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The transport of charged particles in disorganised magnetic fields is an important issue which
concerns the propagation of cosmic rays of all energies in a variety of astrophysical environments,
such as the interplanetary, interstellar and even extra-galactic media, as well as the efficiency of
Fermi acceleration processes. We have performed detailed numerical experiments using Monte-
Carlo simulations of particle propagation in stochastic magnetic fields in order to measure the
parallel and transverse spatial diffusion coefficients and the pitch angle scattering time as a function
of rigidity and strength of the turbulent magnetic component. We confirm the extrapolation to
high turbulence levels of the scaling predicted by the quasi-linear approximation for the scattering
frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm
diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme
case where the mean field vanishes. We find that diffusion also takes place for particles with Larmor
radii larger than the coherence length of the turbulence. We argue that transverse diffusion is
much more effective than predicted by the quasi-linear approximation, and appears compatible with
chaotic magnetic diffusion of the field lines. We provide numerical estimates of the Kolmogorov
length and magnetic line diffusion coefficient as a function of the level of turbulence. Finally we
comment on applications of our results to astrophysical turbulence and the acceleration of high
energy cosmic rays in supernovae remnants, in super-bubbles, and in jets and hot spots of powerful
radio-galaxies.

PACS numbers: 98.70.Sa, 95.85.Ry, 52.25.Gj, 05.20.Dd, 05.45.Jn, 05.45.Pq

I. INTRODUCTION

The knowledge of the transport properties of charged particles in turbulent magnetized plasmas is a long–standing
problem, which bears directly on many astrophysical issues, such as the penetration of low-energy cosmic rays in the
heliosphere [1], the propagation and escape of galactic cosmic rays in and out of the interstellar magnetic field [2, 3, 4],
or even the efficiency of Fermi acceleration mechanisms, in particular at shocks [3]. The diffusion coefficient transverse
to the mean component of the magnetic field plays a particularly important role in these issues, but to date, there is
no satisfactory description of perpendicular transport. Some studies have built upon or tried to extend the results of
the “quasi-linear theory” [5], whose validity is limited to very low level turbulence, i.e. a turbulent component much
weaker than the uniform magnetic field, and which calculates the transport coefficients by statistical averages of the
displacements perturbed to first order in the inhomogenous field. Other studies have appealed to phenomenological
approximations such as the Bohm estimate for the diffusion coefficient D ∼ rLv, which corresponds to the assumption
that the mean free path for scattering D/v of a particle of velocity v, is given by the Larmor radius rL. This
approximation originates from laboratory experiments which led D. Bohm to the empirical formulaDB ≃ 0.06eT/B for
a plasma with temperature T . A theoretical derivation of this formula was proposed later by Taylor and McNamara [6],
and then extended to relativistic particles [7], but no theory of Bohm diffusion (relativistic or not) in magnetic
irregularities has been derived stricto-sensu so far. Therefore it appears that important physical and astrophysical
issues are yet to be answered:

• How do the transport properties change when the level of magnetic turbulence is increased? What are the
transport properties when the mean field vanishes? Notably, what is the relevance of the Bohm scaling?
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• Even for low level turbulence, transverse space diffusion is not well known. It nevertheless plays a crucial role
in the confinement of cosmic rays in galaxies or other extragalactic objects (notably radio-galaxies jets). Its
magnitude is also of direct relevance to the performance of Fermi acceleration at perpendicular shocks.

• Do subdiffusive and more generally anomalous diffusion regimes exist? If yes, they are also of importance for
Fermi acceleration.

In order to shed light on these issues, we have performed extensive numerical experiments to determine the pitch
angle scattering rate, and the parallel and perpendicular spatial diffusion coefficients for a wide range of rigidities and
turbulence levels. Our experiments are conducted by Monte-Carlo simulations in which we follow the propagation of
a relativistic test particle in a stochastic magnetic field constructed from three-dimensional Kolmogorov turbulence,
and calculate the diffusion coefficients from the statistical correlations along the trajectory. Our study is similar to
the recent work of Giacalone and Jokipii [8] in which the spatial diffusion coefficients in two– and three–dimensional
magnetostatic turbulence were measured using Monte-Carlo simulations for various turbulence levels and rigidities.
Our study is however more extensive than that of Ref. [8]. In particular we measure the diffusion coefficients in a
broader range of rigidities, by studying the diffusion of particles with Larmor radii larger than the coherence length,
and in a broader range of turbulence levels, by going up to pure turbulence in which there is no uniform component of
the magnetic field. In contrast, Ref. [8] studies the case of lower-energy particles and smaller turbulence levels, with a
turbulent magnetic field never exceeding the uniform component in strength. We also study in detail the pitch angle
scattering rate, which is of central interest in applications to shock acceleration processes, and study in more detail the
issue of transverse diffusion and its relation to the chaotic wandering of field lines. Finally we will repeatedly compare
our results to Ref. [8] where there is overlap, which is important since these numerical experiments are delicate.

Among our results, we confirm the extrapolation to high turbulence levels of the scalings predicted by the quasi-
linear theory for the scattering rate and the parallel diffusion coefficient at low enough rigidity. The perpendicular
diffusion coefficient is shown to follow a law which is quite different from the predictions of the quasi-linear theory at
low rigidities. We argue that its behavior is compatible with chaotic wandering and diffusion of the magnetic field
lines to which particles are “attached”. In particular, we demonstrate the chaotic behavior of the magnetic field lines
and calculate the associated Kolmogorov length and diffusion coefficient in terms of the turbulence level. We also
show that the Bohm diffusion coefficient only holds in a limited range of rigidities 0.1 <∼ ρ <∼ 1 for pure turbulence,
and does not exist when the mean field is non-vanishing. In this latter case the Bohm value for the coefficient is
only obtained at maximum pitch angle scattering, i.e. for particules with Larmor radius of order of the coherence
scale. Finally, we also found that diffusion operates even for particles whose Larmor radii is larger than the coherence
length, as far as we have searched in rigidity (1.5 decade). On these scales, the scattering rate decays as expected,
albeit moderately, as the power ≃ −7/3 of the rigidity.

Our study is conducted with the following main simplifying assumptions:

• The magnetic field is composed of a mean homogeneous field B0 and an inhomogeneous component B: B̄ =
B0 + B(x).

• The magnetic disturbances are considered to be static. This assumption is well justified as the waves propagate
with velocities of the order of the Alfvén velocity vA, smaller than the velocity of particles ∼ c (we consider
relativistic particles), and the electric force is thus smaller than the magnetic force by a factor vA/c. The first
correction to the theory is the celebrated second order Fermi process which can be described by diffusion in
momentum space, with diffusion coefficient Γ(p) ∼ νsp

2v2
A/c

2, with p particle momentum, and νs, the angular
scattering frequency, is an outcome of our study.

• The magnetic perturbations are distributed according to isotropic turbulence, whose power spectrum is written
in terms of Fourier momentum k as: 〈B(k)2〉 ∝ k−β−2 for kmin ≤ k ≤ kmax, zero otherwise, and 〈B(k)〉 = 0, i.e.

random phases. The exponent β characterizes the properties of the turbulence, and we will concentrate on the
case β = 5/3 in our numerical applications, which describes Kolmogorov turbulence. The smallest turbulence
wavenumber is related to the maximum scale of the turbulence Lmax via: kmin = 2π/Lmax. This largest scale
also corresponds to the correlation length of the magnetic field to within a factor of order unity [see Eq.(13)].

Our notations are as follows. The quantities we will be interested in are the scattering rate νs or scattering time
τs ≡ 1/νs, defined as the correlation time of the pitch angle, the spatial diffusion coefficient along the mean field
D‖ and the transverse spatial diffusion coefficient D⊥. These coefficients are evaluated in terms of turbulence level

η ≡ 〈B2〉/〈B̄2〉 = 〈B2〉/[B2
o + 〈B2〉], and rigidity ρ ≡ 2πrL/Lmax = rLkmin. For convenience, the Larmor radius rL is

defined with respect to the total magnetic field: rL ≡ ǫ/ZeB̄ for a particle with energy ǫ and charge Ze. The Larmor
pulsation of a particle of energy ǫ is defined, for convenience, as ω̄L ≡ ZeB̄c/ǫ, and the Larmor time tL ≡ (ω̄L)−1. We



3

define the scattering function as g(ρ, η) ≡ νs/ω̄L = tL/τs. When useful, we will denote by ωL the Larmor pulsation in
the mean field.

