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ABSTRACT

This paper investigates the nature of the MHD turbulence excited by the streaming of accelerated cosmic rays in a shock wave
precursor. The two recognised regimes (non-resonant and resonant) of the streaming instability are taken into account. We show that
the non-resonant instability is very efficient and saturates through a balance between its growth and non-linear transfer. The cosmic-
ray resonant instability then takes over and is quenched by advection through the shock. The level of turbulence is determined by the
non-resonant regime if the shock velocity Vsh is larger than a few times ξCR c, where ξCR is the ratio of the cosmic-ray pressure to
the shock kinetic energy. The instability determines the dependence of the spectrum with respect to k‖ (wavenumbers along the shock
normal). The transverse cascade of Alfvén waves simultaneously determines the dependence in k⊥. We also study the redistribution of
turbulent energy between forward and backward waves, which occurs through the interaction of two Alfvén and one slow magneto-
sonic wave. Eventually the spectra at the longest wavelengths are found almost proportional to k−1

‖ . Downstream, anisotropy is further
enhanced through the compression at shock crossing.
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1. Introduction

Fermi acceleration of cosmic rays in astrophysical shock fronts
depends in a crucial way on their transport properties in the
turbulent magnetic field on both sides of the shock. Often the
turbulent field spectrum and intensity are arbitrarily prescribed,
assuming that it has been built by the ambient medium inde-
pendently of the shock acceleration process. However Lerche
(1967), Wentzel (1969) have argued for a long time that the de-
velopment of an anisotropy of the cosmic ray distribution func-
tion triggers an instability upstream of the shock. McKenzie &
Völk (1982) have investigated the consequences of this phe-
nomenon in the energy budget of the shock, in particular, with
respect to the efficiencies of conversion of the kinetic energy into
thermal, turbulent magnetic and cosmic ray energies. Recently,
Bell & Lucek (2001) have shown that the amplification of the
turbulent magnetic energy could be quite significant, producing
a magnetic field intensity suitable to push the high energy cut-
off of the proton distribution up to the “knee” of the cosmic ray
spectrum (E ∼ 3 × 1015 eV).

This theory has then been developed further with accu-
rate investigations of supernovae remnants (SNR). In particu-
lar Ptuskin & Zirakshvili (2003) have analysed the generation
of turbulence and emphasized the importance of advection for
the saturation of the spectrum. They have also carried out a

preliminary examination of the role of the Kolmogorov cascade
in the energy transfer among the excited waves. More recently
Bell (2004) described a non-resonant regime of the streaming in-
stability and has shown that its growth rate should be dominant
in the high wavenumber range (to be discussed in more detail
below). The fast growth of non-resonant modes could provide
the necessary magnetic field intensity during the early stages
of the SNR evolution to accelerate cosmic rays even up to the
cosmic-ray spectrum “ankle” at E ∼ 3 × 1018 eV. If verified this
possibility would bring a strong support to the standard galactic
cosmic-ray model (see the discussion in Drury et al. (2001) and
references therein).

In this paper, we analyze the excitation of Alfvén waves
as a function of the location in the upstream flow and of the
wavenumber taking into account the two instability regimes
(Sect. 2). In Sects. 3 and 4, we calculate the saturation mecha-
nism of the instability considering the advection effect as a func-
tion of the wavenumber and the location in the upstream flow.
We calculate the contributions of two non-linear effects: the
transverse non-linear transfer among turbulent Alfvén waves,
and the non-linear backscattering of Alfvén waves off slow
magneto-sonic waves. These two processes are shown to be rel-
evant and essential to the determination of the anisotropic turbu-
lence spectra. We finally derive these spectra which are essential
to calculate the cosmic-rays transport coefficients. The detailed
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calculation of these transport coefficients is carried out in the
companion paper (Marcowith et al. 2006), hereafter Paper II. In
Sect. 5, we examine the consequences in the downstream flow of
the upstream excitation of the turbulence. In particular we pro-
pose a spectrum for the turbulent magnetic field and estimates
of the relaxation length and of the parameters describing the
dynamo action downstream. The technical derivations are pre-
sented in two appendices.

2. Upstream excitation of MHD turbulence

The instability triggered by the super-Alfvénic flow of cosmic
rays upstream of a shock has been analyzed in two ways: one
is related to the resonant interaction of the cosmic rays with
the Alfvén waves (McKenzie & Völk 1982) and is essentially
described by a kinetic theory. The other one has been recently
proposed by Bell (2004) and emphasized the importance of
non-resonant interactions, in which the DC-electric current of
cosmic-rays generates a Lorentz force responsible for the ampli-
fication of the MHD perturbations. In fact, this is the return cur-
rent in the background plasma which generates the perturbations
under some conditions. Both resonant and non-resonant interac-
tions are actually two regimes of the same streaming instability.

