. 2007; Lin et al. 2007). In particular, Yi et al.
(1991) and Lin et al. (2007) suggested the presence of groups
of near threads that moved in phase, which may be a signature
of collective oscillations. On the other hand, mass flows along
magnetic field lines have been also detected (Zirker et al. 1994,
1998; Lin et al. 2003, 2005), with typical flow velocities of less
than 30 km s−1 in quiescent prominences, although larger val-
ues have been detected in active region prominences (Okamoto
et al. 2007). Regarding the presence of flows, a phenomenon that
deserves special attention is the existence of the so-called coun-
terstreaming flows, i.e., opposite flows within adjacent threads
(Zirker et al. 1998; Lin et al. 2003).

Motivated by the observational evidence, some authors have
broached the theoretical investigation of prominence thread os-
cillations by means of the magnetohydrodynamic (MHD) theory
in the β = 0 approximation. First, some works (Joarder et al.
1997; Dı́az et al. 2001, 2003) focused on the study of the ideal
MHD oscillatory modes supported by individual nonuniform
threads in Cartesian geometry. Later, Dı́az et al. (2002) consid-
ered a more representative cylindrical thread and obtained more
realistic results with respect to the spatial structure of pertur-
bations and the behavior of trapped modes. Subsequently, the
attention of authors turned to the study of collective oscillations
of groups of threads, and the Cartesian geometry was adopted
again for simplicity. Hence, Dı́az et al. (2005) investigated the
collective fast modes of systems of nonidentical threads and
found that the only nonleaky mode corresponds to that in which
all threads oscillate in spatial phase. Later, Dı́az & Roberts
(2006) considered the limit of a periodic array of threads and
obtained a similar conclusion. Therefore, these results seem to
indicate that all threads within the prominence should oscil-
late coherently, even if they have different physical properties.
However, one must bear in mind that the Cartesian geometry
provides quite an unrealistic confinement of perturbations, and
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so systems of more realistic cylindrical threads might not show
such a clear collective behavior.

The next obvious step is therefore the investigation of os-
cillatory modes of systems of cylindrical threads. The first ap-
proach to a similar problem was done by Luna et al. (2008),
who considered a system of two identical, homogeneous cylin-
ders embedded in unlimited corona. Although Luna et al.
(2008) applied their results to coronal loops, they are also
applicable to prominence threads. These authors numerically
found that the system supports four trapped kinklike collec-
tive modes. These results have been analytically reobtained by
van Doorsselaere et al. (2008), by considering the thin tube ap-
proximation and bicylindrical coordinates. Subsequently, Luna
et al. (2009) made use of the T-matrix theory of acoustic scat-
tering to study the collective oscillations of arbitrary systems of
nonidentical cylinders. Although the scattering theory has been
previously applied in the solar context (e.g., Bogdan & Zweibel
1987; Keppens 1994), the first application to the study of nor-
mal modes of magnetic coronal structures has been performed
by Luna et al. (2009). They concluded that, contrary to the Carte-
sian case of Dı́az et al. (2005), the collective behavior of the os-
cillations diminishes when cylinders with nonidentical densities
are considered, the oscillatory modes behaving in practice like
individual modes if cylinders with mildly different densities are
assumed.

The present study is based on Luna et al. (2009) and applies
their technique to the investigation of MHD waves in systems
of cylindrical prominence threads. Moreover, we extend their
model by considering some effects neglected by them. Here,
the more general β �= 0 case is considered, allowing us to
describe both slow and fast magnetoacoustic modes. In addition,
the adiabatic assumption is removed and, following previous
papers (Soler et al. 2007, 2008), the effect of radiative losses,
thermal conduction and plasma heating is taken into account.
The detection of mass flows in prominences has motivated us
to include this effect in our study, and so the presence of flows
along magnetic field lines is also considered here. Therefore,
the present work extends our recent investigation (Soler et al.
2008, hereafter Paper I), which was focused on individual
thread oscillations, to the study of collective MHD modes in
prominence multithread configurations with mass flows. On the
other hand, the longitudinal structure of threads (e.g., Dı́az et al.
2002) is neglected in the present investigation. For this reason,
the effect of including a longitudinal variation of the plasma
physical conditions within threads should be investigated in
a future work. Finally, the prominence multithread model
developed here could be a useful tool for future seismological
applications (similar to that of Terradas et al. 2008).

