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ABSTRACT

This paper provides a theory of using Liouville’s theorem to map the anisotropy of TeV cosmic rays seen at Earth
using the particle distribution function in the local interstellar medium (LISM). The ultimate source of cosmic
ray anisotropy is the energy, pitch angle, and spatial dependence of the cosmic ray distribution function in the
LISM. Because young nearby cosmic ray sources can make a special contribution to the cosmic ray anisotropy, the
anisotropy depends on the source age, distance and magnetic connection, and particle diffusion of these cosmic rays,
all of which make the anisotropy sensitive to the particle energy. When mapped through the magnetic and electric
field of a magnetohydrodynamic model heliosphere, the large-scale dipolar and bidirectional interstellar anisotropy
patterns become distorted if they are seen from Earth, resulting in many small structures in the observations. Best
fits to cosmic ray anisotropy measurements have allowed us to estimate the particle density gradient and pitch angle
anisotropies in the LISM. It is found that the heliotail, hydrogen deflection plane, and the plane perpendicular to the
LISM magnetic field play a special role in distorting cosmic ray anisotropy. These features can lead to an accurate
determination of the LISM magnetic field direction and polarity. The effects of solar cycle variation, the Sun’s
coronal magnetic field, and turbulence in the LISM and heliospheric magnetic fields are minor but clearly visible at
a level roughly equal to a fraction of the overall anisotropy amplitude. The heliospheric influence becomes stronger
at lower energies. Below 1 TeV, the anisotropy is dominated by small-scale patterns produced by disturbances in
the heliosphere.

Key words: cosmic rays – ISM: magnetic fields – Sun: heliosphere

Online-only material: color figures

1. INTRODUCTION

Recently, a great wealth of information about the directional
variation (which is commonly referred to as anisotropy) in
the flux of cosmic rays arriving at Earth in the TeV to PeV
energy range has been obtained by quite a number of air
shower experiments. Among those that have achieved excellent
data quality with large event statistics are Tibet (Amenomori
et al. 2006, 2010) Milagro (Abdo et al. 2008, 2009), Super-
Kamiokande (Guilian et al. 2007), IceCube/EAS-Top (Abbasi
et al. 2010, 2011, 2012), and ARGO-YGB (Di Sciascio et al.
2012). The observational results are quite surprising and, to
some extent, confusing. Although there is a general large-scale
anisotropy pattern with an amplitude of the order of 10−3,
the data do not seem to fit any standard diffusion model of
cosmic ray propagation through the interstellar medium with a
typical magnetic field of a few μG and a large isotropic diffusion
coefficient of ∼1028 cm2 s−1. The Compton–Getting effect due
to the motion of the heliosphere relative to the local interstellar
medium (LISM) is almost completely invisible. The phase of
the large-scale anisotropy pattern shifts between 20 TeV and
400 TeV (Abbasi et al. 2012), which has clearly ruled out the
theory that the Compton–Getting effect is a major source of
the anisotropy. A more surprising feature is that there is clear
evidence for small-scale structures of tens of degrees in angular
size in the anisotropy data. Small regions of enhanced cosmic
ray flux are called hot spots in some reports (e.g., Abdo et al.
2008). The amplitude of the small-scale anisotropy is roughly
a fraction of the large-scale anisotropy, but the details of the
small-scale anisotropy pattern are quite energy dependent and,
to some extent, time dependent as well (e.g., Amenomori et al.
2006).

The source of these anisotropies is unknown. According to
the standard diffusion theory of charged particles gyrating in
a large-scale magnetic field, we would get a dipole anisotropy
pattern regardless of whether or not there are multiple contribu-
tions from the Compton–Getting effect, diffusion, or the density
gradient. With a more elaborated pitch angle diffusion theory,
one would only get hot spots in the direction parallel or antipar-
allel to the magnetic field. Even if the large-scale magnetic field
in the LISM is not uniform as suggested by Drury & Aharonian
(2008), the focusing effect of the magnetic mirror would only
produce a bidirectional anisotropy along the magnetic field. To
overcome these difficulties, new theories beyond the standard
diffusion theory have been proposed. Giacinti & Sigl (2012)
argued that small-scale anisotropy can arise from scattering on
the local magnetic field turbulence structures combined with the
presence of a large-scale anisotropy. The apparent association
of cosmic ray intensity enhancement with the heliotail has led
to the suggestion that particle acceleration through magnetic
reconnection in the heliotail might be responsible (Lazarian &
Desiati 2010). On a similar note, Drury (2013) proposed that
the electric field in the heliosphere might accelerate or deceler-
ate cosmic rays to produce the small-scale anisotropy. Desiati
& Lazarian (2013) argued that small structures of cosmic ray
anisotropy might be produced from large-scale dipole interstel-
lar anisotropy via perturbation from heliopsheric fields and in-
terstellar magnetic turbulence within the particle mean free path.
More recently, Schwadron et al. (2014) calculated some influ-
ence from the outer heliosheath magnetic field with constraints
from IBEX observations of the energetic neutral atom (ENA)
emission ribbon, but their work only covers limited aspects of
all possible contributions. Even more fascinating, Kotera et al.
(2013) speculated that the anisotropy might be due to neutral

1

http://dx.doi.org/10.1088/0004-637X/790/1/5
mailto:mzhang@fit.edu


The Astrophysical Journal, 790:5 (17pp), 2014 July 20 Zhang, Zuo, & Pogorelov

quark matter lumps of strangelets, which could be produced
through interactions in molecular clouds.

While some of the above suggested theories are worth further
exploration or detailed calculation, this paper concentrates
on an investigation of the effect due to the presence of the
heliosphere. The gyroradius of a particle with a momentum p
and charge q in the magnetic field B is ρg = p/(qB). For
1 TeV protons in a typical 3 μG interstellar magnetic field, the
gyroradius is only 74 AU. Our heliosphere is much bigger than
that in all directions, and the heliotail might extend to several
thousand AU. Drastically different heliospheric magnetic fields
can significantly alter the trajectories of cosmic rays of up to
PeV energy. Therefore, we expect some heliospheric distortion
to the anisotropy pattern that would be seen in the LISM without
heliospheric influence. We apply Liouville’s theorem to map the
cosmic ray distribution function from the local interstellar space
to Earth at 1 AU from the Sun. The trajectories of cosmic rays
are calculated from the electric and magnetic fields obtained
by a magnetohydrodynamic (MHD) model simulation of the
heliosphere.

2. THEORY

2.1. Principle of Flux Mapping

Anisotropy measures the directional variation of differential
cosmic ray flux J in terms of the number of particles per unit
area, solid angle, energy interval, and time interval. It is directly
related to the particle distribution function f at the observer’s
location ro through:

J (ro, po) = p2
of (ro, po), (1)

where po is the particle momentum in the observer’s own
reference frame and po is its magnitude. Since we only care
about the directional variation at a fixed particle energy or energy
interval, the anisotropy of cosmic ray flux is just the directional
variation of the particle distribution function in the observer’s
reference frame.

According to Liouville’s theorem, the multi-particle distribu-
tion function of an ensemble is constant along the trajectory of
a Hamiltonian canonical dynamical system. For space plasma,
such as cosmic rays, we only consider the one-body distribu-
tion function, which is commonly referred to as the distribution
function. Its evolution obeys the Boltzmann–Vlasov equation.
The solution to it is still Liouville’s theorem, but this time the
distribution function is constant along the trajectory of a single
particle. If the total electric and magnetic fields are given so
that the particle trajectory can be calculated deterministically,
we can the map cosmic ray distribution function at Earth to the
far enough interstellar space where the cosmic ray distribution
function is undisturbed by the presence of the heliosphere, i.e.,

f (ro, po) = f (r, p), (2)

where r and p are the location and momentum vectors anywhere
along the trajectory of a particle starting at ro and po. Note that
the particle distribution function is conserved upon transforma-
tion of the reference frame, so p and po do not have to be in the
same reference frame as long as the momenta in different refer-
ence frames are related through a proper Lorentz transformation
and the motion obeys Hamilton’s equations.

In space plasma, there are always fast (in both time and spatial
scales) varying components in the electric and magnetic fields
commonly known as waves or turbulence, which are hard to

determine at any given instant. When turbulence is present, the
cosmic ray trajectories will exhibit a stochastic nature. If the
perturbative force is small enough, an applicable quasilinear
theory will always lead to particle diffusion in the phase space,
in which the particle distribution function is governed by a
Fokker–Planck diffusion equation. The solution to the diffusion
equation can be expressed as the expectation value of the source
particle distribution function sampled by stochastic trajectories,
which is a superposition of a deterministic process governed
by the Lorentz force in the average fields and a diffusion
process driven by fluctuating fields (see, e.g., Zhang 1999).
For 1 TeV cosmic ray protons, the scattering time by random
electric and magnetic fields in the interstellar space, which is
possibly on the order of 10 yr to have a mean free path of
3 pc, is very long compared to its gyro period of 2.7 days in
a 3 μG magnetic field. Within the time on the order of a few
days for the particle to traverse through the heliosphere, the
particle trajectories do not deviate very much through scattering
by magnetic field fluctuation. Therefore, we can almost map
the distribution function deterministically by sampling just one
particle trajectory.

Equation (2) forms the basis for calculating cosmic ray
anisotropy observed at Earth. It also tells us that the anisotropy
has to come from the anisotropy that already exists in the LISM.
In other words, if the distribution function in the LISM were
a constant, there would be no anisotropy at all. Therefore, we
must analyze the possible sources of large-scale anisotropy in
the LISM.