The paper is organised as follows. In Section 2, we recall the relation between spatial diffusion and the scattering
off magnetic disturbances and present the numerical method. In Section 3, we present our numerical results and
discuss the issue of transverse diffusion and the measurement of magnetic chaos characteristics. A discussion with
direct astrophysical consequences of our results is given in Section 5, and conclusions are offered in Section 6. Finally,
in Appendix A, we propose a theoretical interpretation of the regimes of diffusion observed, and in particular of the
existence of diffusion for Larmor radii larger than the maximum scale of turbulence.

II. MOMENTUM SCATTERING AND SPATIAL DIFFUSION

High energy particles interact with cosmic matter mostly through scattering on the magnetic field which is more or
less frozen in the medium. The interaction is elastic in the frame of a magnetic disturbance and it can be considered
as elastic in the plasma rest frame to lowest order in vA/c, if the disturbance propagates at small enough velocity
vA ≪ c. With respect to a given direction, chosen as that of the uniform component of the magnetic field if this
latter is non-vanishing, the pitch angle of the particle changes almost randomly if the magnetic field is sufficiently
disorganized (this will be made more precise further on). Therefore the position of the particle changes according to
a random walk on a time scale which is longer than the coherence time of the pitch angle cosine, and pitch angle
scattering is thus responsible for the diffusion of particles. However it is generally believed that transverse diffusion
may also occur through wandering of the magnetic field lines. In this picture, the transverse velocity of the particle
changes through resonant diffusion as before while the guiding center of the approximate helical motion wanders
with the magnetic field line to which it is attached, and performs a random walk in the transverse direction. These
notions will be quantified in the forthcoming sections. Our main objective here is indeed to quantify these various
contributions to the process of diffusion.

A. Definitions – Scattering time and diffusion coefficients

We define the pitch angle α with respect to the mean field direction when it exists, otherwise the direction can be
arbitrarily chosen. The convenient random function is the pitch angle cosine: µ(t) ≡ cos (α), and α is a function of
time. Since we assume a static spectrum of magnetic perturbations, the auto-correlation function of µ(t) will become
stationary in the large time limit. It can then be defined as:

C(τ) ≡ 〈µ(t+ τ)µ(t)〉/〈µ(t)2〉 (1)

where the average can be performed in three different ways. In the original quasi-linear theory, this average is taken
over the phases of the magnetic disturbances. In the theory of chaos, the average is performed over the phase space
subset of chaotic motions. In practice, and this is what we will use in the numerical experiment, we assume ergodicity
and make temporal average. Our procedure of calculating averages is explicited further below.

The scattering time τs can then be defined as the coherence time of the pitch angle cosine:

τs ≡
∫ ∞

0

dτ C(τ) . (2)

In particular, if the auto-correlation function falls off exponentially C(τ) = exp (−τ/T ) then τs = T . Turning to the
spatial diffusion coefficientD‖, let x‖ be the coordinate of a particle along the mean field direction. Then dx‖ = vµ(t)dt
with a constant velocity v (in our case v = c), since energy is conserved. Consider now a random variation ∆x‖ of x‖
during the time interval ∆t supposed to be larger than the scattering time τs. One has 〈∆x‖〉 ≈ 0, and

〈∆x2
‖〉 = v2

∫ t+∆t

t

dt1

∫ t+∆t

t

dt2 〈µ(t1)µ(t2)〉. (3)

Beyond the scattering time τs, if the stationary random process µ(t) explores uniformly the interval (−1,+1), the
space diffusion coefficient parallel to the mean field stems straightforwardly from its definition, Eq. (3) and Eq. (2):

D‖ ≡
〈∆x2

‖〉
2∆t

=
1

3
v2τs . (4)
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Here as well the average can be made according to one of the three ways explained above. The main goal of the
computation is then to determine the dependence of τs, or the scattering function g, in terms of the rigidity ρ and
the turbulence level η. The theoretical result is known in the regime of weak turbulence [5], if the correlation time τc
of the force suffered by the particle is much smaller than the scattering time τs. To make it more precise, particles
undergo resonances with the MHD modes such that k‖vµ ± ωL = 0. The correlation time is related to the width of
the resonance in the mode spectrum, such that :

τ−1
c = ∆(k‖vµ± ωL) = v|µ|∆k‖ = ωL

∆k‖
k‖

(5)

where ∆k‖ denotes the spectrum width, in the parallel direction. Since τ−1
s ∼ ηωL, τc ≪ τs is equivalent to η ≪

∆k‖/k‖. In this case the memory of the initial pitch angle can even be kept and the scattering function g ∼ η(ρ|µ|)β−1.
However diffusion coefficients calculated on timescales larger than τs must be averaged over µ.

Due to rotation invariance around the mean field direction, there is a single transverse diffusion coefficient (when
diffusion occurs), given by:

D⊥ ≡ 〈∆x2
⊥〉

2∆t
, (6)

where ∆x⊥ denotes the displacement perpendicular to the mean field during the time interval ∆t. In weak turbulence
theory (η ≪ 1), the gyro-phase ψ of the particle is only weakly perturbed by the disorganized component of the field

and ψ̇ ≃ ωL, where the gyro-pulsation ωL is determined with respect to the mean field. The transverse velocity can
be approximated by:

v⊥ ≃ v sinα(t) [e1 cosψ − sign(q)e2 sinψ] , (7)

where q denotes the charge of the particle, and we implicitly assumed the mean field to lie along the direction e3.
The pitch angle sine sinα(t) varies on the timescale τs, which is much longer than the Larmor time in the weak
turbulence regime. The time correlation function of the pitch angle is obviously the same as that of the cosines since
〈cos(α1 + α2)〉 = 0, hence 〈sinα1 sinα2〉 = 〈cosα1 cosα2〉. Therefore the transverse diffusion coefficient reads:

D⊥ =
1

3
v2

∫ ∞

0

dτ C(τ) cos (ωLτ) (8)

Assuming that the correlation function C(τ) decays exponentially on the characteristic time τs, one finally obtains
a result similar to the so-called classical diffusion that reads

D⊥ =
1

3
v2 τs

1 + (ωLτs)2
. (9)

This transverse diffusion based on pitch angle scattering only leads to the ratio

D⊥
D‖

=
1

1 +
(

λ‖/rL
)2 , (10)

where λ‖ ≡ 3D‖/v is the mean free path of a particle along the mean magnetic field. This relation can also be
obtained by treating the magnetic disturbances as hard sphere scattering centers with weak or strong turbulence. It
is also a result of the study of Ref. [9], which estimate phenomenological diffusion coefficients by using well-motivated
assumptions for the velocity auto-correlation functions of the particle orbit. Finally, since (ωLτs)

2 ≫ 1 in the weak
turbulence regime, one expects D⊥ ≪ D‖ when η ≪ 1. However the transverse diffusion may turn out to be larger
than predicted by quasi-linear theory, even for moderate turbulence. In particular note that Eq. (4) for the parallel
diffusion coefficient rests on the sole assumption that C(τ) vanishes on timescales longer than τs, while the quasi-linear
result for the transverse diffusion coefficient, Eq. (9), assumes that the particle orbit is only weakly perturbed and the
timescale of variation of the pitch angle is much longer than the Larmor time, i.e., that the level of turbulence η ≪ 1.
We refer to this result as a prediction of quasi-linear theory; it neglects the diffusion of the guide center carrying field
line and the associated process of chaotic magnetic diffusion which has been analysed by Jokipii and Parker [10], and
to which we will come back in the following Section. Finally in all cases one should obtain D⊥ → D‖ when η → 1,
since the mean field vanishes in this limit and there is no prefered direction anymore.
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B. Numerical simulations

In order to evaluate the transport coefficients, we follow the propagation of particles in stochastic magnetic fields
by integrating the standard equation of motion (Lorentz force), and measure the statistical quantities of interest to
us, namely νs = 1/τs, D‖ and D⊥, using the estimators defined respectively in Eqs. (2),(4),(6). Strictly speaking,
the averages contained in these expressions should be taken over the phases of the magnetic inhomogeneities. In
practice however, one may as well take these averages as follows. For a given ∆t [using the notations of Eqs. (4),(6)],
a time t is picked at random over the trajectory, and the correlation between the positions at times t and t + ∆t is
recorded; this operation is repeated many times and the average is kept. This latter is then further averaged over a
population of particles with random initial positions, and then over an ensemble of magnetic field realizations with
random phases. In practice, we propagate 20 − 50 particles, measure the correlations at 5000− 10000 different times
along the trajectory of each particle, and use a few magnetic realizations. This procedure allows to reach a sufficiently
high signal-to-noise ratio in the simulation for a moderate computer time, as indeed setting up the magnetic field and
propagating a particle is much more costly than taking averages along the trajectory.