This paper is organized as follows. The description of the
model configuration and the mathematical method is given in
Section 2. Then, the results are presented in Section 3. First,
the case of two identical prominence threads is investigated in
Section 3.1. Later, this study is extended to a configuration of
two different threads in Section 3.2. Finally, our conclusion is
given in Section 4.

2. MATHEMATICAL METHOD

Our equilibrium system is made of an arbitrary configuration
of N homogeneous and unlimited parallel cylinders, represent-
ing prominence threads, embedded in an also homogeneous and
unbounded coronal medium. Each thread has its own radius, aj,
temperature, Tj, and density, ρj , where the subscript j refers to
a particular thread. On the other hand, the coronal temperature

and density are Tc and ρc, respectively. Cylinders are orientated
along the z-direction, the (x, y)-plane being perpendicular to
their axis. The magnetic field is uniform and also orientated
along the z-direction, Bj = Bj êz being the magnetic field in
the jth thread, and Bc = Bcêz in the coronal medium. In addi-
tion, steady mass flows are assumed along magnetic field lines,
with flow velocities and directions that can be different within
threads and in the corona. Thus, Uj = Uj êz represents the mass
flow in the jth thread, whereas Uc = Ucêz corresponds to the
coronal flow. For simplicity, in all the following expressions a
subscript 0 indicates local equilibrium values, while subscripts
j or c denote quantities explicitly computed in the jth thread or
in the corona, respectively.

Such as shown in Paper I, linear nonadiabatic magnetoacous-
tic perturbations are governed by the following equation for the
divergence of the velocity perturbation, Δ = ∇ · v1,
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and γ being the adiabatic sound speed squared and

the adiabatic ratio, respectively. Terms with κ‖0, ωρ0, and ωT 0
are related to nonadiabatic mechanisms, i.e. radiative losses,
thermal conduction, and heating (see Paper I for details). Finally,
Ω0 is the Doppler-shifted frequency (Terra-Homem et al. 2003),

Ω0 = ω − kzU0, (4)

where ω is the oscillatory frequency and kz is the longitudinal
wavenumber. Considering cylindrical coordinates, namely r, ϕ,
and z for the radial, azimuthal, and longitudinal coordinates,
respectively, we can write Δ in the following form,

Δ = ψ (r, ϕ) exp (iωt − ikzz) , (5)

where the function ψ (r, ϕ) contains the full radial and azimuthal
dependence. By inserting this last expression into Equation (1),
the following Helmholtz equation is obtained,
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are the radial wave number and the nonadiabatic tube speed
squared, respectively. Moreover, due to the presence of non-
ideal terms m2

0 is a complex quantity. Since nonadiabatic
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mechanisms produce a small correction to the adiabatic wave
modes,

∣∣�(
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0

)∣∣ >
∣∣	(

m2
0

)∣∣ and the dominant wave character
depend on the sign of �(

m2
0

)
. Here, we investigate nonleaky

modes, which are given by �(
m2

c

)
< 0. We impose no restric-

tion on the wave character within threads.
In order to solve Equation (6), we consider the technique

developed by Luna et al. (2009) based on the study of wave
modes of an arbitrary configuration of cylinders by means of
the T-matrix theory of acoustic scattering. The novelty with
respect to the work of Luna et al. (2009) is that the method is
applied here to solve a Helmholtz equation for the divergence
of the velocity perturbation (our Equation (1)) whereas Luna
et al. (2009) considered an equation for the total pressure
perturbation in the β = 0 approximation (their Equation (1)).
The present approach allows us to study the more general β �= 0
case, therefore slow modes are also described. In addition,
nonadiabatic effects and mass flows are easily included in our
formalism. However, the rest of the technique is absolutely
equivalent to that of Luna et al. (2009), and therefore the reader
is referred to their work for an extensive explanation of the
mathematical technique (see also an equivalent formalism in
Bogdan & Cattaneo 1989). We next give a brief summary of the
method.