2.2. Sources of Anisotropy

The gyroradius of TeV cosmic rays is quite small compared
to the scale size of the local interstellar magnetic field, which is
tens or maybe hundreds of parsecs. These cosmic rays belong to
a magnetized plasma, for which the theory of anisotropy is quite
different from that of an unmagnetized particle population. In
the limit of low scattering, if the magnetic field is not curved or
inhomogeneous enough on the scale of a particle gyroradius, we
expect that there will be a gyrotropic symmetry in the particle
distribution function in the plasma reference frame where the
electric field is zero. In the diffusion approximation that requires
small anisotropy, the particle distribution function in the local
interstellar magnetic field can be expressed as (Schlickeiser
2002):

f (r, p) = F (Rg, p) + δf (Rg, p, μ), (3)

where p is the particle momentum in the reference frame of
the local interstellar magnetic field, p is its magnitude, μ is
the cosine of particle pitch angle relative to the magnetic field
direction, and Rg is the guiding center of the particle located
at r. F (Rg, p) is an isotropic main component of cosmic ray
distribution function. δf � F is the pitch angle dependent
part of the distribution function that comes from the diffusive
perturbation. The variation in Equation (3) as a function of all
the variables there constitutes the source of anisotropy.

First, the cosmic ray distribution function is energy or
momentum dependent, which can be approximately written by
a power law, F ∝ p−s with s ≈ 4.75. When the interstellar
magnetic field is moving relative to an observer at a velocity
of Vism (Vism � c), the distribution function in the observer’s
reference frame is

f (po) = F (p) = F (|po − γm0Vism|)
≈ F (po)

(
1 +

sVism · p̂o

v

)
. (4)
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We have used a Lorentz transform of momentum p =
po − γm0Vism in the non-relativistic regime (Vism � c).
The particle has a rest mass of m0 and a Lorentz factor of
γ . A Taylor expansion to the first order yields the familiar term
of Compton–Getting dipole anisotropy sVism · p̂o/v, where v is
the particle speed v = po/(γm0) and p̂o is the direction of the
incoming particle to the observer.

It can be seen that Compton–Getting anisotropy arises from
the variation of the particle distribution function F (p) due to the
angular dependence of particle momentum in the interstellar
magnetic field reference frame p when the momentum is
transformed from the observer’s reference frame. We do not have
to use the Taylor expansion to figure out the Compton–Getting
anisotropy. Instead, we can directly calculate the function F (p)
as the Lorentz transformation of momentum is performed for all
different directions of p̂o. This anisotropy determination method
is more accurate because Vism does not have to be much less
than v for non-relativistic particles, which is required in the
first order Taylor expansion. In the presence of the heliosphere,
the transfer of particle momentum observed at Earth to the
momentum in the interstellar magnetic field must undergo
an additional propagation through the electric and magnetic
fields of the heliosphere. The motional electric field of the
heliospheric plasma can change particle momentum as pointed
out by Drury (2013) and particle acceleration inside magnetic
reconnection sites can do the same (Lazarian & Desiati 2010).
After the particle momentum is mapped to the interstellar space
in the interstellar magnetic field reference frame, the change
of momentum not only contains the effect of reference frame
transformation but also the effect of particle acceleration. All
these effects can be automatically included in the calculation of
F (p) in Equation (4).

The second source of cosmic ray anisotropy comes from the
spatial dependence of F (Rg). If there is a spatial gradient of
cosmic ray density, the flux of particles coming from different
directions will be different because of the displacement of their
guiding centers. Mathematically,

f (r, p) = F (Rg, p) = F (r − ρg, p)

≈ F (r) [1 + (ρgb̂ism × ∇ ln F ) · p̂], (5)

where we have used the gyroradius vector ρg = b̂ism×p/(qBism)
in the interstellar magnetic field Bism and a Taylor expansion to
the first order of ρg . The dipole anisotropy (ρgb̂ism×∇ ln F )·p̂ is
commonly called b cross gradient anisotropy, or it is sometimes
called drift anisotropy, although the guiding center does not drift
in a uniform magnetic field. Like Compton–Getting anisotropy,
the calculation of b cross gradient anisotropy can be done
by evaluating the distribution function at the guiding center
F (Rg) = F (r − ρg). This calculation method is more accurate
than the Taylor expansion approximation and can also handle the
perturbation of particle trajectory by the heliospheric magnetic
field. The third source of anisotropy is the angular dependence
in δf , which could be a function of gyrophase as well as pitch
angle. Analysis of strongly magnetized plasma by Schlickeiser
(2002) showed that the amplitude of pitch angle dependence is
much larger than gyrophase dependence in a uniform averaged
magnetic field. This point will be further elaborated later when
we discuss the condition of the LISM. Under the diffusion
approximation (Schlickeiser 2002), we can write

δf = −v

2

∂F

∂z

∫ μ

0
dμ

1 − μ2

Dμμ(μ)
, (6)

where z is the coordinate of position along the magnetic field
direction and Dμμ is the pitch angle diffusion coefficient. When
the dominant pitch angle anisotropy is the first order term
of μ due to a uniform angular (per degree) scattering rate with
Dμμ = D0(1 − μ2) (D0 is a constant), the pitch angle anisotropy
can be written in terms of parallel mean free path λ|| as

δf = −λ||
∂F

∂z
μ, with λ|| = 3v

8

∫ 1

−1
dμ

(1 − μ2)2

Dμμ(μ)
, (7)

which is consistent with the dipole of diffusion anisotropy in
the parallel direction. In general, the pitch angle anisotropy
in the diffusion approximation of magnetized plasma does
not have to be a dipole if the angular (per degree) scattering
rate Dμμ/(1 − μ2) is not uniform. If the particles have not
been sufficiently scattered after they are released from a point
source, the pitch angle anisotropy can be beam-like or cone-
like depending on the age since release. Multiple sources on
both ends of the magnetic field line or particle reflection by
magnetic mirrors can give rise to a bidirectional anisotropy.
In other words, the pitch angle distribution function δf can
have quite a number of possibilities even under the diffusion
approximation. These possibilities will be investigated as input
parameters in a harmonic expansion.

2.3. Cosmic Ray Anisotropy in the LISM

We know the cosmic ray spectrum and the solar system veloc-
ity relative to the LISM well enough to accurately figure out the
amount of Compton–Getting anisotropy. At the measured speed
of 26 km s−1, the amplitude of Compton–Getting anisotropy
should be around 4 × 10−4, which is much lower than the ob-
served anisotropy in the TeV cosmic ray flux. Furthermore, the
direction of cosmic ray anisotropy is energy dependent and does
not agree with the flow direction of the interstellar medium. All
these factors indicate that anisotropies due to the cosmic ray
density gradient, either through particle diffusion or the b cross
gradient, are bigger contributors to the cosmic ray anisotropy.
Unfortunately, we do not know anything about the spatial dis-
tribution of cosmic ray density in the LISM which is necessary
in order to calculate diffusion or the b cross gradient anisotropy.
We then have to rely on models to predict the possible levels
for these anisotropies. It is found that the details of cosmic ray
spatial distribution strongly depend on the past source of cosmic
rays and the mode of cosmic ray propagation through the inter-
stellar magnetic field. Cosmic ray propagation models assuming
global continuous source injection and a uniform and isotropic
diffusion in a completely randomized Galactic magnetic field
often overpredicts the amount of cosmic ray anisotropy even if
only for the dipole pattern (Strong et al. 2007). A good alterna-
tive is that one or a few nearby past supernova remnants make
a significant contribution to the total flux of cosmic rays we
see in the solar system. Model calculation (Ptuskin et al. 2006)
with multiple random impulsive point sources shows that, in
this scenario, cosmic ray enhancements from nearby supernova
sources are sensitive to the level of diffusion coefficient and the
age and distance of the source. This might be able to explain
why the cosmic ray anisotropy behaves differently in different
energy bands.

In models that assume anisotropic diffusion, even though each
nearby point source produces a dipole anisotropy in the direction
of the source, the total anisotropy is still a dipole no matter how
many significant sources there are. In addition, since the mean
free path used in these diffusion models is much larger than the
particle gyroradius, the b cross gradient becomes negligible.
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par = 1E+28 cm
2
/s, per/ par = 0.001, t-t1 = 1E+6 years

Figure 1. Cosmic ray intensity in the vicinity of a past supernova remnant.
It is shown in units of continuous and uniform cosmic ray background. The
contours indicate the ratio of local enhancement from the point source to the
total intensity.

(A color version of this figure is available in the online journal.)

However, several recent observations seem to indicate that
the magnetic field in the LISM up to tens of parsecs is not ran-
dom enough to warrant isotropic diffusion. The first piece of
evidence is from IBEX observations of a ribbon in the image of
ENAs emitted from the interstellar medium immediately outside
of the heliopause. The effective volume is perhaps a few tens to
hundreds of AU. It is found that the ribbon is organized along
the line of sight that is perpendicular to the local interstellar
magnetic field line (McComas et al. 2009; Heerikhuisen et al.
2010). If the interstellar magnetic field were random, we would
not have seen a thin ribbon organized by the magnetic field.
Model calculation of particle transport in the local interstellar
magnetic field suggests that the turbulence in the local interstel-
lar magnetic field must be quite low (Gamayunov et al. 2010).
The second piece of evidence is from measurements of the po-
larization of starlight. Frisch et al. (2010) compiled and analyzed
the polarization data from many stars within 40 pc. They found
that the large-scale magnetic field is well ordered and shows
little curvature. The direction of the average field is consistent
with the orientation of the IBEX ribbon and the fluctuation of
the field direction is less than 23◦, which probably includes
uncertainty of measurements. They concluded that the interstel-
lar magnetic field is relatively uniform over spatial scales of
8–200 pc.