2.1. The non-resonant regime of the instability

The idea developed by Bell (2004) states that the cosmic-ray
fluid weakly responds to perturbations of wavelengths shorter
than their Larmor radii, so that the main response is in the form
of a perturbed current of the background plasma. Actually, the
major role played by the cosmic rays is to generate a DC return
current in the plasma. Because there are resonant interactions
with cosmic-rays of Larmor radius rL at MHD scales k such
that krL(ε) = 1, the validity criteria for the dominance of non-
resonant interactions needs to be analysed carefully. Indeed, if
one states that it holds for wavelengths shorter than the shortest
CR-Larmor radius, then one has to pay attention to the possibil-
ity of going beyond the validity of MHD description, requiring
kδ0 < 1 where δ0 ≡ VA/ωci.

Let us first reformulate the calculation performed by Bell
(2004) as follows. The plasma remains locally neutral, so that
the electric charge carried by the cosmic rays is balanced by
an electric charge carried by the background plasma; n0 being
the number density of electrons or protons, the number density
of protons in the cosmic ray component is χpn0 (χp < 1) and the
electrons contribute to the CR-population with a number den-
sity χen0 (χe < 1); the charge density in the CR-population is
therefore ρCR = (χp − χe)n0e. Similarly, the electric current gen-
erated by the Fermi process upstream is balanced by an electric
current in the thermal plasma; thus we state that ρCR + ρpl = 0
and JCR + Jpl = 0, and JCR = (χp − χe)n0eVsh with respect to
the upstream medium, Vsh being the shock velocity. Therefore,
the electron component of the thermal plasma drifts with respect
to the ion fluid with velocity Vd =

χp−χe

1−χe
Vsh. This drift does

not destabilise the slow magneto-sonic waves as long as it re-
mains smaller than the sound velocity cs, which holds when the
CR-population is sufficiently tenuous that (χp − χe)/(1 − χe) <
M−1 (M = Vsh/cs is the shock Mach number). When the drift
velocity exceeds the instability threshold, the fast growth of
magneto-sonic modes generates an anomalous resistivity that di-
minishes the current down to a value close to the threshold value.
Or in a more explicit way, the magneto-sonic waves are ampli-
fied at a rate proportional to Vd−cs when the drift velocity of the

thermal electrons exceeds the sound velocity. The electrons are
scattered by these waves through Landau resonant interactions
and thus undergo an effective collision frequency proportional
to the energy of the waves. This gives rises to an anomalous
resistivity that tends to reduce the electric current as the wave
amplitude grows and thus to make the drift velocity Vd decrease
to a value close to the sound velocity.

Hereafter, we assume for simplicity that the magnetic
field lies along the shock normal. The generalization of our
results to oblique situations is straightforward, as long as
a de Hofmann-Teller transformation is possible.

In the non-resonant regime of the streaming instability, the
cosmic-ray fluid is, in a first approximation, passive: only the
thermal plasma responds while experiencing a Lorentz force due
to its charge ρpl and its current Jpl, under the frozen in condition
of the magnetic field, namely E+u×B = 0; where u is the local
fluid velocity.

The Alfvén wave equation is then modified as follows:

∂2

∂t2
u − V2

A
∂2

∂z2
u = ρpl

Bo

ρ0
×

(
∂

∂t
u + Vsh

∂

∂z
u
)
. (1)

This leads to two dispersion relations for right and left modes,
namely:

ω2 − k2
‖V

2
A ± kcV2

A

(
k‖ − ωVsh

)
= 0, (2)

where

kc ≡ |ρplBoVsh|
ρ0V2

A

= |χp − χe| eBo

mpVA

Vsh

VA
, (3)

and ρ0 = mp n0.
The magnetic field Bo and the Alfvén velocity VA =

Bo/
√
ρ0 µ0 are to be considered as mean values. The scale k−1

c
must be compared to the minimum MHD scale δ0 ≡ VA/ωci =
c/ωpi, below which MHD no longer applies, and one gets kcδ0 =
|χp − χe|Vsh/VA. From the previous dispersion relations, we eas-
ily deduce that the waves are stable when Vsh < VA, and that they
become unstable only when Vsh is sufficiently larger than VA and
k‖ < kc. Indeed for VA/Vsh � 1, one of the branch is unstable
when ω2 = −V2

A(k‖kc − k2
‖ ) < 0. This unstable mode is of right

or left circular polarization depending on the main composition
of the CR-fluid and the orientation of the magnetic field. Let b
be the unitary vector that points toward the same direction as
the vector −(χp − χe)Bo; then one gets u = ib × u: the mode
is thus of right circular polarization with respect to the direction
defined by b. For the likely case of a proton dominated CR-fluid,
the mode is left-handed with respect to Bo; in other words, it ro-
tates in the same sense as the protons. Such a left mode exists
only for kδ0 � 1, otherwise it is heavily damped by resonant
cyclotron absorption.