The main difference between our application and that of
Luna et al. (2009) is in the definition of the T-matrix elements.
These elements are obtained by imposing appropriate boundary
conditions at the edge of threads, i.e., at |r − rj | = aj , where
rj is the radial vector corresponding to the position of the
jth thread center with respect to the origin of coordinates.
In our case, these boundary conditions are the continuity of
the total pressure perturbation, pT, and the Lagrangian radial
displacement, ξr = −ivr/Ω0. Expressions for these quantities
as functions of Δ and its derivative are,
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Expressions for the rest of perturbations are given in Appendix
A of Paper I. Thus, in our case the T-matrix elements have the
following form,
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where H (1)
m and Jm are the Hankel function of the first kind

and the Bessel function of order m, respectively, while the
prime denotes the derivative taken with respect to r. Note
that the denominator of T

j
mm vanishes at the normal mode

frequencies of an individual thread. This can be easily checked
by comparing it with the dispersion relation of a single thread,
see Equation (19) of Paper I, in which Bessel Km functions
are used instead of Hankel functions. The equivalence between
both kinds of functions is given in Abramowitz & Stegun (1972).
Thus, following Luna et al. (2009), the internal ψ (r, ϕ) field of

the jth thread is
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where ϕj is the azimuthal angle corresponding to the position
of the jth thread center with respect to the origin of coordinates,
and α

j

2,m and A
j
m are constants. Equations (12) and (13) allow

us to construct the spatial distribution of Δ. Subsequently, the
rest of the perturbations can be obtained. Finally, the constants
α

j

2,m form a homogeneous system of linear algebraic equations,
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for −∞ < m < ∞. Once both integers m and n are truncated to
a finite number of terms, the nontrivial (i.e., nonzero) solution
of system in Equation (14) gives us a dispersion relation for the
oscillatory frequency, ω, which is enclosed in the definitions of
mj and mc.

In the following sections, we apply the method for obtaining
the oscillatory frequency and the spatial distribution of pertur-
bations of the wave modes supported by prominence thread
configurations. We assume that kz is real, so a complex fre-
quency is obtained, namely ω = ωR + iωI. The imaginary part
of the frequency appears due to the presence of nonadiabatic
mechanisms. The oscillatory period, P, and the damping time,
τD, are related to the frequency as follows,

P = 2π

|ωR| , τD = 1

ωI
. (15)

3. RESULTS

3.1. Configuration of Two Identical Threads

Now, we consider a configuration of two identical threads (see
Figure 1). Their physical conditions are typical of prominences
(T1 = T2 = 8000 K, ρ1 = ρ2 = 5 × 10−11 kg m−3)
while the coronal temperature and density are Tc = 106 K
and ρc = 2.5 × 10−13 kg m−3, respectively. Their radii are
a1 = a2 = a = 30 km, and the distance between centers
is d = 4a = 120 km. The magnetic field strength is 5 G
everywhere. The flow velocity inside the cylinders is denoted
by U1 and U2, respectively, whereas the flow velocity in the
coronal medium is Uc. Unless otherwise stated, these physical
conditions are used in all calculations.