If the interstellar magnetic field is well structured, we expect
cosmic ray diffusion to be highly anisotropic. In the heliospheric
magnetic field, although the turbulence energy is comparable to
the average magnetic field energy, namely (δB/B)2 ∼ 1, the
ratio of particle perpendicular diffusion to parallel diffusion
κ⊥/κ|| is of the order of just a few percent. The turbulence in the
local interstellar magnetic field is much weaker, as implied from
the level of fluctuation in the magnetic field direction derived by
Frisch et al. (2010). Thus, we argue that the ratio κ⊥/κ|| could be
lower, perhaps lower than 10−3, for the majority of cosmic rays
below PeV. In a magnetized plasma where scattering is weak,
the parallel and perpendicular diffusion are related by (Axford

1965; Jokipii 1966; Isenberg & Jokipii 1979),

κ⊥
κ||

=
(

1 +
κ2

||
κ2

A

)−1

, (8)

where κA = vρg/3 is usually called the antisymmetric element
of the diffusion tensor. Compared to the value of κA, the dif-
fusion coefficient typically used in the modeling of interstellar
propagation such as in, e.g., Strong et al. (2007) is much larger.
The diffusion is likely to be the result of parallel diffusion or
κ||/κA 
 1, so the κ⊥/κ|| must be small. Efforts investigating
cosmic ray interstellar propagation with anisotropic diffusion
have been undertaken recently to explain high-energy gamma
ray emissions (Nava & Gabici 2013; Giacinti et al. 2013) and
to study the possible variation of the cosmic ray spectrum in the
Galaxy (Effenberger et al. 2013). Here we employ anisotropy
diffusion to argue that b cross gradient anisotropy could be a
leading source of cosmic ray anisotropy.

Let us assume a nearby past supernova remnant makes a
significant contribution to the cosmic rays we measure in the
solar system in a particular energy band. The propagation from
this local source is through anisotropic diffusion in an ordered
magnetic field. For simplicity, we use a Cartesian coordinate
system, although the real magnetic field line could be curved
on a very large scale. The equation that governs that particle
distribution function from the point source can be written as

∂F1

∂t
= κ⊥

(
∂2F1

∂x2
+

∂2F1

∂y2

)
+ κ||

∂2F1

∂z2
+ N1δ(t − t1)δ(r − r1),

(9)
where the point source is injected at time t1 and location r1. The
solution to Equation (9) is

F1 = N1

[4π (t − t1)κ⊥][4π (t − t1)κ||]1/2

× exp

[
− (x − x1)2 + (y − y1)2

4κ⊥(t − t1)
− (z − z1)2

4κ||(t − t1)

]
. (10)

The gradient of cosmic rays from this local source is

∇ ln F1 = − x − x1

2κ⊥(t − t1)
î − y − y1

2κ⊥(t − t1)
ĵ− z − z1

2κ||(t − t1)
k̂. (11)

Assume that the rest of the supernova remnant sources in the
entire Galaxy form a continuous and uniform distribution Fc.
Roughly, Fc can be estimated with Fc = N1TresT

−1
1 /V), where

T −1
1 is the average supernova occurrence rate, Tres is the cosmic

ray residence time, and V is the volume of the Galaxy filled
with these cosmic rays. Figure 1 shows an example spatial
distribution of the total cosmic rays F = Fc + F1 normalized
by Fc. The contour lines are the ratio of F1/(Fc + F1). It
can be seen that the local enhancement of cosmic ray density
contributed from the nearby point source only appears within a
very elongated oval island. On most of the area of this island,
the cosmic ray density gradient, which is inversely proportional
to the distance between any two adjacent isointensity contours,
is much larger in the perpendicular direction than in the parallel
direction.

The dipole anisotropy vector from cosmic ray diffusion is

A1dif = −3κS · ∇ ln F1

v

F1

Fc + F1
= 3(r − r1)

2v(t − t1)

F1

Fc + F1
, (12)
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Figure 2. Amplitude of parallel (left) and perpendicular (right) diffusion anisotropy in the vicinity of a point source.

(A color version of this figure is available in the online journal.)

where κS is the symmetric diffusion tensor containing κ|| and
κ⊥. The diffusion anisotropy due to a single point source al-
ways points away from the point source. As anisotropy can only
become significant on the very elongated island of local en-
hancement due to the factor of F1/(Fc + F1) in Equation (12),
either the amplitude of diffusion anisotropy in the parallel direc-
tion is much larger than in the perpendicular direction (Figure 2)
in most areas of the oval island, or the total diffusion anisotropy
will be most likely to appear in the parallel direction—the far-
ther away, the larger until the factor of flux ratio F1/(Fc + F1)
becomes too small. This parallel diffusion anisotropy can be
expressed as pitch angle anisotropy using δf from Equation (6).

The dipole anisotropy vector from the b cross gradient in the
perpendicular direction is

A1b×g = ρgb̂×∇ ln F1
F1

Fc + F1
= −κA

κ⊥

3b̂ × (r − r1)

2v(t − t1)

F1

Fc + F1
.

(13)

Compared with the diffusion anisotropy in Equation (12), the
b cross gradient anisotropy is increased by a factor of κA/κ⊥
ratio in the perpendicular direction. This component could be
comparable to or even larger than the pitch angle anisotropy
in the parallel diffusion. Since the magnetic field strength and
direction in the LISM is more or less known, the cosmic ray
density gradient in the perpendicular direction is the major
unknown parameter for determining b cross gradient anisotropy.

Notice that both the diffusion anisotropy in Equation (12)
and b cross gradient anisotropy in Equation (13) are multiplied
by a factor of F1/(Fc + F1). Only when F1 is comparable
to or larger than Fc does the anisotropy from the local point
source contribution become important. It turns out that the ratio
F1/(Fc + F1) is sensitive to the particle diffusion coefficient and
the distance and age of the source. This behavior can be easily
seen in Figure 3. The diffusion coefficient is most likely to be
particle energy dependent. Cosmic rays measured in one energy
band in the solar system could contain a significant contribution

par = 1x10
28

 cm
2
/s

par = 4x10
28

 cm
2
/s

 par =0.25x10
28

 cm
2
/s

Figure 3. Temporal variations of cosmic ray intensity from a point source for
three different values of the diffusion coefficient. They illustrate how a local
enhancement from the point source comes and goes relative to a continuous
uniform background.

from one or a few sources, but in another energy band, the
cosmic ray local enhancement may come from another set of
sources. Therefore, we expect that cosmic ray anisotropy in the
LISM is quite energy dependent. The shift of phase in large-
scale anisotropy from 20 TeV to 400 TeV should seem natural
if the anisotropy contains a significant component of diffusion
or b cross gradient anisotropy.

The above demonstration of enhanced cosmic ray density
and anisotropy from a local nearby young source employs
an oversimplified Cartesian geometry. In reality, the Galactic
magnetic field on a scale larger than 10–100’s pc could be
curved or even tightly folded, particularly near supernova
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remnants. The interstellar magnetic turbulence could contain
high power at long wavelengths (Han et al. 2004) because
of relative motion of interstellar clouds or disturbances driven
by supernova explosions. In other words, magnetic field lines
can appear to be meandering over large scales. On the small
scale of the LISM, cosmic rays of these energies are still
strongly magnetized, but there is little turbulence power at the
wavelengths comparable to the particle gyro motion. In addition
to this, particle perpendicular diffusion due to scattering by the
turbulence is weak. As a result, cosmic rays tend to follow the
local magnetic field lines, exhibiting density enhancements in
the flux tube as a filament if it is connected to a recent source
nearby. The cosmic ray density gradient across magnetic flux
tubes is large, but perpendicular diffusion anisotropy is small
due to the particle’s inability to jump across field lines. When
coupled with the meandering geometry of the Galactic magnetic
field, cosmic rays on large scales may not necessarily appear
to be very anisotropically distributed as shown in Figure 1
because filaments of enhanced cosmic rays can fold together
(Giacinti et al. 2013). TeV gamma-ray observations by the
Hess experiment (Aharonian et al. 2006) showed that cosmic
rays are not very anisotropycally distributed around supernova
remnants, probably because field lines have been strongly
stirred by the supernova explosions. Therefore, while cosmic
ray perpendicular diffusion is weak on the scale of the LISM,
on large scales, cosmic ray transport may not be that anisotropic.
Similarly, as a consequence of these particle transport behaviors,
the cosmic ray density gradient in the LISM may be large due
to the presence of filaments, but on large scales, cosmic ray
distribution can be more uniform. The calculation of TeV cosmic
ray anisotropy seen by experiments on Earth involves only the
local cosmic ray distribution and particle transport behavior.
Evidence for these behaviors of particle transport in turbulent
magnetic fields of different scales has been observed in the
heliosphere where the solar energetic particles from small solar
flares tend to form sharp density discontinuities but the solar
energetic particles from large-size coronal mass ejections tend
to spread easily over solar longitude and latitude (Mazur et al.
2000).

Cosmic ray anisotropy in the LISM ultimately is the source
of the anisotropy we see at Earth even though the deflection
of the particle trajectory by the heliospheric magnetic field and
the acceleration by the heliospheric electric field can distort the
anisotropy. The distribution function as a function of particle
moment, pitch angle, and guiding center position in the LISM
become a boundary condition, which is needed to use Liouville’s
theorem to map the interstellar anisotropy to the anisotropy we
see at Earth. Let us write the interstellar cosmic ray distribution
function in a perturbation form as

f (r, p, μ) = F0p
−s[1 + ∇⊥ ln F · (Rg − R0)

+ A1||P1(μ) + A2||P2(μ)], (14)

where F0 is a constant value of f at a reference guiding center
R0 at the observer’s location, and P1(μ) and P2(μ) are the first
and second order Legendre polynomials of pitch angle cosine μ.
The rest constant parameters that govern the local interstellar
cosmic ray variation are the spectral slope s, the amplitude
and polarity of the dipole moment A1|| and the amplitude of
bidirectional anisotropy A2|| in the pitch angle dependence,
and the perpendicular gradient vector of cosmic ray density
∇⊥ ln F . We have neglected the parallel gradient because it is
expected to be much smaller than the perpendicular one, as
shown in Figure 1. The four parameters, A1||, A2||, and ∇⊥ ln F

(a 2D vector) could be slightly energy dependent, as cosmic
ray interstellar propagation is sensitive to diffusion coefficients,
local interstellar magnetic geometry, and the age and distance
of the local source.