Modification of the instability due to the CR-response
Following Bell’s formulation, the modification is described by
the complex factor σ∗(k) such that

ω2 − k2
‖V

2
A ± V2

Akck‖(1 − σ∗) = 0, (4)

where corrections in V2
A/V

2
sh were neglected and σ∗ reads:

σ∗ ≡ 1 + ε

λ1+ε∗

∫ λ∗

0
λεσp(λ)dλ. (5)
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In this work, we assume a CR distribution function f (p) ∝ p−4−ε
between p0 and pmax, where ε may be either positive or negative
(see Paper II, Marcowith et al. 2006); moreover

σp(λ) =
4
3
λ(1 − λ2)

[
ln

(
1 + λ
1 − λ

)
+ iπ

]
+

3
2
λ2, (6)

with λ ≡ [k‖rL(p)]−1 and λ∗ ≡ (k‖r∗)−1 where r∗ ≡ rL(p∗).
Here p∗ (r∗) sets the minimum momentum (Larmor radius)
of the cosmic-ray distribution function. This cut-off depends
in principle on the distance x to the shock front (measured
along the shock normal), since the cosmic ray distribution func-
tion roughly decreases as f (p, x) ∝ exp [−x/�D(p)]; �D(p) =
(1/3)cτs(p)c/Vsh is related to the scattering time τs(p) and is
an increasing function of p. Hence at each distance x there ex-
ists p∗(x), defined by x = �D(p∗), such that the contribution
of the smaller energies p < p∗ is negligible, since the corre-
sponding diffusion lengths are short. The cosmic-ray density is
nCR =

∫ pmax

p0
d3 p f (p) is related to the CR pressure at the shock

front via nCR = 3PCR/(Φp0c), with Φ a dimensionless number
of order log (pmax/mpc) ∼ 10.

For short waves, k 
 1/r∗ or λ∗ � 1, �e{σ∗} � 0 and the
previous result of Eq. (2) holds. In particular, the non-resonant
growth rate is

Gn−res(k‖) � VA(kck‖)1/2 (7)

for 1/r∗ � k‖ � kc. Note that this non-resonant instability is not
operative for a wavenumber k‖ at distances x � �D(rL = 1/k‖)
since the corresponding r∗(x) � 1/k‖, r∗ being an increasing
function of x. The exact spatial dependence of the growth rate
will be specified further on. The cut-off wavenumber kc is rede-
fined from the Eq. (3) by:

kc =
4πnCReVsh

Bo
=

12π
Φ

PCR

B2
o

Vsh

c
1
r∗
· (8)

For long waves, k � 1/r∗ or λ∗ 
 1, �e{σ∗} = 1 and
the CR-response dominates, i.e. the non-resonant instability is
inactive.

2.2. The resonant regime of the instability

The imaginary part of σ∗ describes the resonant interaction
between cosmic rays and Alfvén waves; it is responsible for
a growth rate that reaches a maximum for λ∗ = 1, and for
longer waves (λ∗ > 1),
m{σ∗} = 3π

16
1+ε
λ1+ε∗

. However we will adopt
a slightly different description, in the sense that we expect to get
oblique Alfvén waves that essentially are of linear polarisation,
which changes the resonance conditions as both electrons and
ions, moving forward or backward, can resonate either with for-
ward modes or backward modes. The small instability growth
rate is the same, within an angular factor of order unity, and is
given by

Gres(k‖, x) = G0(k‖, x)φ(x/�D(k‖)), (9)

where �D(k‖) should be understood as �D(rL = 1/k‖); the exact
spatial dependence of φ will be specified further on. The growth
rate G0 is given by

G0(k‖, x) =
π

4
α0(ε)
δ0

nCR

n0

(
cos θ
| cos θ|Vsh − 4 + ε

3
VA

)
(k‖r∗)1+ε, (10)

this expression can be found in Melrose (1986), the coefficient

α0(ε) =
1
2

(1 + ε)(4 + ε)
∫
|µ|1+ε(1 − µ2) dµ.

Equation (10) scales as B
−(1+ε)

similarly to Ptuskin & Zirakshvili
(2003). It clearly shows that only modes propagating forward are
destabilized when Vsh is sufficiently larger than the Alfvén ve-
locity. The resonant growth rate is maximum at the scale r∗ and
scales like r1+ε∗ in regards to the distance to shock front x. Note
that the backward waves are damped at the same rate than the
forward waves are amplified. The original calculation has been
done by Lerche (1967), Wentzel (1969) and used in the theory
of cosmic ray transport by Skilling (1975), then by McKenzie &
Völk (1982) for the excitation of turbulence upstream of a shock.
Hereafter we will assume for simplicity ε = 0, the value of this
parameter will be discussed in Paper II.

The function φ stems from the solution of the evolution
equation

Vsh
∂

∂x
φ +
∂

∂x
D
∂

∂x
φ = 0 (11)

with φ(0) = 1. This function φ represents the spatial profile of
the CR distribution function, which decreases with the charac-
teristic scale given by the diffusion length �D ≡ D/Vsh. The dif-
fusion length depends on the Larmor radius rL, and thus the in-
stability growth rate G(k‖) decreases with φ with a characteristic
length which is the diffusion length for rL � k−1

‖ . This can be de-
rived rigorously from the general expression of the growth rate
that involves a resonance for k‖rLµ = 1 (µ is the particle pitch-
angle cosine). In the case of uniform diffusion coefficient D,
φ = exp (−x/�D).