As mentioned in Section 1, the observed width of the threads
is less than 0.′′3, which is very close to the resolution of present-
day telescopes. Therefore, it is possible that thinner threads
could exist in prominences, which may not be well resolved
now but they should be observable by future instruments with
a higher spatial resolution. This is the reason for considering
here thread radii slightly smaller than those currently observed.
On the other hand, for typical wavelengths of prominence
oscillations, the wave behavior is in practice independent of
the value of the radius, i.e., the “thin tube” regime, and
therefore the very value of the radius is almost irrelevant for this
investigation.
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Figure 1. Scheme in the (x, y)-plane of the model considered in Section 3.1.
The z-axis is perpendicular to the plane of the figure and points toward the
reader.

3.1.1. Wave Modes in the Absence of Flow

First, we consider no flow in the equilibrium, i.e., U1 = U2 =
Uc = 0. We fix the longitudinal wavenumber to kza = 10−2,
which corresponds to a wavelength within the typically observed
range. In addition to the four kink modes described by Luna et al.
(2008), i.e., the Sx, Ax, Sy, and Ay modes, where S or A denote
symmetry or antisymmetry of the total pressure perturbation
with respect to the (y, z)-plane, and the subscripts refer to
the main direction of polarization of motions, we also find
two more fundamental collective wave modes (one symmetric
and one antisymmetric) mainly polarized along the z-direction,
which we call Sz and Az modes following the notation of Luna
et al. (2008). These new solutions correspond to slow modes
that are absent in the investigation of Luna et al. (2008) due
to their β = 0 approximation. As was stated by Luna et al.
(2009), a collective wave mode is the result of a coupling
between individual modes. The reader must be aware that in the
present work we indistinctly use both expressions, i.e., collective
modes and coupled modes, to refer to wave solutions whose
perturbations have significant amplitudes in both threads.

The total pressure perturbation field, pT, and the transverse
Lagrangian displacement vector-field, ξ⊥, corresponding to the
six fundamental modes are displayed in Figure 2. On the other
hand, Figure 3 displays a cut of the Cartesian components of
the Lagrangian displacement (ξx , ξy , and ξz) at y = 0, again
for these six solutions. For simplicity, only the real part of these
quantities are plotted in both figures, since their imaginary parts
are equivalent. One can see in Figure 3 that the amplitude of the
longitudinal (magnetic field aligned) Lagrangian displacement,
ξz, of the Sz and Az modes is much larger than the amplitude
of transverse displacements, ξx and ξy , such as corresponds to
slow modes in β < 1 homogeneous media, while the contrary
occurs for the Sx, Ax, Sy, and Ay fast kink solutions.

Next, Figure 4(a) displays the ratio of the real part of the
frequency of the four kink solutions to the frequency of the
individual kink mode, ωk (from Paper I), as a function of
the distance between the center of cylinders, d. This Figure
is equivalent to Figure 3 of Luna et al. (2008) and, in agreement
with them, one can see that the smaller the distance between

centers, the larger the interaction between threads and so the
larger the separation between frequencies. The frequency of
collective kink modes is almost identical to the individual kink
frequency for a distance between threads larger than 6 or 7 radii.
Therefore, we expect the collective behavior of oscillations to
be stronger for smaller distances. Since the present investigation
is focused on the collective behavior of oscillations, we consider
in the following sections small enough distances in order to be
in the collective regime. For larger distances, the interaction
between threads is much weaker and we expect oscillations to
be almost individual. On the other hand, Figure 4(b) shows the
ratio of the damping time to the period of the four kink modes as
a function of d. We see that the damping times are between 4 and
7 orders of magnitude larger than their corresponding periods.
Therefore, dissipation by nonadiabatic mechanisms cannot be
responsible for the observed damping times of transverse thread
oscillations, as was pointed out in Paper I. Recently, Arregui
et al. (2008) found that the mechanism of resonant absorption
can provide kink mode damping times compatible with those
observed.