2.4. Heliospheric Propagation

The propagation of TeV cosmic rays through the heliosphere
is almost deterministic because the particle scattering time by
the interstellar turbulence is much longer than the propagation
time. Their trajectory is governed by the Lorentz force

dp
dt

= q(E + v × B), (15)

where we only need to know the average electric E and magnetic
B fields everywhere the entire heliosphere and the surroundings.

We use a model of the outer heliosphere that is commonly
accepted to be among the most sophisticated models (e.g.,
Pogorelov et al. 2013 and references therein). This model and a
corresponding package of numerical codes supporting it (the
Multi-Scale FLUid-Kinetic Simulation Suite, MS-FLUKSS)
uses an ideal MHD treatment of ions and a kinetic (or multi-
fluid) description of neutral interstellar particles penetrating
into the heliosphere. It addresses the complexity of the charge-
exchange processes and coupling of the interstellar and helio-
spheric magnetic fields at the heliospheric interface. It has been
used to analyze the influence of the interstellar environment on
the heliospheric interface and has allowed us to investigate a
number of sophisticated solar-wind–interstellar-medium inter-
actions. This model was compared with the first IBEX mea-
surements (McComas et al. 2009) and reproduced the ENA rib-
bon (Heerikhuisen et al. 2010). The comparison has put a very
tight constraint on the direction of the local interstellar mag-
netic field outside of the heliopause (Heerikhuisen & Pogorelov
2011; Pogorelov et al. 2010, Pogorelov et al. 2011; Heerikhuisen
et al. 2014). However, only in situ measurements performed by
Voyager 1 (Burlaga & Ness 2014) can determine the exact po-
larity (Borovikov & Pogorelov 2014), provided that Voyager 1
is confirmed to have crossed the heliopause in 2012 August.

Figure 4 shows an example of magnetic field strength
in the meridional plane (Figure 4(B)) and equatorial plane
(Figure 4(A)), where the x-axis points toward the helionose
in the ecliptic equatorial plane and the z-axis is in the direction
of the north ecliptic pole, or approximately, the solar rotation
axis. The interstellar magnetic field at infinity is 3 μG with a
polar angle to the z-axis equal to 60◦ and an azimuth angle
of 342◦ to the x-axis (ecliptic latitude 30◦ and ecliptic longi-
tude 241◦; or declination 9◦ and right ascension 245◦). The
heliotail in which the magnetic field is much weaker than the
interstellar magnetic field could extend to a few thousand AU.
The heliotail will eventually collapse to a small section due to
the presence of the pressure from the interstellar neutral atom.
In addition, the interstellar magnetic field can gradually diffuse
into the tail, reaching a nearly uniform magnetic field there. In
this MHD simulation of the heliosphere, the outer boundary is
set at 1000 AU. We assume that the magnetic field beyond the
simulation box shown in Figure 4 is the undisturbed uniform in-
terstellar magnetic field. When cosmic ray particles propagate in
a magnetic field of nearly uniform interstellar field strength and
direction, their energy, pitch angle, and perpendicular guiding
center remain constant, so the result of flux mapping does not
need to specify where the interstellar boundary is as long as the
magnetic field has become close enough to the interstellar value
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Figure 4. Strength of the magnetic field in the solar equatorial (A) and meridional (B) planes.

(A color version of this figure is available in the online journal.)

and the particles will no longer gyrate back into the heliopsheric
influence.

Since this MHD heliosphere model run focuses on the
large-scale interaction between the solar wind and interstellar
medium, the simulation starts at 10 AU. The magnetic field close
to the Sun is very strong, although it decays quickly within a
few AU. The trajectories of TeV cosmic rays can be severely
affected by the solar magnetic field. Thus, we use the Parker
solar wind and heliospheric magnetic field model within 10 AU
of the Sun. The title angle of the heliospheric current sheet,
polarity of the solar magnetic field, and solar wind speed are
calculated by matching the inner boundary of the MHD run.
The azimuthal phase of the heliospheric current sheet tilt is also
derived from the boundary condition.

Among the model outputs of the MHD heliosphere simulation
are plasma velocity V and magnetic field B vectors. Since
the plasma obeys the laws of an ideal MHD system, which
is expected to be true everywhere except inside the tiny regions
(approximately ion inertia length) where magnetic reconnection
occurs, the electric field is to drive the plasma motion, i.e.,

E = −V × B. (16)

Although the force on cosmic rays from the electric field is
much weaker than the force by the magnetic field, the electric
field can change the energy of cosmic rays. This can alter the
behavior of Compton–Getting anisotropy.

The MHD model is run in the solar reference frame, so the
plasma velocity and calculated electric field are also in the solar
frame. For convenience, we also solve the Newton equation with
Lorentz force (15) in the solar reference frame. The momentum
of cosmic rays as measured at Earth first transformed into the
solar frame, which should be season dependent. However, if we
only investigate the yearly averaged anisotropy measurements,

the seasonal effect due to Earth’s motion around the Sun should
be mostly averaged out. Thus, for the purpose of comparing
with the yearly average of measurement, we run the model from
a stationary Earth at 1 AU. The trajectories of cosmic rays are
traced back in time until reaching the undisturbed interstellar
magnetic field. The momentum is then transformed into the
reference frame comoving with the LISM. The magnitude of
momentum, pitch angle, and position of guiding center in the
interstellar reference frame are used to calculate cosmic ray flux
using Equation (14). Some sample trajectories will be shown
later to aid in the understanding of some particular behaviors of
cosmic ray propagation when our anisotropy calculation results
are presented.

3. RESULTS

3.1. Compton–Getting Effect

The original Compton–Getting effect comes from the trans-
formation of the reference frame when an observer is moving
relative to an isotropic particle distribution in the plasma ref-
erence frame. Here in this paper, we expand Compton–Getting
anisotropy to include the effect of energy gain or loss from the
particle motion in the electric field of the solar wind and the
heliosheath.

Figure 5 shows a map of a normalized particle distri-
bution function (top) and its deviation from the original
Compton–Getting computation (bottom) as a function of the
right ascension α and declination δ in the celestial equatorial
coordinate system. This calculation is done for one frame snap-
shot of a time-dependent MHD heliosphere run, in which the
heliospheric current sheet tilts about 13.◦5 in a negative solar
magnetic polarity cycle. It roughly corresponds to a solar mini-
mum condition. The time is set when the Sun is in front of Earth
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Figure 5. Cosmic ray anisotropy induced by a combination of the
Compton–Getting effect and particle energy change during heliospheric prop-
agation (top) and its deviation from the standard Compton–Getting anisotropy
due to the motion of the heliosphere in the LISM (bottom). The solid sine curve
is the ecliptic plane. The dashed curve is the plane perpendicular to the local
interstellar magnetic Bism. The dash-dotted curve is the plane containing the
vectors of local interstellar magnetic field and interstellar flow, or in short, the
B − V plane.

(A color version of this figure is available in the online journal.)

toward the helionose and the phase of the heliopsheric current
sheet tilt at the Sun points toward approximately 300◦ longitude
in the xyz coordinates. The distribution is computed from the
final particle momentum in the interstellar medium reference
frame, pism, when the particle has completely escaped the outer
heliospheric boundary by more than one particle gyroradius.
The normalized distribution function is

f̃ (po, α, δ) =
(

pism

po

)−s

, (17)

where s = 4.75 is the slope of the cosmic ray distribution
function and po = 6 TeV/c is the arrival particle momentum
observed at Earth.

The Compton–Getting anisotropy of 6 TeV energy protons in
Figure 5 is shown in the stationary Earth frame. This angular
distribution (top panel) is dominated by a dipole derived from the
motion of the heliosphere relative to the LISM. Subtracting the
dipole distribution of the original Compton–Getting effect, we
get an angular distribution of the deviation (Δ Compton–Getting
anisotropy in the bottom panel), which is the result of energy
gain or loss when the particles propagate through the electric
field of the heliosphere. The maximum range of deviation is
set to 2.5 × 10−4 with a slight saturation of color occurring
in some of the areas. The effect of heliospheric influence is
obvious with the highest deviation occurring on a warped ring
slightly offset from the plane perpendicular to the unperturbed
LISM (the dashed line). In some parts of the ring, large deviation
splits into two bands, one of which has enhancement of cosmic
ray intensity while in the other, cosmic rays are depressed. The
magnitude of the deviation in the plane perpendicular to the
unperturbed local interstellar magnetic field can be comparable
to the amplitude of the original Compton–Getting anisotropy

∼4 × 10−4. In the direction near the helionose, Figure 5 shows
an effect from the magnetic field of the solar corona and inner
heliosphere. There are also a few regions of moderate levels
of deviation in the Compton–Getting anisotropy. These are the
result of particle drift across the surfaces of isoelectric potential
in the heliosphere.

3.2. Pitch Angle Anisotropy

The pitch angle dependence of the interstellar distribution
function can be distorted by particle propagation through the
heliospheric magnetic field. The distortion can be determined
by tracing the particle pitch angle cosine relative to the reference
frame of the interstellar magnetic field μism backward in time
until reaching its steady level in the uniform interstellar field.
The μism distribution is actually the particle pitch angle cosine
before it enters into the heliospheric influence. A map of μism
as a function of arrival declination and right ascension is shown
in the top panel of Figure 6(A). The cosmic ray pitch angle
anisotropy is just a simple function of the μism map, either in
the first order or second order Legendre polynomial. In the case
of the first order polynomial, the pitch angle anisotropy map is
just proportional to the μism subject to a proportional constant
A1|| known as the amplitude of unidirectional anisotropy.
Bidirectional pitch angle anisotropy is proportional to the
second order polynomial (3μism − 1)/2) subject to a constant
amplitude A2||.