3. Saturation mechanism and stationary spectra

3.1. The main elements of the theoretical description

WKB-approximation
The turbulence spectrum is not homogeneous but grows when
approaching the shock front like the cosmic ray distribution. The
scale of spatial variation is given at each energy by the diffu-
sion length �D ≡ (1/3)(c/Vsh)cτs, which is much larger than the
Larmor radius at the same energy; τs > tL is the scattering time
defined further below as a function of the turbulence spectrum.
Since the mode, that undergoes a resonant interaction at this en-
ergy, has a wavelength equal to 2πrL, its wavelength is shorter
than the diffusion length and thus a WKB description of the evo-
lution of the spectrum is suitable. This statement is also true for
the non-resonant modes.

Advection versus non-linear coupling
For each spatial scale (or each value of k‖), there are three
relevant time scales: i) the growth time scales of the resonant
and non-resonant modes Gres(k‖, x)−1 and Gn−res(k‖, x)−1, ii) the
non-linear time scale that can be defined as the eddy turn over
time τn−lin(k) = (kū(k))−1, where the turbulent velocity ū(k) is
such that ρ0ū(k)2 is the turbulent energy density at that scale, or
by an appropriate non-linear scattering time; iii) the advection
time τadv(k) at which the mode is caught up by the shock front
that propagates faster than the forward waves (Vsh > VA).

The time scale τadv(k‖) = �D(k‖)/Vsh with k‖rL = 1 and one
obtains

τadv =
1
3

c2

V2
sh

τs(1/k‖). (12)

The pitch angle frequency νs = τ−1
s is known for an isotropic

spectrum S (k), and, if furthermore the spectrum is a power law
of the form ηk−1

min(k/kmin)−β, then

νs � π(β − 1)ωLηρ
β−1, (13)
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with the rigidity defined as ρ ≡ kminrL (see Casse et al. 2002).
In the above equation, the prefactor β − 1 should be replaced by[
log (kmax/kmin)

]−1 if β = 1. The turbulence level η is defined in
the next paragraph.

However, we deal with anisotropic spectra of the form S 3d ∝
k−q
⊥ k−β‖ with q > 2, leading to the same formula Eq. (13)

(see Paper II, for further details). Hereafter, we will use
1D-spectra S (k‖) defined such that

S 3d(k) = 2π(q − 2)k−2
min

(
k⊥

kmin

)−q

S (k‖), (14)

which implies notably∫
d3k

(2π)3
S 3D(k) =

∫
dk‖
2π

S (k‖). (15)

For convenience, hereafter, the normalization of S is defined in
regards to the magnetic energy density at the infinity∫

dk‖
2π

S (k‖) =
∫

d log(k‖)
δB2(k‖)

B2∞
=
δB2

B2∞
, (16)

where δB is the turbulent field amplitude, and B∞ the (original)
uniform component to be taken in the interstellar medium far
upstream of the forward SN shock. The Alfvén velocity VA∞ in
the interstellar medium can then be deduced immediately. The
magnetic field and Alfvén velocity amplified by the streaming
instability are hereafter noted B and VA. The two Alfvén ve-
locities are linked by VA = VA∞/(1 − η)1/2 (see Ptuskin &
Zirakshvili 2003). The quantity η ≡ δB2/(δB2 + B2∞) determines
the strength of turbulence; in particular η → 1 corresponds to
δB/B∞ → +∞. Finally, the magnetic field turbulent amplitude
at a scale k‖ and the 1D spectrum S (k‖) are tied by the relation:
δB2(k‖) = B2∞ k‖S (k‖)/(2π).

While considering the resonant instability, we distinguish the
forward 1D-spectrum S + of forward waves and the spectrum S −
of backward waves. The pitch angle frequency is the sum of the
two contributions because particles resonantly interact with both
spectra irrespectively of direction of motion (this is an important
point related to the resonance condition with linearly polarized
Alfvén waves, as mentioned before). The advection time is using
the definition of νs in Eq. (13)

τadv(k‖) =
2
3

c

V2
sh

1

k2
‖

1
S + + S −

1
1 − η · (17)

Note that the advection time remains finite when the magnetic
field tends to be completely turbulent, i.e. when η→ 1.

We introduce an important dimensionless quantity that mea-
sures the ratio of advection time to instability growth time:
a(k‖) ≡ 2Gτadv. For the resonant regime of the instability using
Eqs. (10) and (17) we obtain:

ares(k‖, x) =
π

Φ
MA∞ξCR

1
k‖(S + + S −)

B
B∞
, (18)

where MA∞ = Vsh/VA∞ is the Alfvénic Mach number mea-
sured with respect to the interstellar magnetic field value, ξCR ≡
PCR/ρ0V2

sh is the ratio of CR to shock pressure and can reach val-
ues as high as 0.5 in non-linear acceleration models (Berezhko

et al. 1996; Berezhko & Ellison 1999), and B
2 ≡ δB2 + B2∞.