In principle one could as well take the average 〈∆x2〉/∆t as the variance of the displacement at time ∆t over a
population of particles originally concentrated at the origin, as in Ref. [8]. However this method requires to follow
the trajectory of a large number of particles >∼ 103 in order to achieve a reasonable signal-to-noise ratio. The method
we employ, which measures the correlations along the trajectory of each particle, before averaging over a population
of particles, is less costly in computer time (but requires much more memory). Nevertheless, we also checked (and
found) that the method which measures the variance of the displacement gave results in agreement with our method
within the error attached to the small number of particles propagated.

The magnetic field can be constructed in two different ways which both present pros and cons. The first method
uses Fast-Fourier Transform (FFT) algorithms to set up the magnetic field on a discrete grid in configuration space,
starting from the magnetic field defined through its power spectrum in Fourier space, i.e.:

B(x) ≡ κ
∑

n

e(n)A(n) exp

[

2iπn.x

Lmax

]

. (11)

In this equation, n is the tri-dimensional wavenumber vector, with integer coordinates taking values between 1
and kmax/2kmin, e(n) is a unit vector orthogonal to n (this ensures ∇B = 0), A(n) is the amplitude of the field
component, and is defined such that 〈A(n)〉 = 0 and 〈A(n)A⋆(n)〉 = k−β−2, where the average concerns the phases of
the magnetic field. Finally, κ is a numerical prefactor which ensures the correct normalization of the inhomogenous
magnetic component with respect to the mean field, by using the following ergodic approximation to 〈B2〉:

〈B2〉 =
1

V

∫

dxB2(x), (12)

and as before η = 〈B2〉/(B2
0 + 〈B2〉). In practice, the field components are calculated at each vertex xi of a discrete

grid in configuration space beforehand. The boundary conditions are periodic with period Lmax, and the fundamental
cubic cell size is Lmax/Ng, where Ng represents the number of wavenumber modes along one direction. One thus has:
kmax/kmin = Lmax/Lmin = Ng/2, where the factor 2 comes from the fact that one must consider both negative and
positive k-modes to respect the hermiticity of B(k). In our simulation, we typically use Ng = 256 and in some cases
Ng = 512 which gives us a dynamic range of two orders of magnitude.

During the propagation of particles, it is of course necessary to know the magnetic field at any point x for the
integration of the equations of motion. Our numerical code calculates the value B(x) either by tri-linear interpolation
between the known values of the field components on the 8 vertices of the cell to which x belongs, or by taking the
value of B at the vertex closest to x, which amounts to assuming a constant B in cells of size Lmax/Ng centered on
each vertex. While the former method does not respect ∇B = 0, the latter implies a discontinuous magnetic field on
each cubic cell face. We will show in the following that the results obtained by these methods differ only when scales
smaller than the cell size are concerned, as expected.

A second algorithm for computing the magnetic field has been proposed by Giacalone & Jokipii [8] and calculates
the magnetic field as a sum over plane wave modes (we will refer to this algorithm as GJ). The expression defining
B(x) is very similar to Eq. (11) above, except that n needs not have integral coordinates anymore, as Fast-Fourier
Transform methods are not used. Indeed, one does not calculate the field on a discrete grid beforehand, but its values
are calculated where and when needed during the propagation directly from the sum over plane waves. Also the sum
is not tri-dimensional, but one-dimensional; the wavenumbers directions are drawn at random, and the amplitude
A(k) ∝ k−β to account for phase space volume. In practice, it is convenient to have logarithmic spacing of the
k−modes between kmin and kmax.
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FIG. 1: Self-correlation function of the pitch angle cosine shown as a function of time τ (in units of Larmor time tL = 1/ωL)
for various rigidity ρ = 0.072, 0.12, 0.19, 0.32, 0.52, 0.85 and for η = 0.1.

One main advantage of the GJ method is that there is no restriction in dynamic range due to memory usage, and
consequently kmax/kmin can be as large as required. However, one is limited in terms of computer usage time since it
is expensive to perform the sum over the wavenumber modes at each point of the trajectory if the number of modes
Npw becomes significant. In practice, Npw = 500 is a strict upper limit for our applications [11], and even with
Npw = 200 the calculation is already much slower than a similar calculation with the above FFT algorithm.

The number of modes is important as it controls the efficiency of diffusion, since pitch angle scattering proceeds
mainly through resonance of the particle momentum on the magnetic field modes. In quasi-linear theory the resonance
condition reads ρµk‖ = ±kmin, where k‖ is the component of the wavenumber along the mean magnetic field direction.
The FFT and GJ share a similar number of resonance modes in this limit η ≪ 1. However for each resonant k‖ the

FFT algorithm has N2
g ∼ 104 − 105 transverse components to be compared with one for the GJ algorithm. One thus

expects that at higher turbulence levels, diffusion should be more effective in the FFT algorithm due to the much
larger total number of modes than in the GJ algorithm. Furthermore, in order to preserve a correct spacing of modes
in the GJ algorithm, one cannot indefinitely increase the dynamic range kmax/kmin since Npw is fixed for practical
reasons, i.e. computer time.

However the FFT algorithm suffers from other limitations (apart from the limitation in dynamic range): the
interpolation of B on scales smaller than the cell size, and the periodicity on the scale Lmax. These limitations are not
present in the GJ algorithm, and imply that the results of the FFT method obtained for Larmor radii much smaller
than the cell size, i.e. ρ ≪ 1/Ng, or much bigger than the periodicity scale, ρ ≫ 1, cannot be trusted, since these
regimes are likely to be dominated by systematic effects related to the discreteness or to the periodicity.

Overall both methods appear complementary to each other, and we use them in turn to compare and discuss the
robustness of our numerical results with respect to the assumptions made.

III. RESULTS AND DISCUSSION

A. Pitch angle scattering and parallel diffusion

The first numerical investigation to perform is the self-correlation function of the pitch angle cosine. The behavior
of this function is shown in Fig. (1) vs time interval τ for various levels of turbulence η. Two bumps are observed at
one and two Larmor periods. These bumps are observed as long as the regular magnetic field Bo exists. Since the
decorrelation times for η < 1 are larger than one Larmor period, the Larmor motions are not completely disorganized
and contribute to the correlation function with some harmonics generated by nonlinearities. The inflexion of the

function indicates that it behaves as e−aτ2

as τ → 0 and then decreases exponentially in e−ντ as τ → ∞. Thus the
determination of τs and νs by a numerical integration of the correlation function is accurate.