Regarding slow modes, Figure 5(a) displays the ratio of the
real part of the frequency of the Sz and Az solutions to the
frequency of the individual slow mode, ωs (from Paper I).
One can see that the frequencies of the Sz and Az modes are
almost identical to the individual slow mode frequency, and
so the strength of the interaction is almost independent of the
distance between cylinders. This is consistent with the fact
that transverse motions (responsible for the interaction between
threads) are not significant for slowlike modes in comparison
with their longitudinal motions. Therefore, the Sz and Az modes
essentially behave as individual slow modes, contrary to kink
modes, which display a more significant collective behavior.
Finally, Figure 5(b) shows τD/P corresponding to the Sz and Az
solutions versus d. One sees that both slow modes are efficiently
attenuated by nonadiabatic mechanisms, with τD/P ≈ 5, which
is in agreement with previous studies Soler et al. (2007, 2008)
and consistent with observations.

3.1.2. Effect of Steady Mass Flows on the Collective Behavior of Wave
Modes

The aim of the present section is to assess the effect of flows on
the behavior of collective modes. With no loss of generality, we
assume no flow in the corona, i.e., Uc = 0. On the other hand,
the flow velocities in both cylinders, namely U1 and U2, are
free parameters. We vary these flow velocities between −30 km
s−1 and 30 km s−1, which correspond to the range of typically
observed flow velocities in filament threads (e.g., Lin et al.
2003). These flow velocities are below the critical value that
determines the apparition of the Kelvin–Helmholtz instability
(see details in Holzwarth et al. 2007). In our configuration, a
positive flow velocity means that the mass is flowing toward the
positive z-direction, whereas the contrary is for negative flow
velocities. From Paper I (see also Terra-Homem et al. 2003)
we know that the symmetry between waves whose propagation
is parallel (ωR > 0) or antiparallel (ωR < 0) with respect to
magnetic field lines is broken by the presence of flows. Hence,
we must take into account the direction of wave propagation
in order to perform a correct description of the wave behavior.
Following Paper I, we call parallel waves those solutions with
ωR > 0, while antiparallel waves are solutions with ωR < 0.

We begin this investigation with transverse modes. First, we
assume U1 = 20 km s−1 and study the behavior of the oscillatory
frequency when U2 varies (see Figure 6). Since frequencies are
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Figure 2. Real part of the total pressure perturbation field (contour plot in arbitrary units) and the transverse Lagrangian displacement vector field (arrows) plotted in
the (x, y)-plane corresponding to the wave modes (a) Sx, (b) Ax, (c) Sy, (d) Ay, (e) Sz, and (f) Az in the absence of flows for a separation between threads d = 4a and a
longitudinal wavenumber kza = 10−2. The location of prominence threads is denoted by dotted circles.

(A color version of this figure is available in the online journal.)

almost degenerate and, therefore, almost indiscernible if they
are plotted together, we use the notation of van Doorsselaere
et al. (2008) and call low-frequency modes the Sx and Ay solu-
tions, while high-frequency modes refer to Ax and Sy solutions.
In addition, we restrict ourselves to parallel propagation be-
cause the argumentation can be easily extended to antiparallel
waves. To understand the asymptotic behavior of frequencies in
Figure 6, we define the following Doppler-shifted individual
kink frequencies:

Ωk1 = ωk + U1kz, (16)

Ωk2 = ωk + U2kz. (17)

Since U1 is fixed, Ωk1 is a horizontal line in Figure 6, whereas
Ωk2 is linear with U2.

Three interesting situations have been pointed by means of
small letters from a to c in Figure 6. Each of these letters also
corresponds to a panel of Figure 7 in which the total pressure
perturbation field of the Sx mode is plotted. The three different
situations are commented in detail next (remember that in all
cases U1 = 20 km s−1).