The ratio B/B∞ stems from the spatial dependence of r∗ in
Eq. (10) and from the 1 − η factor in Eq. (17); B/B∞ depends

only on the distance to the shock front. The Eq. (18) accounts
for the amplification of the magnetic field along the normal to the
shock front and permits the inclusion of both non-resonant and
resonant regimes in the evolution equation (see Appendices A
and B). We define the reference spectrum S �(k‖)

S �(k‖) =
π

Φ
MA∞ξCR

1
k‖

B
B∞
· (19)

Simultaneously the Alfvénic turbulence develops an energy
transfer mainly in the transverse direction which determines the
shape of the transverse spectrum in k⊥. The non-linear transfer
rate is t−1

n−lin ≈ k⊥ ū⊥ � k⊥ VA∞ × [k‖ k2⊥S 3D(k‖, k⊥)]1/2. We can
define the efficiency of the energy transfer process using Eq. (16)
and the dimensionless number κA

κA ≡ τadv

τn−lin
∼ cVA

V2
sh

1 − η
η
· (20)

This number is sufficiently high for the Alfvénic cascade to
fully develop; this will be discussed in Sect. 3.3. Because the
Alfvénic cascade does not convert energy from the forward
waves into backward waves, the backscattering of Alfvén waves
off slow magneto-sonic waves will also be considered and will
proved to be efficient to redistribute the energy over all the spec-
tra. This discussion is postponed to Sect. 4.

3.2. The spatial profiles and spectra

As mentioned earlier, the quantity r∗(x) denotes the minimum
Larmor radius of streaming cosmic rays at a distance x from the
shock front; r∗(x) can be defined by the condition:∫ x

0

dx′

�D[x′, r∗(x′)]
= 1, (21)

which, if �D does not depend on x, amounts to x = �D[r∗(x)].
The non resonant regime of instability occurs for modes such

that k‖r∗(x) 
 1, hence at distances x > xmin(k‖) with xmin(k‖) de-
fined by r∗[xmin(k‖)] = 1/k‖. Of course, this non-resonant growth
occurs provided there exists cosmic rays with rL > r∗(x), hence
for x < xmax ∼ �D(rL,max). In contrast, the resonant interaction
growth rate is maximal for k‖ = 1/r∗(x), therefore the vicinity of
the shock front x < xmin(k‖) is dominated by the resonant regime
of the instability.

In Fig. 1 we sketch the simultaneous evolution of the turbu-
lence spectra as determined as a function of x and k‖ and the
distribution function of cosmic rays as a function x for two val-
ues of the momenta (hence two values of the Larmor radius).
At point x2, far from the shock front located at x = 0, only the
non-resonant instability has been active in the momentum range
r−1
� (x2) ≤ k‖ ≤ kc(x2) and has produced a spectrum S ∝ k−2

‖
(Sect. 3.2.1). At point x2 as there are no cosmic rays with Larmor
radii such that the resonance condition k‖rL ∼ 1 can be satisfied
in the above momentum range, since r�(x2) is by definition the
minimum Larmor radius of cosmic rays at point x2. The lower
graph of Fig. 1 sketches accordingly the evolution of the dis-
tribution function of cosmic-rays at momentum p�(x2), which
corresponds to the minimum momentum of cosmic-rays at x2,
or, equivalently, to a Larmor radius r�(x2). The minimum mo-
mentum p� (or Larmor radius r�) is a growing function of x, in
particular p�(x2) > p�(x1). Hence, at point x1, the resonant in-
stability has been active in the momentum range k‖ <∼ 1/r�(x1) as
there are cosmic-rays with Larmor radii that can satisfy the res-
onance condition in this range. The corresponding spectrum is
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Fig. 1. Sketch of the evolution of the turbulence spectrum S in the
(x, k‖) plane (upper graph) and of the cosmic-ray distribution func-
tion f (x, p) as a function of x for two values of the momenta (lower
graph). See text for details.

S ∝ k−1
‖ (Sect. 3.2.2). At momenta k‖ >∼ 1/r�(x1), only the non-

resonant instability has been active, for reasons similar to those
discussed above, and therefore the spectrum S ∝ k−2

‖ . Finally, at
the shock front, the resonant instability has overtaken the non-
resonant instability over all the wavelength range, so that the
final spectrum S ∝ k−1

‖ .
Since the two regimes of the instability take place in differ-

ent regions, we can solve for the spectra using in a first place
the equation involving solely non-resonant growth for xmin(k‖) <
x < xmax and then use this solution at xmin(k‖) as the initial con-
dition for resonant growth up to the shock front at x = 0.