In Fig. (2) we show the scattering frequency g(η, ρ) = νs/ω̄L, which is the main quantity of interest for evaluating
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FIG. 2: The scattering function g(η, ρ) = νs/ω̄L as a function of rigidity ρ. The symbols correspond to the measurements
made through our Monte-Carlo experiments and correspond to various turbulence levels, as indicated. These results have
been obtained using the FFT numerical method (see text), except for the filled circles which correspond to the GJ algorithm.
The vertical dashed lines indicate the range of validity of our FFT algorithm (i.e. all symbols except crosses), delimited
by ρmin = kmin/kmax, and ρmax = 2π, which correspond respectively to Larmor radii rL = Lmax/πNg (1/π cell size) and
rL = Lmax. The simulation for η = 1 shown by crosses has been obtained with a much larger dynamic range than the others,
i.e. kmax/kmin = 104. Finally, the dotted lines correspond to power law approximations with slopes 2/3 and −4/3. See text
for comments.

the transport coefficients. This figure shows several interesting features which deserve further comments. First of all,
one finds that both methods for calculating the magnetic field, i.e. FFT and GJ, agree well within the range of validity
of the former method, namely for ρmin

<∼ ρ <∼ ρmax, where ρmin = kmin/kmax, and ρmax = 2π. These two limiting
rigidities correspond to Larmor radii of order of the cell size and of the maximum scale of turbulence respectively, and
result from the discreteness and periodicity of the magnetic field grid, as explained in Section II B. One finds that the
scattering function behaves as a power-law with different slopes depending on the rigidity and turbulence level. For
ρ <∼ ρmin, it must be emphasized that the results cannot be trusted for the FFT results, i.e. all symbols except filled

circles, and the change of slope may be artificial. For η < 1 and ρ < 1, it appears that g(η, ρ) ∝ ηρ2/3, in accordance
with the quasi-linear prediction since 2/3 = β − 1.

For ρ > 1, one finds g(η, ρ) ∝ ηρ−4/3, an unexpected result, since the resonance conditions cannot be satistified at
these high rigidities, and the quasi-linear theory thus predicts a sudden drop of the scattering frequency at ρ > 1.
In Appendix A, we provide a first theoretical explanation of this result by expansion of the particle trajectory in
the random displacement and statistical averaging of a non-perturbative resummation of an infinity of graphs of
correlations along the trajectory.

For η = 0.99 and ρ <∼ 1 one notes a flattening of the scattering function with recovery of the exponent 2/3 power
law at smaller rigidities. This flattening is definitely present for η = 1 (no mean component of the magnetic field), and
correspond to the phenomenological Bohm diffusion regime, as will be seen further below; however, it only extends
over slightly less than a decade in rigidity for 0.1 <∼ ρ <∼ 1, even though for that simulation the dynamic range was
very large kmax/kmin = 104. At maximum pitch angle scattering, i.e. when ρ ≃ 1 and η ≃ 1, the scattering function
g ≃ 0.5, i.e. the pitch angle scattering time τs is of order 2 Larmor times tL. It should be noted that we define the
rigidity with respect to the maximum scale of turbulence, which strictly speaking does not coincide with the coherence
scale lcoh of the turbulent magnetic field. In effect, the spatial correlation function of the turbulent component is
defined as

〈B(x + r)B(x)〉 = 〈B2〉
∫

dk sin(kr)
kr S(k)

∫

dk S(k)
, (13)

with S(k) ≡ k2〈B2(k)〉 the power spectrum. This integral cannot be integrated analytically for a power-law spectrum
S(k) ∝ k−β but one can check numerically that the maximum of the correlation function occurs at scale lcoh ≃
0.77Lmax/2π.
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FIG. 3: Behavior of the averages 〈∆x2〉/∆t in units of rLc, as a function of the time interval ∆t in units of tL, for various
turbulence levels (ρ = 0.848), and for both the transverse displacement (lower thin line curves) and parallel displacement (upper
thick curves). One sees the transition from the weakly perturbed propagation regime 〈∆x2〉 ∝ ∆t2 to the diffusion regime
〈∆x2〉 ∝ ∆t, which appears here as a plateau. The transition duration depends on the turbulence level, and is of order of τs

the scattering time. The diffusion coefficients are given by the levels of the plateaux. Obviously, D‖ ≫ D⊥ for η < 1 and the
two meet in the limit η → 1, as expected.

Turning to the spatial diffusion coefficients, it is interesting to plot the statistical estimators for D‖ and D⊥ given
by Eqs. (4),(6) as a function of time for different turbulence levels, and the result is shown in Fig. (3).

This figure illustrates the transition from the regime in which the particle orbit is weakly perturbed and memory of
the initial conditions is kept to the regime in which this memory is lost and the particle diffuse, 〈∆x2〉/∆t ≈constant.
The level of this plateau gives the magnitude of the diffusion coefficient; Fig. (3) also gives an idea of the uncertainty
in our measurement of diffusion coefficients. Finally, this figure also confirms the expected results D‖ ≫ D⊥ when
η ≪ 1 and D‖/D⊥ → 1 as η → 1. It should be pointed out that the initial value of the pitch angle cosine was

µ = 1/
√

2 in all simulations; we have checked that our results are insensitive to this value as long as the turbulence
level η >∼ 0.1, as expected.

In Fig. (4), we show the behavior of the parallel diffusion coefficient as a function of rigidity for various turbulence
levels. The dotted lines correspond to the approximation of D‖ obtained from the calculation of τs using Eq. (4), and
the agreement appears excellent. This study does not confirm the existence of a Bohm scaling. More precisely, the
Bohm diffusion coefficient DB ∝ rLv only applies at η = 1 in the range 0.1 <∼ ρ <∼ 1, in agreement with the similar

conclusion for the scattering function. In all other cases the quasi-linear prediction is verified, i.e. D‖ ∝ ρ1/3 for
ρ < 1. We also found that a diffusion regime exists for rigidities greater than the upper bound of the resonance region,
i.e. ρ > 1, for as far as we have searched, or about 1.5 decade. In this regime ρ > 1, D‖ ∝ ρ7/3, for all values of η.

B. The issue of transverse diffusion

In Fig. (5), we plot the behavior of the transverse diffusion coefficient as a function of rigidity for various turbulence

levels. It is useful to plot also the quantity
(

D⊥/D‖
)1/2

as shown in Fig. (6). Indeed, the noise of the simulation is
then reduced and this figure allows to compare directly the power law behaviors of D⊥ and D‖.

This figure indeed reveals a clear trend. For all η, the ratio D⊥/D‖ is independent of rigidity for ρ < 1 , and

scales as ρ−2 for ρ > 1. A similar regime has been found by Giacalone & Jokipii [8] for ρ < 1, albeit with slightly
lower values than ours. This constancy is interpreted in the following as the signature of diffusion due to the chaotic
wandering of the guide center carrying field lines. The importance of the guiding center diffusion was pointed out by
Jokipii [5] as early as 1966 in order to correct the quasi-linear result; however this derivation does not apply to high
turbulence levels. Finally, the ratio D⊥/D‖ converges as expected to 1 for all ρ when η → 1. However it is interesting

to note that even at η = 0.99, there remains the power law dependence for ρ > 1, D⊥/D‖ ∝ ρ−2.

We have found evidence for subdiffusive regimes 〈∆x2〉 ∝ ∆tm, with m < 1, at low enough rigidities ρ <∼ 10−2
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FIG. 4: The parallel diffusion coefficient D‖ in units of rLc as a function of rigidity for various turbulence levels. The symbols
and vertical dashed lines are as in Fig. (2). The dotted lines are obtained from the pitch angle scattering rate, using Eq. (4).

FIG. 5: The transverse diffusion coefficient as a function of rigidity for various turbulence levels, with the same notations for
the symbols as in Fig. (4).

and for η < 1. On analytical grounds one expects m = 1/2, corresponding to the so-called process of compound
diffusion [12, 13], and we have found values of m close to this value indeed. However we have not been able to
investigate in detail this issue, as it is very consuming in terms of computer time. In effect, this can be studied only
using the GJ algorithm, since it takes place at low rigidities outside the dynamic range of the FFT algorithm. We
have thus decided to postpone the study of these anomalous regimes to a subsequent publication.

C. Caracterisation of magnetic chaos

When the magnetic field is a superposition of a mean field and an irregular component depending on all three spatial
coordinates, the field line system generically exhibits chaotic solutions. For instance it is sufficient to use a distribution
of Fourier modes following a power law in wavenumber to obtain a chaotic system. However a two-dimensional field
cannot have chaotic field lines, and a one-dimensional system cannot produce transverse diffusion, as the particles are
confined in a flux-tube by conservation of the adiabatic invariant [14]. An example of this phenomenon is shown in
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FIG. 6: The square root of D⊥/D‖ as a function of rigidity for various values of η. The notations of symbols are as indicated
and as in previous figures. The dotted curves overlaid on this figure correspond to the classical scattering result given by
Eq. (10), and correspond from bottom to top to the represented values of η in increasing order except for η = 1. These models
account marginally for the numerical results for high rigidity particles ρ >

∼ 1 and small turbulence levels η <
∼ 0.5, but diverge

significantly from the experiment in other regimes.