1. U2 =−10 km s−1 (U2 < U1). This corresponds to a
situation of counterstreaming flows. From Figure 6 we
see that the frequency of low-frequency modes is close
to Ωk2, whereas that of high-frequency solutions is near
Ωk1. Thus, these solutions do not interact with each other
and low-frequency (high-frequency) solutions are related
to individual oscillations of the second (first) thread. This
is verified by looking at the total pressure perturbation field
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(a) (b) (c)

(d) (e) (f)

Figure 3. Cut at y = 0, z = 0 of the real parts (in arbitrary units) of the Cartesian components of the Lagrangian displacement: ξx (solid line), ξy (dotted line), and
ξz (dashed line), corresponding to the wave modes (a) Sx, (b) Ax, (c) Sy, (d) Ay, (e) Sz, and (f) Az for the same conditions of Figure 2. The shaded regions show the
location of threads. Note that neither ξy nor ξz is continuous at the edges of threads.

(a)

(b)

Figure 4. (a) Ratio of the real part of frequency, ωR, of the Sx (solid line), Ax
(dotted line), Sy (triangles), and Ay (diamonds) wave modes to the frequency of
the individual kink mode, ωk , as a function of the distance between centers. (b)
Ratio of the damping time to the period vs. the distance between centers. Line
styles are the same as in panel (a).

in Figure 7(a), which shows that only the second thread is
significantly perturbed. Therefore, for an external observer
this situation corresponds in practice to an individual thread
oscillation.

2. U2 = 20 km s−1 (U2 = U1). The flow velocities and their
directions are equal in both threads. In such a situation,

(a)

(b)

Figure 5. (a) Ratio of the real part of frequency, ωR, of the Sz (solid line) and
Az (dotted line) wave modes to the frequency of the individual slow mode, ωs ,
as a function of the distance between centers. (b) Ratio of the damping time
to the period vs. the distance between centers. Line styles are the same as in
panel (a).

low- and high-frequency modes couple. At the coupling,
an avoided crossing of the solid and dashed lines is seen
in Figure 6. Because of this coupling solutions are related
no more to oscillations of an individual thread but they are
now collective and, for this reason, Figure 7(b) shows a
significant pressure perturbation in both threads.
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Figure 6. Ratio of the real part of the frequency, ωR, to the individual kink
frequency, ωk , as a function of U2 for U1 = 20 km s−1. The solid line
corresponds to parallel low-frequency modes (Sx and Ay) while the dashed
line corresponds to parallel high-frequency solutions (Ax and Sy). Dotted lines
correspond to the Doppler-shifted individual kink frequencies of the threads,
Ωk1 and Ωk2. The small letters next to the solid line refer to particular situations
studied in the text.

3. U2 = 27 km s−1 (U2 > U1). This case is the opposite
of situation 1. Therefore, in practice the present situation
corresponds again to an individual thread oscillation.

Our argumentation is supported by Figure 8, which displays
the amplitude of the transverse Lagrangian displacement, ξ⊥, at
the center of the second thread as a function of U2, for parallel
and antiparallel kinklike waves. The displacement amplitude at
the center of the first thread is always set equal to unity. The
three previously commented situations have been pointed again
in Figure 8. We clearly see that the displacement amplitude
is only comparable in both threads, and so their dynamics is
collective, when their flow velocities are similar.

Next we turn our attention to slow modes. The behavior of
the Sz and Az modes is like that of low- and high-frequency
kinklike solutions, so we comment them in short for the sake of
simplicity. Sz and Az solutions can only be considered collective
when the flow velocity is the same in both threads because,
in such a case, the Sz and Az modes couple. If different flows
within the threads are considered, the Sz and Az slow modes lose
their collective aspect and their frequencies are very close to the
Doppler-shifted individual slow frequencies,

Ωs1 = ωs + U1kz, (18)

Ωs2 = ωs + U2kz. (19)

Then, the Sz and Az solutions behave like individual slow modes.
It is worth mentioning that the coupling between slow modes is
much more sensible to the flow velocities in comparison with
fast modes, and the Sz and Az solutions quickly decouple if U1
and U2 slightly differ. An example of this behavior is seen in
Figure 9, which displays the total pressure perturbation field
of the Az mode for U1 − U2 = 10−3 km s−1. Although the
difference of the flow velocities is insignificant, one can see that
in this situation the Az mode essentially behaves as the individual
slow mode of the second thread.