3.2.1. The non-resonant regime

The equation governing the growth of the turbulent spectrum
through the non-resonant instability is, using Eq. (7):

Vsh
∂

∂x
S (k‖, x) = −2VA∞

√
kc(x)k‖θ(xmax − x)S (k‖, x), (22)

where kc(x) is defined in Eq. (27). Assuming for the moment
that η is constant (=η∞), Eq. (21) then gives x = �D(r∗), or:

kminr∗(x) �
(
3η∞Vsh

c

)1/(2−β<)

(kmin x)1/(2−β<) , (23)

where β< is the index of the turbulent spectrum in the vicinity
of the shock front, i.e. that which is produced by the resonant
instability. Introducing

ζ ≡ 2
(3η∞)1−m

M−1
A∞

(Vsh

c

)m− 1
2
(

12π
Φ

PCR

B2∞

)1/2

, (24)

with m = (3 − 2β<)/(4 − 2β<), then

S (k‖, x) = S (k‖, xmax) exp

⎧⎪⎪⎨⎪⎪⎩− ζm
√

k‖
kmin

× [
(kminx)m − (kminxmax)m]⎫⎪⎪⎬⎪⎪⎭. (25)

The amplification factor is thus:

S (k‖, x = 0)

S (k‖, xmax)
= exp

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ζm
√

k‖
kmin

(kminxmax)m

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (26)

It turns out that kminxmax = �D(rL,max)/rL,max 
 1, and for β< = 1
(corresponding to Bohm scaling, see next section) ζ ∼ 1. The
amplification would be enormous, the instability would deplete
the shock quickly, unless another saturation mechanism occurred
earlier. Even if we accounted for a variation of η, the amplifica-
tion level would still be too large, as the following saturation
mechanism keeps the magnetic field energy density to a lower
level.

Saturation mechanism
In fact, the non-resonant growth should saturate much earlier. As
the magnetic field gets amplified beyond its initial value, one can
extrapolate the previous calculations by substituting B<k for B∞,

where B2
<k = B2∞ +

∫ k‖
kmin

dlog k′‖ δB
2(k′‖) represents the average

field on scales larger than k−1
‖ , and again δB(k‖) denotes the am-

plified random component on scale k‖.
For |χp − χe| ∼ χp, using Eq. (3), the cut-off wavenumber of

the instability kc can be written as

kc =
4πn∗eVsh

B<k
=

12π
Φ

PCR

B2
<k

Vsh

c
1
r∗
· (27)

The non-resonant instability occurs for wavenumbers 1/r∗ <
k‖ < kc and its saturation is achieved once kcr∗ = 1. This simple
condition leads to a magnetic field energy density:

B2

8π
� 3

2Φ
Vsh

c
PCR ∼ 3ξCR

2Φ
ρ0

V3
sh

c
· (28)

This last estimate is in agreement with Bell (2004).
However, the instability may also saturate through non-

linear transfer effects. As the field builds up through the insta-
bility, the non-linear transfer time tn−lin(k‖) along the k‖ direc-
tion decreases to the point where the instability saturates when
Gn−res(k‖)tn−lin(k‖) = 1. In order to see when this happens, one
can express the non-linear transfer time as:

tn−lin(k‖) =
[
k‖VA(k‖)

]−1
, (29)

with VA(k‖) = δB(k‖)/
√

4πn0, and the non-resonant growth rate
Gn−res(k‖) =

√
k‖kc VA. We then find for the saturated field at

a scale k‖:

δB2(k‖) � 12π
Φ

PCR
Vsh

c
1

k‖r�
· (30)

Integrating this result over k‖r∗ > 1, we exactly obtain the same
saturation level as previously, which is quite remarkable. This
means that even if there is a kind of quasi-linear saturation at
work, within the same time the non-linear transfer remodels
the spectrum. The spectrum derived above from this remodel-
ing process is likely correct but would require a more elaborated
theory together with sophisticated numerical simulations to be
confirmed.

Using Eq. (30) the non-resonant spectrum profile is thus

S (k‖, x) =
2π δB2(k‖)

k‖ B2∞
=

3π
Φ
ξCR

Vsh

c

ρ0V2
sh

PB∞

1

r�k2
‖
∝ k−2
‖ . (31)
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We obtained this result by assuming energy transfer along the
k‖ direction. However the relevant transfer could be transverse
through an Alfvén cascade, as is often considered. In this case
the transfer rate k⊥ū is supposed to be faster and a balance
k⊥ū ∼ Gn−res(k‖) is expected. However it generally requires
the prescription of a relation between k⊥ and k‖ (see Sect. 3.3).
Setting k⊥r� ∼ (k‖r�)m with m ≥ 1, we obtain a spectrum

S (k‖) ∝ kcr
2
�(k‖r�)−2m. (32)

There is no clear constraint on the value of m, which may be
taken to 1 without apparent inconsistency. In any case, as m ≥ 1,
the same estimate (28) of the saturation level is found, which
makes this estimate fairly robust.

To draw a complete picture of the saturation spectrum, one
would need to follow the evolution of non-linear turbulence
transfer at the same time as the evolution of the non-resonant
instability and the position dependence of r�.