FIG. 7: Transverse displacement of particles in three-dimensional chaotic turbulence (thick line) and in one-dimensional non-
chaotic turbulence (thin line). In both cases, η = 0.5, and for one-dimensional turbulence, the inhomogeneous component
is taken to depend on the coordinate z, with the homogeneous magnetic field component lying along the z axis. Note the
difference in behavior: in one-dimensional turbulence, the particle is confined to a flux tube and does not diffuse.

Fig. 7 in which we show the transverse wandering of a particle in three-dimensional and one-dimensional turbulence.
In a three-dimensional chaotic system the separation between two initially adjacent field lines first increases expo-

nentially ∝ exp(s/lK) as a function of the abscissa s along the field line, with characteristic Lyapunov exponent lK,
also called the Kolmogorov length. When the separation has become larger than the coherence length of the magnetic

field, it behaves diffusively with magnetic diffusion coefficient Dm ≡ 〈∆r2〉
2∆s , where ∆r denotes the separation between

the two field lines.
Our numerical computation of the field lines clearly displays this two- step behaviour. In Fig. 8, we plotted the

separation squared between two field lines as a function of the curvilinear abscissa for η = 0.08. These calculations
have been obtained by integrating the equations defining the field lines, namely dx/B̄x = dy/B̄y = dz/B̄z, instead
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FIG. 8: The square of the separation distance between two field lines as a function of the curvilinear abscissa along the field
line. The exponential divergence followed by the diffusion regime is clearly identified. The transition between these two regimes
occurs at s ∼ Lmax.

FIG. 9: Kolmogorov length and magnetic diffusion coefficient as functions of η. The two lengths are normalized to the largest
scale of turbulence Lmax.

of integrating the particle equation of motion. Figure 8 clearly shows this two-step behavior and confirms that the
transition from one regime to the other occurs when s ∼ Lmax.

This calculation allows us to measure the two lengths lK and Dm with a relatively good accuracy. The results are
reported as function of η in Fig. (9).

The effective transverse diffusion of particles in a chaotic magnetic field has been derived by Rechester & Rosen-
bluth [15]. Here we extend their argument by assuming that the primary transverse diffusion is anomalous (sub- or
super-diffusive). The problem can be stated as follows. After n scattering times, parallel diffusion leads to a diffusion
in curvilinear abscissa 〈∆s2n〉 = 2D‖τsn, whereas the transverse primary variation causes transverse displacement such

that 〈∆x2
⊥〉 ∼ r2Ln

α, with α = 1 for normal diffusion, and α < 1 for subdiffusion. Because of field line exponential
divergence, until the separation is of order the correlation length, say after nc scatterings, the transverse displace-
ment is amplified exponentially by a factor e2sn/lK with sn =

√

2D‖τsn. After nc scatterings (nc ≫ 1), an effective
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transverse diffusion coefficient can then be estimated as:

D⊥ =
〈∆x2

⊥〉
2∆s

∆s

∆t

∣

∣

∣

∣

nc

(14)

Because the particles almost follow the field lines, the first factor can be approximated by the magnetic diffusion
coefficient Dm, and one gets:

D⊥ = Dm
v

√

3nc/2
. (15)

The number nc is obtained by equating the separation distance and the transverse correlation length of the field lines
l⊥ (in our case l⊥ ≃ Lmax):

rLn
α/2
c exp

(

√

2D‖τsnc

lK

)

= l⊥ (16)

which leads to

√
nc ≃ 3

2

lK

l̄
log

[

l⊥
rL

(

l̄

lK

)α]

, (17)

where l̄ ≡ vτs (the scattering length). The main result is that magnetic chaos amplifies the transverse diffusion in
such a way that it becomes a sizable fraction of the parallel diffusion:

D⊥ =
2Dm

lK log
[

l⊥
rL

(

l̄
lK

)α]D‖ (18)

As can be seen, the primary subdiffusion does not refrain the effective diffusion due to chaos. When α = 1 (non-
anomalous primary diffusion), the logarithmic factor reads ≃ log (l⊥/glK), with g the scattering function as before.

Finally note that the above regime of diffusion applies at late times after nc scattering times. The intermediate
regime, for n scattering times, with n < nc, leads to sub-diffusive motion (compound diffusion), with ∆x2

⊥ ∝ ∆t1/2,
see for instance Ref. [13]. We have found evidence for such a regime, but a detailed study of its behavior lies beyond
the present work and is defered to a later study.

No theory gives the ratioDm/lK, except for some toy models such as the Chirikov-Taylor mapping [17]. However our
numerical experiment can provide a fairly accurate estimate of this ratio. In particular we find that the Kolmogorov
length lK ∝ Lmaxη

−0.9±0.1 and that the magnetic diffusion coefficient Dm ∝ Lmaxη
1.4±0.1 as long as η ≤ 0.5 [see

Fig.(9)]. Beyond this limit, our calculations of DM and lK do not provide accurate estimates of these lengths,
especially for the Kolmogorov length which loses its physical meaning when η reaches unity. Therefore bearing in
mind that the two diffusion coefficients become the same as η → 1, we conjecture that the result should be:

D⊥ = η2.3±0.2D‖ . (19)

when η ≤ 0.5. This non perturbative result would be in agreement with the perturbative result obtained by Chuvilgin
and Ptuskin Ref. [16] for small amplitude (written A) large scale varying fields, the ratio between the two coefficients
being proportional to A4.

Finally, it is important to note that our numerical results for D⊥/D‖ shown in Fig. 6 have been obtained indepen-
dently of the above magnetic diffusion law. We find, in agreement with the above relation, that D⊥/D‖ is independent

of ρ for ρ < 1, and that D⊥/D‖ ∝ η2.3 provides a good fit to the scaling observed at η < 1. However the numerical
prefactor in this relation is rather of order ≃ 0.2 for η < 1, whereas it should be ≃ 1 if the extrapolation could be
taken up to η = 1. Nevertheless, the above provides solid evidence in favor of a dominant contribution of magnetic
diffusion to the process of transverse diffusion.

IV. SOME APPLICATIONS

In this section, we offer revised estimates of the maximal energy that can be attained by Fermi acceleration
mechanisms by comparing the acceleration time and the time of escape of cosmic rays outside of the accelerating
region using the results obtained in the previous section. We first consider the case of Galactic supernovae remnants
(SNR) and so-called superbubbles, and then turn to the case of jets in extragalactic sources.
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A. Supernovae remnants and super-bubbles

The lagging questions of the production of cosmic rays in supernovae remnants has been recently reviewed in
Ref. [18]. One of the major problems in accounting for the observational data is that the maximum energy achieved
by the Fermi process in the SNR shock is well below the so-called ”knee”-range 1014 − 1017 eV. If one uses the Bohm
approximation to the diffusion coefficient, there is hope to reach the knee energy with sufficient efficiency to expect
significant γ-ray emission resulting from π0 decay generated by pp-collisions. The lack of detection of these gamma-
rays [19] or their marginal detection at best, ruined these optimistic assumptions. The Fermi acceleration at a shock
of velocity us is characterized by an acceleration timescale tF1 ≃ 2D/u2

s. In most of the shock region, D ≃ D‖ hence

tF1 ≃ τs/β
2
s ≃ tL/(gβ

2
s), where βs ≡ us/c. The maximum energy is limited by the age of the supernovae remnants,

and one thus obtains

ǫSNR ∼ 1.8 × 1014Zg

(

βs

10−2

)2(
t

300yr

)2(
B

1µG

)

eV . (20)

This result differs from [18] only by the factor 3g. This factor is close to unity when the Bohm scaling applies; but, as
we have found in Section III, in fact g ∝ ρ2/3. Strictly speaking this scaling is valid for Kolmogorov turbulence, and
one expects the turbulent magnetic field downstream to differ from isotropic three-dimensional Kolmogorov, but the
above scaling serves well for order of magnitude estimates. Moreover ρ≪ 1 for Larmor radii smaller than turbulence
correlation length which could be the case even for the most energetic particles. The Bohm approximation thus
appears very optimistic.