The main idea behind these results is that fast or slow wave
modes with a collective appearance (i.e., modes with a similar
displacement amplitude within all threads) are only possible
when the Doppler-shifted individual kink (Equations (16) and
(17)) or slow (Equations (18) and (19)) frequencies are similar
in both threads. In a system of identical threads, this can only
be achieved by considering the same flow velocities within all
threads, since all of them have the same individual kink and
slow frequencies. However, if threads with different physical
properties are considered (i.e., different individual frequencies),
it is possible that the coupling may occur for different flow
velocities. This is explored in the next section.

3.2. Configuration of Two Threads with Different Physical
Properties

Here we consider a system of two nonidentical threads
and focus first on kink modes. From Section 3.1 we expect
that collective kink motions occur when the Doppler-shifted
individual kink frequencies of both threads coincide. The
relation between flow velocities U1 and U2 for which the
coupling takes place can be easily estimated from the equation,

ωk1 + U1kz ≈ ωk2 + U2kz. (20)

Note that the individual kink frequency of each thread is
different, i.e., ωk1 �= ωk2. Then, the relation between flow
velocities at the coupling is,

U1 − U2 ≈ ωk2 − ωk1

kz

. (21)

This last expression can be simplified by considering the
approximate expression for the kink frequency in the long-
wavelength limit,

ωki ≈ ±
√

2

1 + ρc/ρi

vAikz ≈ ±
√

2 vAikz, (22)

(a) (b) (c)

Figure 7. Real part of the total pressure perturbation field (contour plot in arbitrary units) and the transverse Lagrangian displacement vector field (arrows) plotted in
the (x, y)-plane corresponding to the parallel Sx mode for (a) U2 = −10 km s−1, (b) U2 = 20 km s−1, and (c) U2 = 27 km s−1. In all cases U1 = 20 km s−1.

(A color version of this figure is available in the online journal.)
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Figure 8. Amplitude (in arbitrary units) of the transverse Lagrangian displace-
ment, ξ⊥, at the center of the second thread as a function of U2. The amplitude
displacement in the first thread center is fixed to unity (dotted line) and the flow
velocity is Ul = 20 km s−1. Solid lines correspond to low-frequency kink modes
(Sx and Ay), while dashed lines correspond to high-frequency kink solutions
(Ax and Sy). Lines without symbols are for parallel waves whereas diamonds
indicate antiparallel propagation. Small letters refer to the particular situations
discussed in the text.

Figure 9. Real part of the total pressure perturbation field plotted in the (x, y)-
plane corresponding to the parallel Az slow mode for a difference between flow
velocities of U1 − U2 = 10−3 km s−1.

(A color version of this figure is available in the online journal.)

for i = 1, 2, where the + sign is for parallel waves and the −
sign is for antiparallel propagation. Then, one finally obtains

U1 − U2 ≈ ±
√

2 (vA2 − vA1) , (23)

where the meaning of the + and − signs is the same as before.
In the case of identical threads, vA1 = vA2 and so U1 − U2 = 0.
Thus the flow velocity must be the same in both threads to
obtain collective motions, as we concluded in Section 3.1. An
equivalent analysis can be performed for slow modes and one
obtains

U1 − U2 ≈ ± (cs2 − cs1) . (24)

In general, the coupling between slow modes occurs at different
flow velocities than the coupling between kink modes. This
makes the simultaneous existence of collective slow and kink
solutions in systems of nonidentical threads difficult.

Figure 10. Same as Figure 6 but for the particular configuration studied in
Section 3.2.