3.2.2. The resonant regime

As the turbulence is advected to the shock front, cosmic rays
with Larmor radius rL = 1/k‖ appear and induce the resonant
instability. This latter is then quenched by advection through the
shock, which thus provides the main saturation mechanism of
this instability.

i) For the sake of clarity, we first assume equally amplified
forward and backward spectra, and S = S + + S −. The evolution
equation for this latter reads

∂

∂x
S (k‖, x) = −ares(k‖, x)

e−x/�d

�d
S (k‖, x). (33)

The initial condition for integration lies at x = xmin(k‖) and is
given by the spectrum produced by the non-resonant instabil-
ity. We argue that the resonant amplification will not modify the
overall magnetic field strength B over that produced the non-
resonant instability by a large factor for typical SNe environ-
ment and shock wave values. Hence, to solve Eq. (33) above,
we first assume that the ratio (1 − η)−1 is constant between the
shock front (x = 0) and the point where the resonant instability
first comes into play, defined by x = xmin(k‖) for k‖ = kmin. Then
1/(1 − η)1/2 = B∗/B∞ with B∗ the value of B at this latter point.
In this case, �D does not depend on x in the interval in which the
resonant instability acts, and the equation for S can be solved as:

S (k‖, x) = S (k‖, xmin) +
α̃res

k‖

(
e−x/�D − e−1

) B∗
B∞
, (34)

with α̃res ≡ (π/Φ)MA∞ξCR (see Eq. (18)). The term S nr ≡
S (k‖, xmin) is the spectrum produced by the non-resonant insta-
bility and is proportional to k−2

‖ due to saturation. The second
term on the rhs is the contribution of the resonant instability and
we denote it S r(k‖) at the shock front; it is proportional to k−1

‖
and dominates the former over the whole range of wavenumbers
if aresB∗/B∞ is sufficiently large. In case of the absence of non-
resonant instability, B∗ = B∞ and the expression of α̃res leads to
a resonant saturation level (see Bell & Lucek 2001)

B2
res

B2∞
∼ ξCRMA∞. (35)

The contribution of the resonant instability to the magnetic field
energy density B2

res/8π is obtained from:∫ kmax

kmin

dk‖ S r(k‖) ∼ α̃res
B∗
B∞

log

(
kmax

kmin

)
· (36)

Hence

B2
res

B2
n−res

=
π

Φ
log

(
kmax

kmin

)
ξCRMA∞

B∞
B∗
∼

√
ξCR c
Vsh
, (37)

this ratio is larger than one by a factor of a few for shock ve-
locities lower than a few times ∼ξCRc. Among other things, this
implies that the scaling with k‖ of the total spectrum at the shock
front will be dominated by the resonant contribution.

One can investigate the effect of the above assumption
1/(1 − η) = constant by integrating formally Eq. (33) as:

S (k‖, x) = S (k‖, x∗) +
ares

k‖

∫ 1

0
dy e−y

B[x(y, k‖)]
B∞

, (38)

with y = x/�d(x). The integration in the rhs can be understood
as a function of k‖ so that the dependence of the second term
on the rhs is not strictly speaking ∝k−1

‖ . However B(x)/B∞ is
a decreasing function of x and therefore it is bounded by below
by B[x∗(k‖ = kmin)]/B∞ and by above by B(0)/B∞. The integral
in Eq. (38) is thus bounded by two constants that are independent
of k‖ and whose ratio is a factor B(0)/B[x∗(k‖ = kmin)] ∼ a few.
Hence the integral modulates only weakly the powerlaw ∝k−1

‖
and we conclude that, at the shock front, the spectrum S ∝ k−1

‖ .
It should be noted that the total variation of the magnetic field in
the resonant region is even more limited if ε > 0 as we shall see
in Paper II, as in that case ares varies as (B/B∞)1−ε.

ii) If the backward spectrum is not amplified nor remodeled
by mode coupling, the solution is similar to the previous case
without the factor 2.

iii) If the backward waves are damped at the same rate as the
forward waves are amplified, S +S − = constant. If the forward
spectrum is amplified an obvious solution is obtain for S + 

S +(x = xmin)

S + � S ∗(k‖) × (exp (−x/�d) − e−1)

S − � S +(x = xmin)S −(x = xmin)
S +

· (39)

The backward waves are damped exponentially.

iv) The backward waves can also be generated by backscat-
tering process of forward Alfvén waves off acoustic waves (slow
magneto-sonic modes precisely). This process deserves a spe-
cific development presented in Sect. 4.