Super-bubbles correspond to huge cavities created by ∼ 100 SNR shock waves built around massive stars associa-
tions. The size of these regions can be a sizable fraction of the galaxy disk thickness h ≃ 120 pc). In effect, a typical
super-bubble radius can be estimated as [20]

RSB(t) ≃ 66 pc

(

L

1038erg/s

)1/5
( n0

1cm−3

)−1/8

t
3/5
Myr, (21)

where L measures the mechanical luminosity of the OB-stars association, n0 the particle density of the surrounding
interstellar medium ≃ 1 cm−3, and tMyr ∼ 30 is the super-bubble lifetime in units of Myr. The bubble plasma is more
dilute than the interstellar medium by at least two orders of magnitude and thus the Alfvén velocity is much greater.
This density reads [20]

nSB ≃ 1.6 × 10−2cm−3L
6/35
38 n

19/35
0 t

−22/35
Myr κ

2/7
0 , (22)

where κ0 is a number of order unity [20]. The bubble is traversed by many shock fronts propagating with velocity of
order or greater than the Alfvén velocity; a second order type of Fermi acceleration is thus at work. Its acceleration
time scale is given by tF2 ∼ (c/VA)2τs = (c/VA)2tL/g. The maximal energy is limited by escape of the particles, which
is governed by the diffusion across the galaxy disk thickness for the most energetic. A strict lower limit to the time of
escape τesc can be obtained by using the parallel diffusion coefficient, since τesc ∝ 1/D with D the diffusion coefficient.
Transverse diffusion would improve the confinement time and thus lead to a higher maximal energy; however one
should then take into account the fact that magnetic lines come out of the galaxy disk and unfold in the halo. Let us
consider the lower estimate:

τesc =
h2

2D‖
=

3h2

2c2tL
g. (23)

The maximal energy for acceleration by second order Fermi process in super-bubbles then corresponds to τesc ≃ tF2,
and reads

ǫSB ≃ 4 × 1012eV gZ

(

B

1µG

)2

t
32/35
Myr , (24)

where we used no = 1cm−3. Therefore the second order Fermi process in super-bubbles might cover the knee range
with slightly optimistic assumptions, since the magnetic field intensity can easily reach 10µG in these super-bubbles,
and tMyr ∼ 30. Moreover, at that maximal energy the rigidity reaches unity and therefore g ∼ 0.5η, smaller but close
to unity . At this point it is useful to recall that the confinement limiting energy of cosmic rays in the galaxy obtained
by equating the Larmor radius with the thickness h is of order Z × 1017 eV.
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B. Extragalactic Jets and Hot Spots

Extragalactic jets emanating from Active Galactic Nuclei have been considered as possible sources of ultra high
energy cosmic rays with E >∼ 1018 eV because the confinement limit in a jet of radius Rj and bulk Lorentz factor Γ is

ǫcl = 1021eVZΓ

(

B

1G

)(

Rj

1pc

)

(25)

and for the powerful, strongly collimated and with terminal hot spots FR2 jets, the product BRj is roughly uniform
in the jet and is estimated as

BRj ∼ 0.1 G.pc

(

M∗
108M⊙

)1/2

, (26)

where M∗ is the mass of the central black hole. Indeed, asymptotically, the magnetic field at the edge of the jet is
dominated by its toroidal component; therefore the product BRj is governed by the current generated by the central
engine along the axis. It slightly decreases along the jet, because the return current progressively establishes through
wrapped lines off axis like butterfly wings [21, 22]. These jets are launched if the magnetic field intensity is close to
equipartition with the radiation pressure in the central region, i.e., within 10 gravitational radii. This corresponds
to B ∼ 1kG(M∗/108M⊙)−1/2 within 10AU(M∗/108M⊙). Thus the performance of the jets as UHE cosmic rays
accelerators tightly depends on the nature of the central engine. At the base of the jet, B ≃ 100 mG for Rj = 1 pc
is a reasonable number. In the hot spots of the FR2 jets such as those of Cygnus A, B ≃ 10−4 G for a region of size
∼ 1 kpc. Thus with Γ = 10, the confinement condition in jets rules out the possibility of generating ultra-high energy
cosmic rays of energies larger than ∼ 1020 eV. In the case of FR1 jets, which are less powerful, less collimated, and
without hot spots, the limiting energy is even smaller since the product BRj , although not well known, is very likely
lower.

As usual, the escape of the highest energy cosmic rays is governed by diffusion across the jet and

τesc =
R2

j

2D⊥
≃ 3

2

R2
j

η2.3c2
g

tL
, (27)

where we have use our previous result that perpendicular diffusion is governed by magnetic diffusion of the field line,
and D⊥ ∼ 0.2η2.3D‖. One thus finds that indeed most high energy cosmic rays escape before reaching the end of the
jet, since

τesc ≃ 2 × 104yr
gZ

η2.3

(

Rj

1pc

)2(
B

1G

)

( ǫ

1018eV

)−1

, (28)

to be compared with a travel time of ≃ 1 Myr to travel 300 kpc, the typical length of extragalactic jets. Here as well
the maximal energy for Fermi acceleration is obtained by equating τesc with the acceleration timescale for acceleration
in shocks moving at speed βsc. This gives

ǫmax ≃ βs
g

η1.15
ǫcl. (29)

With the plausible assumption of Kolmogorov turbulence, g ∼ 0.5ηρ2/3, we finally obtain the maximal energy as a
fraction β3

s of the confinement energy, the estimate being weakly sensitive to the turbulence level:

ǫmax ≃ 1021eV β3
sZΓ

(

B

1G

)(

Rj

1pc

)

. (30)

Centaurus A is a well-known example of active galactic nucleus, actually the closest to us (distance 3.4 Mpc),
which displays FR1 non relativistic jets moving at speeds ∼ 5 × 103 km/s. The jets have both radio and X-ray band
synchrotron emission with luminosity LX ≃ 1039 erg/s extending over several kpc. They have been studied in detail
with high resolution interferometry [23] and recently with the Chandra X-ray satellite [24]. The radio knots and the
X-ray knots are identical in the inner jet. The minimum pressure magnetic field is Beq ≃ 60µG and the maximum
Lorentz factor of the electrons γmax ≃ 8 × 107. The inner jet has radius Rj ≃ 30 pc and a constant opening angle
of 6◦. The product BRj ∼ 1.8 × 10−3 G.pc is clearly too low to produce ultra-high energy cosmic rays. In any case
it has been shown that even if Centaurus A could accelerate cosmic rays to the highest energies observed ∼ 1020 eV,
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their transport to Earth, affected by diffusion according to the rules derived in this paper would lead to strong energy
losses by increased travel distance and anisotropy incompatible with present observations [25].

In the hot spots, the escape is again dominated by diffusion at high energies, but parallel diffusion is more likely
unless there is no ordered field. For a hot spot of size Rhs ∼ a few kpc and magnetic field intensity B ∼ 10−4 G as in
Cygnus A, the confinement limit is

ǫcl ≃ 1020eVZ

(

B

10−4G

)(

Rhs

1kpc

)

(31)

and the maximum energy achievable with a non-relativistic shock is

ǫmax ≃ βsgǫcl (32)

The most extreme energy that can be obtained is when the turbulence is high enough that no organised field is set
up in the hot spot, and the shock is midly relativistic βs ≃ 1. But synchrotron emission of hot spots, like those of
Cygnus A, does not favor this view. Indeed the synchrotron emission by relativistic electrons cuts off in the infrared
range. Since an electron of Lorentz factor γ synchrotron radiates around a frequency νsyn ≃ 115(B⊥/10−4G)γ2 Hz,
an observational upper bound on the electron Lorentz factor is

γe
max ≃ 106

(

B

10−4G

)−1/2

, (33)

and the corresponding rigidity is

ρe ≡ 2πrL
Rhs

≃ 0.3 × 10−7

(

B

10−4G

)−3/2(
Rhs

1kpc

)−1

. (34)

Now this maximum electron energy is obtained by the same Fermi acceleration process, limited by synchrotron losses.
We remind that the characteristic time for a synchrotron radiative process of an electron of energy ǫ = γmec