Next, we assume a particular configuration of two noniden-
tical threads in order to verify the later argumentation. Thread
radii are a1 = 30 km and a2 = 45 km, whereas their physi-
cal properties are T1 = 8000 K, ρ1 = 5 × 10−11 kg m−3, and
T2 = 12000 K, ρ2 = 3.33 × 10−11 kg m−3. Coronal conditions
are those taken in Section 3.1 (i.e., Tc = 106 K, ρc = 2.5 ×
10−13 kg m−3). The magnetic field strength is 5 G everywhere
and the distance between the thread centers is d = 120 km.
We assume U1 = 10 km s−1. In the present case, also four
kinklike solutions are present, which are grouped in two almost
degenerate couples. For this reason, we again refer to them as
low- and high-frequency kink solutions. Their frequency as a
function of U2 is displayed in Figure 10. At first sight, we see that
solutions couple for a particular value of U2, as expected. Apply-
ing Equation (23), and considering that vA1 = 63.08 km s−1 and
vA2 = 77.29 km s−1, we obtain U1 −U2 ≈ ±20.10 km s−1, and
since U1 = 10 km s−1, we get U2 ≈ −10.10 km s−1 for parallel
propagation. We see that the approximate value of U2 obtained
from Equation (23) is in good agreement with Figure 10. In addi-
tion, we obtain that for parallel propagation collective dynamics
appear in a situation of counterstreaming (opposite) flows. This
result is of special relevance because counterstreaming flows
have been detected in prominences (Zirker et al. 1998; Lin et al.
2003) and might play a crucial role in the collective behavior
of oscillations. On the contrary, in the antiparallel propagation
case we obtain U2 ≈ 30.10 km s−1 from Equation (23), and so
both flows are in the same direction and quite a large value of
U2 is obtained in comparison with the parallel propagation case.

Regarding slow modes, considering that cs1 = 11.76 km s−1

and cs2 = 14.40 km s−1, Equation (24) gives U2 ≈ 7.36 km s−1

for parallel propagation and U2 ≈ 12.64 km s−1 for antiparallel
waves. Note that in our particular example the flow velocities
needed for the coupling situation are realistic and within the
range of typically observed velocities. However, if threads with
very different physical properties and, therefore, with very
different Alfvén and sound speeds are considered, the coupling
flow velocities could be larger than the observed values. This
means that the conditions necessary for collective oscillations
of systems of threads with very different temperatures and/or
densities may not be realistic in the context of solar prominences.

4. CONCLUSION

In this work, we have assessed the effect of mass flows on the
collective behavior of slow and fast kink magnetosonic wave
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modes in systems of prominence threads. We have seen that
the relation between the individual Alfvén (sound) speed of
threads is the relevant parameter which determines whether the
behavior of kink (slow) modes is collective or individual. In
the absence of flows and when the Alfvén speeds of threads
are similar, kink modes are of collective type. On the contrary,
perturbations are confined within an individual thread if the
Alfvén speeds differ. In the case of slow modes, the conclusion
is equivalent but replacing the Alfvén speeds by the sound
speeds of threads. On the other hand, when flows are present
in the equilibrium, one can find again collective motions even
in systems of nonidentical threads by considering appropriate
flow velocities. These velocities are within the observed values
if threads with not too different temperatures and densities
are assumed. However, since the flow velocities required for
collective oscillations must take very particular values, such a
special situation may rarely occur in real prominences.

Therefore, if coherent oscillations of groups of threads are ob-
served in prominences (e.g., Lin et al. 2007), we conclude that
either the physical properties and flow velocities of all oscillat-
ing threads are quite similar or, if they have different properties,
the flow velocities within threads are the appropriate ones to
allow collective motions. From our point of view, the first op-
tion is the most probable one since the flow velocities required
in the second case correspond to a very peculiar situation. This
conclusion has important repercussions for future prominence
seismological applications, in the sense that if collective oscilla-
tions are observed in large areas of a prominence, threads in such
regions should possess very similar temperatures, densities, and
magnetic field strengths

Here, we have only considered two-thread systems, but the
method can be applied to an arbitrary multithread configura-
tion. So, the model developed here could be used to perform
seismological studies of large ensembles of prominence threads
if future observations provide with positions and physical pa-
rameters of such systems.
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