As shown by Figure 6(A), the μism distribution is mostly a
dipole in the direction opposite to the uniform interstellar mag-
netic field. Subtracting out the dipole, we obtain a map of devi-
ation in the pitch angle cosine Δμism due to particle propagation
through the non-uniform field in the outer heliosheath and the
solar wind. Large deviations are seen on the warped ring offset
from the plane perpendicular to the unperturbed local interstellar
magnetic field. The level of the deviation in some areas is close
to 1 or −1, indicating the particles have reversed the direction
of its guiding center motion. The smaller deviation of μism from
the dipole can be seen in a few other areas, such as the Sun’s
direction (at the helionose). The bidirectional anisotropy and its
deviation from the original quadruple distribution are shown in
Figure 6(B). This time, the deviation becomes more obvious due
to the color scheme, particularly the double band structure of
the offset from the plane perpendicular to the unperturbed local
interstellar magnetic field shown in the top panel. Other areas
also display deviation when the scale range is slightly reduced.

3.3. B Cross Gradient Anisotropy

This anisotropy comes from the displacement particle guiding
center as a function of particle arrival direction. The result
is an inner product of the spatial gradient of cosmic ray
density ∇⊥ ln f and the displacement of the guiding center
d = Rg − R0. Usually, the cosmic ray density parallel to
the magnetic field is much smaller than in the perpendicular
direction due to larger parallel diffusion, so we do not compute
the parallel component of the guiding center displacement. Since
the gradient vector is a free parameter, it is better to show the
displacement vector in the direction perpendicular to the local
interstellar magnetic field. The perpendicular vector is divided
into two orthogonal components. The first component is along
a unit vector ĝ1, which points to the intersection between the
ecliptic plane and the plane perpendicular to the unperturbed
local interstellar magnetic field in the maps (declination −11◦
and right ascension 332◦). The other component finishes the
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Figure 6. Maps of the first (A) and second (B) Legendre order polynomials of the incoming particle pitch angle cosine in the interstellar medium μism and the
deviations from their values of the final pitch angle cosine at Earth.

(A color version of this figure is available in the online journal.)

Figure 7. Maps of perpendicular guiding center displacement along ĝ1 (A) and ĝ2 (B) and the difference from their respective displacements in a uniform interstellar
magnetic field.

(A color version of this figure is available in the online journal.)

right-hand coordinates with the local interstellar magnetic field
direction, i.e., ĝ2 = b̂ism × ĝ1. The results of two guiding center
displacement vector components and their deviation from their
dipole distribution in the uniform interstellar magnetic field are
shown in Figure 7.

The dipole anisotropy produced by the guiding center dis-
placement due to a unit density gradient ĝ1 points toward the
direction of their cross product (declination −75◦ and right as-
cension 192◦), which can barely be seen by the yellowish green
area in the top panel of Figure 7(A) to the color scale used. The

deviation of the guiding center displacement due to the non-
uniform heliospheric magnetic field is bigger than 1 gyroradius,
as shown in the bottom panel of Figure 6(A). Most of the guiding
center displacements are negative, indicating that the particles
drift toward the negative ĝ1 direction. The effect of the plane
perpendicular to the unperturbed local interstellar magnetic field
is still there, and now the effect of the heliotail becomes vis-
ible too. The helotail is slight shifted and elongated along the
B − V plane (the dash-dotted line), which contains the interstel-
lar magnetic field vector and interstellar flow vector pointing
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Figure 8. From top to bottom: backward time variation of the pitch angle cosine, momentum, and perpendicular guiding center components in the local interstellar
magnetic field reference frame, Cartesian coordinates of particle position relative to the Sun, and the magnetic field strength experienced along four color-coded
sample trajectories.

(A color version of this figure is available in the online journal.)

from the helionose to the heliotail. Due to magnetic pressure
exerted by the interstellar magentic field (ISMF) draped around
the heliopause, the heliotail rotates and becomes aligned with
the BV plane. The heliopause and the heliotail are also com-
pressed by the ISMF, so that their “flaring” is noticeably greater
in the BV plane than in the plane perpendicular to it while still
containing the unperturbed LISM velocity vector.

The anisotropy produced by the other unit density gradient
component ĝ2 is shown in Figure 7(B). The dipole that would
be produced in the uniform interstellar magnetic field points
toward the direction of ĝ1, as indicated by the slight enhance-
ment of yellow color in that direction and by the more ob-
vious enhancement of light blue color in the opposite direc-
tion. The deviation of the guiding center displacement from
the original dipole is larger, particularly in the warped ring
offset from the plane perpendicular to the unperturbed local
interstellar magnetic field and the heliotail elongated along
the B–V plane.

3.4. Sample Trajectories

Figure 8 shows some sample trajectories of Eo = 6 TeV
particles arriving in several characteristic directions labeled
“Nose,” “Tail,” “3,” and “4” in Figure 7(B). Note that the
time axis is backward. When the particle completely exits
the heliospheric influence, its momentum (pism), pitch angle
cosine (μism), and perpendicular guiding center location in the
interstellar medium reference frame no longer change, so our
simulation does not have to have a precise boundary as long as
the particle has left the heliosphere by more than 1 gyroradius.

In the helionose direction (green curves), the trajectory starts
with a moderate pitch angle cosine μism and the thickness of
the heliosphere is small, so the particle takes a small amount
of time to go through the heliospheric field. There is little drift
in pism and μism and the guiding center location, resulting in
small deviations from their original dipole anisotropies. At the
beginning of the curves, there is a glitch in all these quantities
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because in this particular trajectory, the particle passes through
the solar corona where the magnetic field is strong enough to
alter the trajectory significantly in a very short distance.

The trajectory that arrives in the direction of the heliotail (red)
also starts with a moderate pitch angle cosine, so the particle can
go through the heliotail quickly. There are some small energy
and pitch angle changes during the propagation, which result in a
slight deviation from the original Compton–Getting anisotropy
and pitch angle anisotropy. However, there is quite an amount of
drift in the guiding center when the particle propagates through
the heliotail where the magnetic field strength is much weaker
than in the interstellar field.

In the directions close to the plane perpendicular to the
interstellar magnetic field (3: blue curves), the particle starts
with a small pitch angle cosine from 0. The particle spends
more time in the vicinity of the heliotail. Every time it passes
through the weaker heliotail magnetic field, its guiding center
drifts rapidly. While there are some variations of particle energy
and pitch angle, the drift in the guiding center dominates this part
of the trajectory. Combining this with the long propagation time,
the particle has a greater chance of drifting farther away in all the
variables. This is the major reason why we see strong deviations
near the plane perpendicular to the unperturbed local interstellar
magnetic field. A slight offset from the exact plane perpendicular
to the interstellar magnetic field is expected because the particle
can be deflected by the high nonuniform heliospheric magnetic
field.

For the particle arriving in the direction of (4: black curves), it
passes through the heliotail with a large drift in its guiding center.
The behavior is very similar to the particle arriving exactly in
the heliotail direction (red curves). In this sense, the strong
deviation in the B − V plane toward the northern tail direction
comes from the same effect of the heliotail. The direction is not
exactly along the tail because the particle is deflected by the
heliospheric magnetic field.

3.5. Composite Anisotropy

As expressed by Equation (14), the total anisotropy observed
by cosmic ray experiments is a linear combination of the above
three types of anisotropy: Compton–Getting, pitch angle, and
b cross gradient. Compton–Getting anisotropy is pretty much
fixed due to the certainty of the cosmic ray energy spectrum. The
pitch angle anisotropy has two parameters: the amplitudes of the
unidirectional and bidirectional anisotropies A1|| and A2||. The b
cross gradient anisotropy is subject to two free parameters: the
two components of the cosmic ray density gradient vector in the
plane perpendicular to the interstellar magnetic field ∇⊥ ln F .
Due to the complexity of the heliosphere-distortion pattern of
these three types of anisotropy, different combinations of the
four free parameters can look vastly different in the composite
anisotropy map. The effects of the plane perpendicular to the
unperturbed local interstellar magnetic field and the hellotail
that show up in each individual component of the three types
of anisotropy can cancel each other out or amplify each other.
Some of the features may or may not show up in the composite
anisotropy.

In order to understand the physical reality in the observations
of cosmic ray anisotropy, it is necessary to determine how much
each of the three types of anisotropy contributes to the whole.
We choose to use a least χ2 method to fit observational data
with Equation (14). Since the distributions of p, Rg − R0, and μ
under heliospheric influence have already been calculated in the
above, what is left unknown are the four linear parameters A1||,

Figure 9. Top: map of composite anisotropy from Equation (14) with best
fit parameters in Table 1, (middle) map of a superposition of dipoles and
bidirectional anisotropies in the LISM without heliospheric influence, and
(bottom) the difference between the top and middle maps.

(A color version of this figure is available in the online journal.)

A2||, ∇ĝ1 ln F , and ∇ĝ2 ln F . A minimization procedure similar
to the common linear regression by setting the derivatives of χ2

to zero can allow us to determine the best fit parameters. We
apply this procedure to cosmic ray anisotropy measurements at
6 TeV energy from the Tibet ASγ experiment. As a matter of
fact, so far, we have not obtained the original data. Instead, we
use synthetic data that are generated from the best fits to the
original Tibet ASγ data with a superposition of two orthogonal
dipoles and one bidirectional distribution (Amenomori et al.
2009; Mizoguchi et al. 2009).