2 is

tsyn =
6µoǫ

4σT cB2γ2
(35)

where σT is the Thomson cross-section and µo the magnetic permitivitty of vacuum. By equating this loss time with
the first-order Fermi acceleration timescale, we obtain the maximum Lorentz factor that can be achieved

γe
max ≃ 1010βsg

1/2

(

B

10−4G

)−1/2

, (36)

and the scattering function is calculated for the maximum rigidity ρe. Therefore, assuming again Kolmogorov turbu-

lence with g(ρe) ≃ 0.5ηρ
2/3
e , we obtain the approximate value of the turbulence level by equating the two expressions

for γe
max:

η ≃ 0.2

(

βs

0.1

)−2(
B

10−4G

)(

Rhs

1kpc

)2/3

. (37)

Since βs > 0.1 is very likely, the required turbulence level is rather low. This, in turn, reduces drastically the maximum
energy of cosmic ray acceleration, using Eq. (32), Eq. (31) and knowing that g ∼ ηρβ−1:

ǫmax ≃ (ηβs)
1/(2−β)Z

(

B

10−4G

)(

Rhs

1kpc

)

1020eV , (38)

where we explicited the scaling with β the exponent of the power spectrum of magnetic fluctuations; however note
that the estimate of η must be changed with β. For Kolmogorov turbulence, β = 5/3 and using the upper bound on
η Eq. (37) above, the prefactor is of order 10−6(βs/0.1)−3, and acceleration is not sufficient to account for the highest
energy cosmic rays by several orders of magnitude.

This limit cannot be circumvented easily, since it is severely constrained by the cut-off frequency of the electrons
synchrotron emission. The only parameter that could be modified without affecting this cut-off frequency is the
turbulence index β. If one considers Kraichnan turbulence β = 3/2 instead of Kolmogorov turbulence, the prefactor
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(βsη)
3 is changed into (βsη)

2, but η itself is lowered by a factor 10 due to the modified dependence of g on ρe.
Furthermore if hot spots were to radiate synchrotron emission in X-rays, this would increase γe

max by a factor 10 only,
and would not affect drastically our conclusions. Finally the numbers considered above are consistent with recent
observations of the Cygnus A hot spots by Chandra [26], which give an accurate measurement of the magnetic field
intensity ∼ 1.5 × 10−4 G to within a few tens of percents, as obtained by the ratio of the synchrotron-self Compton
luminosity over the synchrotron luminosity, a value which is furthermore close to the equipartition value if there are
no protons! These measurements also confirm model dependent estimates proposed in 1986 [27]. Finally, as an aside,
the same reasoning allows to estimate the level of turbulence required to get the X-ray emission in Centaurus A: with
γmax ≃ 8 × 107, ρe ≃ 1.2 × 10−4, and η ≃ 10−2/β2

s .

V. CONCLUSION

Let us first summarize the results we have obtained. The scattering function g has been found to follow the scaling
predicted by quasi-linear theory in the inertial range ρmin < ρ < 1 for weak to strong turbulence. However we found
that scattering still operates for ρ < ρmin, contrary to the predicted sudden drop of the scattering function; this
facilitates the injection of particles in Fermi processes. For Larmor radii larger than the correlation length ρ > 1,
scattering decreases as a power-law in rigidity unlike the predicted sudden drop of g. Therefore high rigidity particles
still diffuse. One should also mention that the lack of scattering encountered in weak turbulence theory for particles
having pitch angle close to 900 is cured in strong enough turbulence.

The perpendicular diffusion turns out to be very different from the prediction of the quasi-linear theory. Our
investigation of the chaos of magnetic field lines characterised by a Kolmogorov length and a diffusion coefficient with
space increment indicates that this process of magnetic diffusion governs the transverse diffusion of particles.

Our numerical experiment shows that the phenomenological Bohm approximation, characterized here by g ∼ 0.5
and D = αBrLv with αB ∼ 0.7, only applies in a limited range of rigidities 0.1 <∼ ρ <∼ 1., and only in the case of pure
turbulence η = 1. Many estimates in astroparticle physics, that rely on the Bohm conjecture, must be reconsidered.

The slow decrease g ∝ ρ−4/3 of scattering for cosmic rays with Larmor radius larger than the correlation length of
the magnetic field, which implies D ∝ ρ7/3, is of potential importance to the transport of high energy cosmic rays in
our Galaxy as well as ultra-high energy cosmic rays in the intergalactic medium.

The accurate knowledge of the transport coefficients allows to be more conclusive than before on the performances
of Fermi acceleration in some astronomical sources of high energy cosmic rays such as supernovae remnants, super-
bubbles and extragalactic jets. Using new Chandra data, the turbulence level and the maximum energy for electrons
and for cosmic rays can be determined. We confirm the difficulty to obtain energies larger than 1013 eV in supernovae
remnants and shows that the ”knee” range of the cosmic ray spectrum could be accounted for by second order Fermi
acceleration in super bubbles. We also confirm that FR1 jets, such as Centaurus A, although radiating synchrotron
in X-rays, cannot produce UHE Cosmic rays. On the contrary, FR2 jets can produce cosmic rays up to 1020 eV,
but presumably not more, owing to a fairly good confinement; however most high energy cosmic rays escape before
reaching the end of the jet. Hot spots of powerful radio-galaxies have always been considered as a promising source,
but we have found that, because of the low turbulence level implied by the synchrotron cut off frequency, cosmic rays
escape rapidly along the mean field lines by fast parallel diffusion and acceleration is not effective above ǫmax ∼ 1014 eV
for a shock velocity βs ≃ 0.1.

Our paper left opened several important issues that we are currently investigating. In particular it seems crucial
to investigate in more detail the existence of subdiffusive regimes at low ridigities for which we have found evidence.
These regimes play a crucial role in the acceleration processes at perpendicular shocks [13]. Furthermore, we have
described magnetic turbulence as an ensemble of magneto-static modes distributed according to a power law spectrum.
This approximation is justified by the small Alfvén velocity when compared to the velocity of the particles. However
it would be interesting to investigate the effect of temporal and spacial intermittency on the transport properties.
Finally we are currently investigating the transport properties of particles in non-isotropic turbulence as may be
encountered in the vicinity of a shock wave, in particular in the downstream medium. The consequences on Fermi
acceleration will be presented in a forthcoming paper.

APPENDIX A: THEORETICAL APPROACH

The diffusion resulting from the random variations of the momentum due to the irregular magnetic field can be
formalized as follows. Energy conservation, and thus p conservation, allows to treat the problem as random rotations
of the unit vector u such that p = pu: u(t) = R(t, t0)u(t0). Assuming that the correlation functions of the components
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of u are integrable over a caracteristic time τs, the diffusion coefficients are given by

Dij = v2

∫ ∞

0

〈ui(t)uj(t+ τ)〉dτ . (A1)

The correlation matrix is derived by making the appropriate average, after solving the stochastic equation:

u̇ = Ω(t)u (A2)

where the gyro-matrix Ω(t) = sign(q)
∑

α bα(t)Jα, bα(t) being the reduced components of the magnetic field expe-
rienced by the wandering particle and Jα is a 3 × 3 matrix, with components (Ji)jk = ǫijk, where ǫijk is the fully
anti-symmetric Levi-Civita tensor, and ǫ123 ≡ 1.

Note that the Jα are generators of a Lie algebra such that

JαJβ = eβ ⊗ eα − δαβId (A3)

where Id represents the identity matrix, J2
α = −Π⊥

α and JαJβ −JβJα = εαβγJγ , where {eα} is the orthonormal basis,

Π⊥
α the orthogonal projector over the plane transverse to the direction α. We have b1 = b̃1, b2 = b̃2 and b3 = b0 + b̃3,

with 〈b̃2〉 = η and b20 = 1 − η. Moreover b̃(t) = b̃[x0 + ρξ(t)], with ξ̇ = u. The time variable is measured in Larmor
time units, the space variables are reduced to Lmax and wave numbers are accordingly dimensionless and varies from
1 to 1/ρm, where ρm ≡ kmin/kmax = Lmin/Lmax. We make the three following assumptions:

i) The random process becomes stationary beyond the correlation time τs.

ii) The random process can be approximated by a Markoff process beyond the integration time τs.

iii) The random process b̃(t) is supposed to be specified. For instance, it is gaussian with a known correlation

function 〈b̃(t).b̃(t′)〉 ≡ Γ(t− t′).