The best fit composite anisotropy map is shown in Figure 9.
The top is the total anisotropy, which fits the synthetic Tibet ASγ
to a somewhat satisfactory degree according to examination by
eye. It shows a large-scale pattern: enhancement in the heliotail
direction and depression in the helionose direction. There are
also some patterns in the intermediate scale that can be picked
up more easily if we enhance the scale range. The middle panel
of Figure 9 is a superposition of three dipole distributions
(Compton–Getting, unidirectional pitch angle, and b cross
gradient) plus a bidirectional pitch angle distribution along the
interstellar magnetic field of our heliosphere model. The bottom
panel is the difference map, showing the distortion made by the
presence of the heliosphere. Features left in the difference map
are the elongated heliotail along the B − V plane and the warped
ring offset from the plane perpendicular to the unperturbed local
interstellar magnetic field. The B − V plane has been thought to
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Table 1
Best-fit Parameters in Equation (14) to Tibet ASγ 6 TeV

Cosmic Ray Anisotropy

A1||(%) A2||(%) ∇ĝ1 ln F (%/Rg) ∇ĝ2 ln F (%/Rg)

0.121 ± 0.002 0.051 ± 0.003 −0.058 ± 0.001 0.041 ± 0.001

be the hydrogen deflection plane of either Lallement et al. (2005)
or Gurnett et al. (2006). Numerical simulations (Pogorelov et al.
2008, Pogorelov et al. 2009) showed that the deflection of
interstellar neutral hydrogen flow occurs in the B−V plane.
The coincidence of cosmic ray enhancement has been pointed
by the Tibet ASγ team (Amenomori et al. 2009; Amenomori
et al. 2009). Now, through this simulation, we understand it
is produced by the drift of the particle guiding center in the
elongated heliotail. In our simulation, we also see the warped
ring offset from the plane perpendicular to the unperturbed local
interstellar magnetic field. In the Tibet ASγ observations, there
seem to be hints of cosmic ray intensity enhancement in some
areas along the ring. It is hoped that this simulation will provide
some guidance to confirm that such a feature exists in the data,
and vice versa, if these features are proven, we can further refine
the determination of the interstellar magnetic field direction.

The best parameters to fit the Tibet ASγ 6 TeV cosmic ray
anisotropy and their uncertainties are listed in Table 1. Table 2
lists the directions of the original LISM anistropies associated
with these four parameters. Their magnitudes and directions
can lead us to understand what causes the observed cosmic
ray anisotropy and how TeV cosmic rays are distributed in the
LISM.

The cause of cosmic ray enhancement in the heliotail is
mainly due to the pitch angle anisotropy in the interstellar
medium. This is not necessarily a heliospheric effect. The
unidirectional pitch angle anisotropy, which is related to the
parallel cosmic ray density gradient through Equation (6), points
roughly to the heliotail direction with an amplitude of 0.121%,
which is almost three times stronger than the Compton–Getting
anisotropy due the motion of the heliosphere in the helionose
direction. It almost entirely cancels out the Compton–Getting
effect. The bidirectional pitch angle anisotropy further increases
the cosmic ray intensity in the heliotail, and in the meantime,
it produces a slight elevation of cosmic ray intensity along
the interstellar magnetic field direction, which results in some
truncation of the blue region from a dipole distribution in the
top and middle panels of Figure 9. This feature has been seen
by the Tibet ASγ experiment. Furthermore, the perpendicular
density gradient vector has a negative value in the ĝ1 component,
which reverses the deep blue color in Figure 7(A) to red color,
and its ĝ2 component is positive to maintain the color scheme
of the cosmic ray intensity. Both density gradient components
enhance the cosmic ray intensity in the heliotail. The cosmic ray
intensity enhancement caused by the particle density gradient
in the heliotail is a heliospheric effect.

In the middle panel of Figure 9 is a superposition of
three unidirectional dipole anisotropies and a bidirectional
pitch angle anisotropy that would exist without the influence
of the heliosphere. These anisotropies are organized strictly
according to the directions of the interstellar magnetic field
and interstellar flow. In the best fit performed by the Tibet
ASγ team (Amenomori et al. 2009; Mizoguchi et al. 2009),
only two dipole anisotropies and one bidirectional anisotropy
are taken into account, so their derived magnetic field direction
(constrained along the bidirectional anisotropy) has to be moved

Table 2
Vector Direction

Vector Declination (δ) Right Ascension (α)

Bism 9◦ 245◦
Vism −18◦ 258◦
ĝ1 −11◦ 332◦
ĝ2 75◦ 12◦

significantly away from the interstellar magnetic field of our
model. With the IBEX observation of a ribbon in ENA emissions,
we know that the interstellar magnetic field direction cannot be
that far off from our heliosphere model. This discrepancy is
solved now due to the fact that the physics allow us to include
three unidirectional dipole anisotropies and our best fit does not
have to move the interstellar magnetic field direction.

When we subtract the dipole and bidirectional anisotropies
from the total composite anisotropy, we get the difference map
at the bottom panel of Figure 9. The major features are the
enhancements in cosmic ray intensity along the B−V plane and
the warped ring of the plane perpendicular to the unperturbed
local interstellar magnetic field. These enhancements are mainly
due to the perpendicular density gradient. Calculated from
its two components listed in Table 1, the magnitude of the
perpendicular density gradient is |∇⊥ ln F | = 0.071%/Rg ,
which translates to 0.160%/kAU for the 6 TeV cosmic ray
protons with a gyroradius Rg = 445 AU in a 3 μG interstellar
magnetic field. The direction of the perpendicular density
gradient points to declination 46◦ and right ascension 144◦,
which is roughly in the direction of cosmic ray enhancements.
When the particle travels inside the tail lobe of a low magnetic
field, its guiding center drifts along the density gradients,
resulting in a high intensity. In other words, the cosmic rays
seen in these directions come from a region of interstellar space
where the cosmic ray density is higher than those arriving
in other directions. In addition, there appear to be a few
weaker features in the difference map. The effect of the plane
perpendicular to the unperturbed local interstellar magnetic field
still remains at high declinations in the southern hemisphere. It
is hoped that these features can be confirmed by the ICECUBE
experiment.

3.6. Polarity of the Interstellar Magnetic Field

While recent Voyager in situ magnetic field measurements
after the heliopause crossing in 2012 August (Burlaga et al.
2013; Burlaga & Ness 2014) have made us more confident about
the polarity of interstellar magnetic field, we showed in the above
that all MHD models, including ours, cannot tell the difference
in its effect on the plasma structure of the heliosphere. Cosmic
ray anisotropy can be used to diagnose the polarity because the
deflection of cosmic rays and the drift of the guiding center
are sensitive to the polarity of the local interstellar magnetic
field. Figure 10 shows our calculation of 6 TeV cosmic ray
proton anisotropy with the same plasma parameters except the
interstellar magnetic field is reversed. The heliospheric magnetic
field remains the same. The dipole and bidirectional anisotropies
remain the same as before, as shown by the middle panel. For
this to occur, both the unidirectional pitch angle anisotropy and
the direction of the particle density gradient have to switch to the
opposite directions. Under the influence of the heliosphere, the
total composite anisotropy (top) looks quite different now and
it does not resemble what is seen by the Tibet ASγ experiment.
In the difference map (bottom), the effect of the heliotail is still
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Figure 10. Composite anisotropy in the same format as in Figure 9 with a
reversed interstellar magnetic field.

(A color version of this figure is available in the online journal.)

there; however, the cosmic ray intensity has a deficit instead of
an enhancement. The deficit is cause by particle drift against the
cosmic ray density gradient. The feature produced by the plane
perpendicular to the unperturbed local interstellar magnetic
field shifts to the other side and makes the anisotropy pattern

Table 3
Solar Magnetic Field Parameters

MHD Model Frame Number Solar Activity HCS Tilt Angle Polarity

5 Minimum 10◦ Positive
15 Maximum 79◦ Negative
25 Minimum 13.◦5 Negative

more complex on the helionose side. These features are not
consistent with the Tibet ASγ observation. Therefore, we are
more confident in saying that the local interstellar magnetic field
goes from the southern into the northern hemisphere.

3.7. Solar Cycle Variation

Figure 11 shows our calculations for different phases of the
solar cycle. Parameters of the interstellar dipole and bidirec-
tional anisotropies remain the same as above. The MHD helio-
sphere models used are snapshots of the heliospheric configura-
tion, which we label according to frame numbers in our MHD
output. Major characteristics of the solar magnetic field condi-
tions in the three frames are listed in Table 3. They correspond
to two solar minima with opposite solar magnetic polarities and
one solar maximum.

The overall or large-scale pattern of 6 TeV cosmic ray
anisotropy does not change much with the solar cycle. The
features produced by the heliotail and the plane perpendicular to
the unperturbed local interstellar magnetic field are still visible.
The fact that the heliospheric magnetic field does not affect the
anisotropy pattern very much is because that particle trajectory
inside the heliopause is almost a straight line for particles of
this energy so that the polarity of the heliospheric magnetic
field does not matter much. However, more careful examination
of the difference maps for the three MHD heliosphere frames
can yield subtle differences in cosmic ray anisotropy at the
level of ∼10−4. For example, there is a region of weak cosmic
ray depression (light blue color) near the lower right side of
the difference maps. The location and depression level moves
significantly over the solar cycles. It is hoped that this feature
can be confirmed by the ICECUBE experiment.

Figure 11. Composite anisotropy and its heliospheric distortion at two different phases of the solar cycle in Table 3.

(A color version of this figure is available in the online journal.)
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Figure 12. Difference map in Figure 8 with a smaller scale to highlight the
influence of the Sun’s coronal and inner heliospheric magnetic field.

(A color version of this figure is available in the online journal.)

3.8. Solar Corona and Inner Heliospheric Magnetic Field

In the simulations in which we fix the Sun’s location in the
sky, we can clearly see the effect of magnetic field in the corona
as well as in the inner heliosphere. The Sun’s magnetic field
can significantly bend TeV cosmic rays, causing their energy,
pitch angle, and guiding center to drift as shown by the glitch in
Figure 8 when the particle passes through the outer solar corona.
In Figure 9, the Sun is located in the direction of the helionose.
Distortion of cosmic ray anisotropy around it can be as much as
6 × 10−4. Should an investigation look into the anisotropy at this
level, the effect of the Sun and its magnetic field around it must
be considered. Figure 12 enhances the anisotropy difference
map of Figure 9 by three times.

As the Sun moves over the sky along the ecliptic plane (the
solid line), its direct influence on the cosmic ray anisotropy
spreads. On a yearly average map, the effect may not be that
dramatic. Since the distortion by the Sun’s magnetic field
spreads over many tens of degrees, its effect on the yearly
average can still be around 10−4. An ideal simulation would
have to sum over these distortions as the Sun moves in the sky. In
addition, there is a possibility that the phase of the heliospheric
current sheet may change the distortion pattern by the Sun’s
magnetic field. A spin average might be needed before the year
average. All of these factors require further investigation. Our
snapshots of the heliosphere do not have the time resolution to
cover the Sun’s spin, so we need a time-dependent heliosphere
with a time cadence to resolve the Sun’s spin.

3.9. Energy Dependence

The energy dependence of cosmic ray anisotropy is expected.
Not only should the interstellar cosmic ray distribution evolve
with energy, but also the distortion caused by the heliosphere

should show up because of a strong dependence of the particle
gyroradius on energy.

In Figure 13, we simulate the cosmic ray anisotropy at 4 TeV
and 1 TeV. The amplitude of unidirectional and bidirectional
pitch angle anisotropies and the perpendicular density gradient
in units of percent/kAU are kept the same. The overall pattern
for 4 TeV cosmic rays is roughly the same as 6 TeV in Figure 9.
However, the anisotropy pattern of 1 TeV cosmic rays looks
very different. Although there appears to be an overall deficit of
cosmic rays toward the helionose side, the anisotropy is more
dominated by the small-scale variations. There is hint that the
effect of the heliotail is still there too. These features have
been observed by the Milagro experiment. There are hot spots
of cosmic ray enhancement at several places. The location of
these spots, however, is very sensitive to our model parameters.
In addition, the effect of the coronal and inner heliospheric
magnetic field of the Sun, which is placed in the helionose
direction in this simulation, becomes more prominent for the 1
TeV cosmic rays. All of these things tell us that the heliospheric
influence is far more important at 1 TeV. This is expected as
the gyroradius of 1 TeV protons is merely 74 AU in a 3 μG
magnetic field.

Our calculations find that this heliosphere model of 1000 AU
in radius is not adequate for cosmic rays of higher energies. For
example, the gyroradius of 20 TeV protons is 1520 AU, which
is larger than the size of the heliosphere simulation. Distortion
by this model heliosphere is too small and smooth compared
to observations by the Tibet ASγ and ICECUBE experiments.
Improvement of the heliosphere model with a larger size is
needed for studying higher-energy cosmic rays.

4. DISCUSSION

We have presented a method of using Liouville’s theorem to
map TeV cosmic ray anisotropies from the interstellar medium
to the sky seen from Earth. We assume that the local interstellar
cosmic ray distribution as a function of particle momentum,
pitch angle, and spatial coordinates of the guiding center is a
smooth function. We also assume that the trajectories of cosmic
rays traversing through the heliosphere are deterministic under
the Lorentz force in the average magnetic field and electric
field. If these conditions are violated significantly, the Liouville
mapping using merely one trajectory may become problematic
and a new scheme of anisotropy mapping might be necessary.
Let us look at now at how much violation there should be before
this method becomes less useful.

4.1. Effect of Magnetic Turbulence

Turbulence in the heliospheric and interstellar magnetic
field is ubiquitous. The magnetic field produced by MHD

Figure 13. Maps of composite anisotropy of 4 TeV protons (A) and 1 TeV protons.

(A color version of this figure is available in the online journal.)
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Figure 14. Maps of composite anisotropy and their heliospheric distortions under a weak (A) and strong (B) large-scale interstellar turbulence.

(A color version of this figure is available in the online journal.)

simulations does not include turbulence. Turbulence fluctuates
rather quickly in time and space, which makes it impossible to
include in the Lorentz force. Furthermore, cosmic ray particles
arriving at different times experience different sets of magnetic
perturbation along their trajectories of propagation. In this case,
the trajectory becomes stochastic to those who only know the
average fields. Now, the question is, can the stochasticity from
the heliospheric and interstellar turbulence invalidate the method
of Liouville mapping with a deterministic trajectory in the
average fields?

To answer this question, we do some case studies in which
the magnetic field of our heliosphere model is perturbed by an
ad hoc fluctuation. If the result of cosmic ray anisotropy, partic-
ularly a specific feature of the anisotropy pattern, is not washed
away completely by the added magnetic fluctuation, we can say
the Liouville mapping with a deterministic trajectory is good
enough. Otherwise, we need to do an ensemble average un-
der the presence of the entire spectrum of magnetic turbulence,
which is a different theory for calculating cosmic ray anisotropy.

Let us look at the cosmic ray anisotropy map when magnetic
turbulence is added into the average field of the MHD helio-
sphere model. Since the properties of heliospheric magnetic
turbulence are completely different from those of interstellar
magnetic turbulence, we present our results for each separately.

Because it is constantly driven by the Sun, which emits
supersonic and highly varying streams of solar wind, the
turbulence in the heliospheric magnetic field is large even on
small scales. To TeV cosmic rays, the particles are sensing the
fluctuating magnetic field below the wavenumber corresponding
to the correlation length. Given a typical Kolmogorov spectrum
of magnetic turbulence, the fluctuating field sensed by TeV
cosmic rays is almost at the level of the entire magnetic
fluctuation spectrum. The 〈δB2〉/B2

0 ≈ 25% in the solar wind.
We use a Gaussian random number with a standard deviation
of 0.5B0 to generate a fluctuating magnetic field and add it to
the perpendicular components of the average heliospheric field
in each of the MHD simulation cells. The resulting anisotropy

map of 6 TeV cosmic rays under an instant set of magnetic field
fluctuation does not change much from the earlier results, so
we do not show a similar map again. This is expected because
even though we have a solar cycle variation with the heliospheric
magnetic field flipping to the opposite polarity, we still do not see
many changes in the TeV cosmic ray anisotropy. The physical
reason for this is that the heliospheric magnetic field is too weak
and too small in size to bend the TeV cosmic ray trajectory very
much.

The properties of the local interstellar magnetic turbulence
are less certain. We expect that it should be weaker than the
heliospheric turbulence on the same scale size because there
are fewer perturbation drivers in the interstellar medium to
generate the turbulence and, more importantly, to overcome
the most common effect of Landau damping. Small interstellar
turbulence is implied from the IBEX observation of a ribbon in
ENA emissions. In situ measurements of Voyager 1 outside of
the heliopause also confirm small fluctuations in the interstellar
magnetic field. A simulation run with an interstellar turbulence
level of 〈δB2〉/B2

0 = 1% is shown in Figure 14(A), in which
there is little change in the TeV cosmic ray anisotropy pattern
from our earlier results. However, TeV cosmic rays access
magnetic turbulence on a much larger scale than the particles
measured by IBEX and by the Voyager 1 spacecraft itself. If
the Kolmogorov spectrum continues to low wave numbers,
the fluctuation level seen by the TeV cosmic rays could be
much larger. In Figure 14(B), we increase 〈δB2〉/B2

0 to 25%.
There, the effect of fluctuation begins to be visible, but it again
does not destroy the overall pattern of anisotropy produced
by the interstellar cosmic ray distribution and the heliospheric
structure. It should be noted that the effect of turbulence may
become larger when we incorporate a larger heliosphere as
the particles stay in the system longer during the propagation
through the heliosphere. Should the interstellar turbulence
become important, the trajectory of cosmic rays would exhibit a
stochastic nature. Calculation of cosmic ray anisotropy requires
an ensemble average.
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4.2. Fluctuation of Cosmic Ray Distribution in the LISM

When we map the anisotropy along the comic ray trajectories,
we start with a smooth function of cosmic ray distribution in
the LISM. If there is a fluctuation of the magnetic field in the
interstellar medium, the cosmic ray distribution should exhibit a
fluctuation too. In fact, it is this fluctuation that drives the cosmic
ray diffusion through the Galaxy. The possible contribution of
interstellar fluctuation to TeV cosmic ray anisotropy has been
explored recently by Giacinti & Sigl (2012) and Desiati &
Lazarian (2013) It is possible that we need it to explain small-
scale anisotropy. However, the interstellar magnetic fluctuation
alone can only produce a random pattern of anisotropy. Even so,
it still relies on a large-scale inhomogeneity in the cosmic ray
distribution to generate the small-scale fluctuation by interstellar
turbulence as, according to the standard quasilinear theory (e.g.,
Schlickeiser 2002),

δf (t) = δf (t0) +
∫ t

t0

ds

6∑
σ=1

gxσ
(xσ (s), s)

∂F (xσ (s), s)

∂xσ

, (18)

where xσ , (σ = 1, . . . 6) are the coordinates in the phase
space (guiding center and momentum), gxσ

(xσ (s), s) is the rate
of change in particle motion driven by magnetic and electric
perturbations, and the integration is carried out along the line of
characteristics of particle helical motion in the average magnetic
field. Thus, the fluctuating small-scale anisotropy is again the
result of the average particle density gradient in all the variables
such as spatial coordinates, pitch angle, and energy. The formula
for the rate of change gxσ

(xσ (s), s) can be found in Schlickeiser
(2002). Since its meaning is exactly the derivative of the phase
space coordinates, i.e.,

gxσ
(xσ (s), s) = dxσ

ds
, (19)

the integration is performed over a total derivative and the result
of the integration becomes

δf (t) = δf (t0) + F (xσ (t), t) − F (xσ (t0), t0), (20)

which is consistent with Liouville’s theorem. This is expected
because the governing equation is also the Boltzmann–Vlasov
equation. Thus, the calculation of small-scale anisotropy due to
the interstellar magnetic field turbulence is exactly the Liouville
mapping if a magnetic fluctuation can be prescribed. An
example has already been provided in the previous subsection.
For the specific realization of interstellar magnetic turbulence
〈δB2〉/B2

0 = 25% as shown in Figure 14(B), the small-scale
anisotropy is visibly seen at the level of 10−4, approximately
an order of magnitude lower than the large-scale anisotropy. Of
course, the small-scale anisotropy level can be changed using
different correlation lengths and randomness. If the large-scale
interstellar magnetic turbulence varies more rapidly than the
duration of the observation, it is necessary to make the ensemble
average over the fluctuating field.