Assumptions i) and ii) allow to calculate the correlation function with an average matrix that describes the relaxation
of the correlations:

〈ui(t)uj(t+ τ)〉 = R̄ij(τ)〈ui(t)uj(t)〉 (A4)

where R̄ij(τ) = 〈Rij(t + τ, t)〉. Assumption iii) is not exact, of course; however the numerical experiments provide
correlation functions that allow to get a good ”guess”. Then the theoretical method allows to calculate the solution
through iterations, starting with a gaussian approximation, and then estimating, if necessary, non-gaussian corrections,
given a skewness factor.

The formal solution reads:

R̄(t, t0) =

〈

T exp

[
∫ t

t0

dτΩ(τ)

]〉

, (A5)

where the symbol T represents the ”time ordering operator” that organises the expansion of the exponential operator
in products of non commutative operators that are in chronological order. The result can be factorized as the product
of the unperturbed rotation in the mean field times some relaxation operator:

R̄(t, t0) = R0(t− t0).

〈

T exp

[
∫ t

t0

dτΩ̃(τ)

]〉

, (A6)

with Ω̃(t) ≡ R−1
0 (t− t0)δΩ(t)R0(t− t0) (see [28, 29, 30] for technical details).

1. Quasi-linear approximation η ≪ 1

For η small and for a broad magnetic spectrum insuring a short correlation time of the random force compared to
the scattering time, the quasi linear theory applies [5]. This allows to make two approximations. First, the relaxation
operator can be calculated to the lowest order, the so-called ”Bouret approximation” [29, 30], which corresponds to
a summation of all the ”unconnected diagrams”:

R̄(t) = e(Ω0+M)t (A7)
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with

M =

∫ ∞

0

dτ
∑

α

〈

b̃α(t)b̃α(t− τ)
〉

JαR0(τ)Jα (A8)

The simplest way to derive this result is to linearize the evolution equation for R(t, t0):

d

dt
δR = Ω0δR+ δΩR̄+ . . . ; (A9)

which one then solves to lowest order for δR as a function of δΩ and inserts the result in the evolution equation for
R̄. Then we use the isotropy of the spectrum to obtain

M =
1

3

∫ ∞

0

dτΓ(τ)
∑

α

JαR0(τ)Jα . (A10)

The sum of operators can be simplified to:

∑

α

JαR0(τ)Jα = −2 cosω0τΠ‖ − (1 + cosω0τ)Π⊥ − sinω0τJ3 , (A11)

where ω0 is the reduced Larmor pulsation in the mean field, thus ω0 =
√

1 − η.
Second, the correlation function of the magnetic irregularities experienced by the particles is calculated with un-

perturbed trajectories.

Γ(τ) ≃ Γ0(τ) =

∫

d3k

(2π)3
S3D(k)eiρk.ξ

0
(τ) (A12)

where ξ0(τ) =
∫ τ

0 dτ ′R0(τ
′).u(0), and S3D, as the notation indicates is the three-dimensional power spectrum in

Fourier space. These two calculations, thanks to commutation properties, lead to a matrix of the form

R̄(t) = R0(t) exp
[

−g‖Π‖t− g⊥Π⊥t− g0J3t
]

(A13)

The factors g are small numbers of order η that contrains the usual resonances of the quasi linear theory in πδ(k‖ρ|µ|−
nω0). These resonances come from the cosine and sine factors in Eq. (A11) and from the expansion into a Fourier
sequence in nω0 of the exponential involved in Γ0(τ), see Eq. (A12), which introduces Bessel functions of all orders.
However, in pratice, only the main resonances for n = ±1 are retained because the higher resonances involve shorter
and shorter wavelengths which contain less and less energy for usual power law spectra. The contribution in J3

modifies the gyro-pulsation in the rotation matrix R0(t) and therefore is unimportant. We finally retain the following
result:

R̄(t) = e−g‖tΠ‖ + e−g⊥tR⊥
0 (t) , (A14)

where R⊥
0 (t) is the product of the rotation and the transverse projector. We thus obtain the unexpected result that

the transverse relaxation is longer than the parallel relaxation since g‖ = 2g⊥. Then the correlation functions are
obtained by averaging over u(0) and there comes a major problem of quasi-linear theory because the functions g are
proportional to η(ρ|µ|)β−1 for |µ| > µm ≡ ρm/ρ and vanish for |µ| ≤ µm because of the lack of resonance. This
introduce long tail contributions to the correlation functions. This is the symptom of the ”sticky” regime for pitch
angles close to 900 that tends to dominate the diffusion coefficients; which requires to take into account mirroring
effects and/or overlapping of the resonances for µ > 0 close to µm and those for µ < 0 close to −µm, as suggested
in [31]. This difficulty disappears in strong turbulence and for large enough Larmor radii.

2. Theoretical hints with no mean field

The fully deductive theory of this regime is quite difficult. However some attempt can be proposed in the case
where g < 1, i.e. tL < τs, when the correlation time [decay time of Γ(τ)] is shorter than the scattering time.
Thus, for a time longer than the correlation time, we can keep part of the quasi-linear theory, namely the expression
of the relaxation operator involving the integral over Γ(τ). Technically, this corresponds to the summation of the
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unconnected diagrams of the expansion of R̄(t, t0) in Eq. (A5), the other diagrams (”nested” and ”crossed”) being of
smaller orders. Therefore the correlation functions Cij(t) asymptotically decay like e−g∗t and

g ≃ g∗ ≃ 2

3

∫ ∞

0

Γ(τ)dτ . (A15)

Now the main difference comes from the estimation of the correlation function of the field experienced by the particles:

Γ(τ) ≃
∫

d3k

(2π)3
S3D(k)〈eiρk.ξ(τ)〉 . (A16)

We propose the following heuristic estimate. Because the particles follow the field lines when their Larmor radius is
smaller than the wavelength of the modes, we consider only the modes such that kρ > 1. The dominant contribution
in the averaged exponential is then for short time, ξ(τ) ≃ τu(0). Because of the random distribution of u(0) over the
unitary sphere, we get

Γ(τ) ≃
∫

kρ>1

S(k)
sin kρτ

kρτ
dk . (A17)

A similar result is obtained with a gaussian evaluation of the average

〈eiρk.ξ(t)〉 = exp

[

−1

3
k2ρ2t

∫ t

0

C(τ)dτ

]

. (A18)

Inserted into the integral over the spectrum (restricted to k ≥ 1/ρ), it leads to:

Γ(τ) ≃
∫

k>1/ρ

dkS(k) exp

[

−1

3
k2ρ2τ

∫ τ

0

C(τ ′)dτ ′
]

. (A19)

In the integral,
∫ τ

0
C(τ ′)dτ ′ can be approximated by τ for τ < τs (= 1/g in reduced units) and by 1/g for τ > τs.

Therefore

g ≃ 2

3

∫

k>1/ρ

dkS(k)

[√
3π

2kρ
Φ

(

kρ

g

)

+
3g

k2ρ2
e
− k2ρ2

3g2

]

, (A20)

where Φ(x) = 2√
π

∫ x

0
e−y2

dy. When g is small, because kρ ≥ 1, we get a simple result close to the previous one:

g ≃
√

π

3

∫

k>1/ρ

dk
S(k)

kρ
. (A21)

This gaussian evaluation indicates the error made by the previous assumption. Thus, for small ρ, we obtain the
extension of the quasi-linear result, namely g ∼ ρβ−1, and for ρ > 1 to g ∼ 1/ρ. These two approximations are in
agreement with the numerical experiments, except that the measured drop is in ρ−1.3 instead of ρ−1 here. Now the
range of ρ values where g is on the order of unity corresponds to the ”Bohm estimate”, which is, in fact, the maximum
value of g achieved for ρ ∼ 1 only. We thus propose the following final estimate for the scattering function:

g ≃ π

3

∫

kρ>1

S(k)

kρ
dk . (A22)

The error on the coefficient is of order ten percent.
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