5. CONCLUSION

We have developed a method for the calculation of TeV
cosmic ray anisotropy under the influence of the heliosphere. It
is based on Liouville’s theorem, which states that the particle
distribution function is a constant of motion along the trajectory
of particles under the total Lorentz force, so we can directly map

the interstellar distribution function to the anisotropy sky seen
from Earth deep inside the heliosphere. Mapping the anisotropy
from the interstellar medium to Earth can also be done under
the additional transformation of the reference frame between
the observer frame and the interstellar plasma frame with a
conservation of the particle distribution function.

We apply this method to TeV cosmic rays propagating through
an MHD model heliosphere. We make the following conclusions
from this initial study.

1. The ultimate source of anisotropy observed in cosmic ray is
the inhomogeneity of the cosmic ray distribution function
in the LISM. The cosmic ray distribution is a function of
particle energy, pitch angle, and guiding center position.
Any variation of cosmic ray distribution function with these
variables contributes to the anisotropy observed at Earth as
well as in the LISM.

2. Aside from the variation due to the average cosmic ray
source distribution and its transport in the entire Galaxy,
young and nearby sources of cosmic rays can make a special
contribution to the anisotropy by local enhancement of
cosmic ray density over the continuous global background.
Such a local contribution from one or a few young point
sources sensitively depends on the age, distance, magnetic
connection, and particle diffusion coefficient. Thus, cosmic
ray anisotropy sensitively depends on particle energy, at
least in the energy band.

3. Compton–Getting anisotropy comes from the energy de-
pendence of the cosmic ray distribution function. The mo-
tion of an observer relative to the interstellar plasma with
which cosmic rays comove introduces an angular depen-
dence of particle energy in the interstellar plasma reference
frame. This is the original concept of Compton–Getting
anisotropy. When cosmic rays propagate through the helio-
sphere, the heliospheric electric field can alter the particle
energy. This is an additional source of anisotropy that may
cause deviation from the original Compton–Getting dipole
anisotropy.

4. A density gradient along the interstellar magnetic field gives
rise to a pitch angle anisotropy. A unidirectional dipole
pitch angle anisotropy is only a leading consequence of
the parallel diffusion or pitch angle diffusion. Bidirectional
pitch angle anisotropy is possible if the magnetic field flux
tube is not uniform or there are multiple sources on the both
ends of the flux tube.

5. Due to a small perpendicular diffusion of cosmic rays in an
ordered magnetic field of the LISM, cosmic ray anisotropy
in the direction perpendicular to the magnetic field comes
mainly from b cross gradient anisotropy. The source of this
anisotropy is the cosmic ray density gradient across the
magnetic field.

6. Through the calculation of the particle trajectory that tracks
the particle guiding center, pitch angle, and energy in the
reference frame of the local interstellar magnetic field,
we can trace where the cosmic ray anisotropy and its
heliospheric distortion come from. The anisotropy and
its distortion is most sensitive to the presence of the
heliosphere in the direction approximately perpendicular
to the local interstellar magnetic field or in the direction of
the heliotail.

7. Fits to the measurements of anisotropy in 6 TeV cosmic
rays demonstrate that the large-scale cosmic ray anisotropy
in the LISM is composed of a unidirectional pitch angle
anisotropy, a bidirectional pitch angle anisotropy in the
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direction parallel to the interstellar magnetic field, plus a
contribution from the b cross cosmic ray density gradient
perpendicular to the interstellar magnetic field. The ampli-
tude of the pitch angle anisotropies and cosmic ray density
gradient in the LISM can be determined. This information
can give us some clues about the cosmic ray distribution in
the LISM and possible young nearby cosmic ray source.

8. After the measurement of cosmic ray anisotropy has been
subtracted from the dipole and bidirectional components of
the local interstellar anisotropy, the remainder contains the
effect of distortion by the heliosphere. In the Tibet ASγ
observation, the reported cosmic ray enhancement along
the hydrogen deflection plane (Amenomori et al. 2009) is
consistent with our calculation of cosmic ray enhancement
in the elongated heliotail along the B−V plane. We also find
that additional features of cosmic ray enhancement along
the partial ring are offset from the plane perpendicular to the
local interstellar magnetic field. These features of cosmic
ray enhancements can further constrain the direction and
polarity of the local interstellar magnetic field.

9. The solar cycle variation of the heliospheric magnetic
field and electric field makes minor but visible changes
in the TeV cosmic ray anisotropy. The turbulence of the
heliospheric magnetic field only plays a minor role.

10. The magnetic field in the solar corona and inner heliosphere
make a minor but visible contribution to anisotropy. This
may open up a possibility of using cosmic ray anisotropy
measurements as a magnetic tomography of the Sun and its
surroundings.

11. There is a clear energy dependence in cosmic ray
anisotropy. From 4 TeV to 6 TeV, the overall pattern of
anisotropy does not change much, but around 1 TeV, the
anisotropy pattern changes dramatically. Although hints of
a large-scale pattern of original interstellar anisotropy are
still observable, the anisotropy of 1 TeV is more domi-
nated by small-scale patterns produced by the heliospheric
magnetic field. Hot spots of comic ray enhancement can
appear at many places and their locations seem to be
sensitive to the parameters of cosmic ray distribution in
the LISM.

12. We agree with the claim by Giacinti & Sigl (2012) and
Desiati & Lazarian (2013) that magnetic turbulence in the
LISM can also produce small-scale fluctuation in cosmic
ray anisotropy. Such a small anisotropy can only grow
out of the large-scale anisotropy or inhomogeneities in
the LISM. The size and the magnitude of the small-scale
fluctuation could depend on the detailed properties of
interstellar magnetic turbulence, such as the correlation
length and turbulence energy. It is unclear whether an
ensemble average over magnetic fluctuation can wash out
or diminish this effect. Further study is needed.

This work was supported in part by NSF grant AGS-
1156056; NASA grants NNX09AG29G, NNX09AB24G, and
NNX10AE46G; and DOE grant DE-SC0008721. M.Z. would
like to thank Julia Becker for an initial discussion that made him
interested in the subject. We appreciate useful discussions with
A. Lazarian and P. Desiati. We highly appreciate discussions at
the team meeting “Heliosheath Processes and Structure of the

Heliopause: Modeling Energetic Particles, Cosmic Rays, and
Magnetic Fields” supported by the International Space Science
Institute in Bern, Switzerland. We acknowledge NSF MRI grant
0923050, NSF PRAC award OCI-1144120, and related com-
puter resources from the Blue Waters sustained-petascale com-
puting project. Supercomputer time allocations were also pro-
vided on SGI Pleiades by NASA High-End Computing Program
award SMD-14-4868 and Cray XT5 Kraken by NSF XSEDE
project MCA07S033.

REFERENCES

Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2010, ApJL, 718, L194
Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2011, ApJ, 740, 16
Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. 2012, ApJ, 746, 33
Abdo, A. A., Allen, B. T., Aune, T., et al. 2008, PhRvL, 101, 221101
Abdo, A. A., Allen, B. T., Aune, T., et al. 2009, ApJ, 698, 2121
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2006, ApJ, 636,

777
Amenomori, M., Ayabe, S., Bi, X. J., et al. 2006, Sci, 314, 439
Amenomori, M., Ayabe, S., Bi, X. J., et al. 2010, ApJ, 711, 119
Amenomori, M., Bi, X. J., Chen, D., et al. 2009, Proc. 31st ICRC,

arXiv:0909.1026
Axford, I. 1965, P&SS, 13, 115
Borovikov, S. N., & Pogorelov, N. V. 2014, ApJ, 783, 16
Burlaga, L. F., & Ness, N. F. 2014, ApJ, 784, 146
Burlaga, L. F., Ness, N. F., Gurnett, D. A., & Kurth, W. S. 2013, ApJL,

778, L3
Di Sciascio, G., Iuppa, R., & Argo-Ybj Collaboration, 2012, JPhCS, 375, 052008
Desiati, P., & Lazarian, A. 2013, ApJ, 762, 44
Drury, L. O. C. 2013, Proc. 33rd ICRC, arXiv:1305.6752
Drury, L. O. C., & Aharonian, F. A. 2008, APh, 29, 420
Effenberger, F., Fichtner, H., Scherer, K., & Bsching, I. 2013, A&A, 547, 120
Frisch, P., Andersson, B.-G., Berdyugin, A., et al. 2010, ApJ, 724, 1473
Gamayunov, K., Zhang, M., & Rassoul, H. 2010, ApJ, 725, 2251
Giacinti, G., Kachelrie, M., & Semikoz, D. V. 2013, PhRvD, 88, 023010
Giacinti, G., & Sigl, G. 2012, Phys. Rev. Lett., 109, 071101
Guillian, G., Hosaka, J., Ishihara, K., et al. 2007, PhRvD, 75, 062003
Gurnett, D. A., Kurth, W. S., Cairns, I. H., & Mitchell, J. 2006, in AIP Conf.

Proc. 858, Physics of the Inner Heliosheath: Voyager Observations, Theory,
and Future Prospects, ed. J. Heerikhuisen, V. Florinski, G. P. Zank et al.
(Melville, NY: AIP), 129

Han, J. L., Ferriere, K., & Manchester, R. N. 2004, ApJ, 610, 820
Heerikhuisen, J., & Pogorelov, N. V. 2011, ApJ, 738, 29
Heerikhuisen, J., Pogorelov, N. V., Zank, G. P., et al. 2010, ApJL, 708, L126
Heerikhuisen, J., Zirnstein, E. J., Funsten, H. O., Pogorelov, N. V., & Zank, G. P.

2014, ApJ, 784, 73
Isenberg, P. A., & Jokipii, J. R. 1979, ApJ, 234, 746
Jokipii, J. R. 1966, ApJ, 146, 480
Kotera, K., Perez-Garcia, M., & Silk, J. 2013, PhLB, 725, 196
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