3.3. The behavior of Alfvénic turbulence

The behavior of moderate MHD turbulence – moderate in the
sense that a significant mean magnetic field is preserved – is
peculiar when incompressibility is assumed, because of the par-
ticularity of Alfvén waves dynamics. Resonant three wave in-
teractions do not develop as usual dispersive waves, because of
their specific dispersion relation: ω = k‖VA. However, a forward
wave and an opposite backward wave can couple through a res-
onant interaction with a third wave with k‖ = 0 (Bhattacharjee
& Ng 2001; Galtier et al. 2000). The weak turbulence descrip-
tion shows that the energy cascade in the inertial range occurs
only in the transverse direction to the mean field. The station-
ary spectrum is in k−3⊥ and the dependence in k‖ is arbitrary,
which means that it is determined by the mechanism of gen-
eration of the turbulence. This behavior has been observed in
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numerical simulations even in the regime of moderate turbu-
lence (Bhattacharjee & Ng 2001). The extension of the resonant
three wave interaction by taking account of a nonlinear broad-
ening due to the relaxation of triple correlation – the so-called
Eddy Damping Quasi Normal Markovian description – has been
done for MHD turbulence with a mean field by Goldreich &
Sridhar (1995). They have argued that some re-organization of
the spectrum occurs in k‖ due to scaling constraints between
the nonlinear transfer in the transverse direction and the par-
allel propagation of Alfvén waves. Let us summarize this dis-
cussion. These Alfvén waves (also called shear Alfvén waves,
as opposed to MHD waves that have parallel components) are
incompressible and purely transverse to the mean field. The
turbulent energy density ε ∝ ū2⊥ and the eddy turn over time
τn−lin ∼ (k⊥ū⊥)−1. The scale invariant spectrum of the energy
cascade is unavoidably anisotropic S 3D(k⊥, k‖) ∝ k−q

⊥ k−β‖ . The
critical balance assumption of Goldreich and Shridar is that the
transfer rate τtr = τn−lin ∼ τA at all scales, where τA = (k‖VA)−1.
Then for an anisotropic inertial cascade such that the energy
transfer rate at each scale is constant, namely Q ∝ ε/τn−lin ∝
k⊥u3⊥ = constant, a relation between parallel and transverse
wavenumbers is found:

k‖ ∼ Q1/3

VA
k2/3
⊥ . (40)

In this more elaborated description (EDQNM) no energy trans-
fer from forward waves to backward waves and vice versa
takes place. Recent numerical simulations (Cho & Vishniac
2000; Maron & Goldreich 2001) have suggested that the scaling
τn−lin ∝ τA was preserved in all regimes, so that τn−lin = τA/χ,
with χ a constant independent of the wavenumber at all scale,
and τtr = τn−lin/χ. The previous relation is thus extended to

k‖ ∼ Q1/3

χ4/3VA
k2/3
⊥ . (41)

Whereas the weak turbulence theory leads to a spectrum
in k−2⊥ f (k‖) with an arbitrary function f of k‖, the Goldreich-
Shridar theory leads to a spectrum S 3D ∝ k−q−2/3

⊥ f (k‖/k2/3
⊥ ).

When a scale invariance in k‖ is generated in the turbulence sit-
uation, the spectrum is of the form S 3D ∝ k−q

⊥ k−β‖ . Then Eq. (41)
together with the assumption of a constant energy transfer rate
Q ∝ ε/τn−lin with ε ∼ k2⊥k‖S 3D provide a relation between the
index of the parallel spectrum with the index α of the perpendic-
ular spectrum (Galtier et al. 2005):

3α + 2β = 7 withα = q − 1. (42)

This is considered to be the generalization of Iroshnikov-
Kraichnan theory (Iroshnikov 1964; Kraichnan 1965) when
anisotropic effects are taken into account. Still some arbitrari-
ness is maintained. However the CR-instability in resonant
regime generates a turbulent spectrum such that β = 1, and
the transverse Alfvénic couplings between modes then lead to
α = 5/3. Only couplings with slow magneto-sonic modes may
allow to obtain the same spectrum for the backward waves and
the slow waves.

4. Nonlinear generation of backward waves

The process A+ → A− + S +, where A represents Alfvénic modes
and S a slow magneto-sonic mode, is the only process that can
transfer energy from forward waves to backward waves and it
turns out to be efficient, as will be seen further on. The frequency

of the slow magneto-sonic mode is such that ωs = ksVsm(θs);
for convenience, we write it ωs = βsks

‖VA, where, for cs < VA,

βs � cs
VA

(1 + c2
s

V2
A

sin θs)−1/2; this number is assumed smaller than

unity and weakly varying with θs. The process is most efficient
under the resonance condition:ω+−ω−−ωs = 0. Since the wave
vectors are such that k+ − k− − ks = 0, we obtain the following
relations between the parallel wavenumbers:

k+‖ = ks
‖
1 + βs

2
(43)

k−‖ = −ks
‖
1 − βs

2
< 0. (44)

Therefore, when the magnetic field is above the equipartition
value (e.g. VA > cs), βs < 1, and we always get a backscattering
of Alfvén waves off slow magneto-sonic modes. Backscattering
would not be possible with other MHD waves, for obvious kine-
matic reasons. This backscattering process with Alfvén waves
is analogous to the Brillouin backscattering process with usual
electro-magnetic waves of the vacuum. Even if no sonic waves
are excited beforehand, the primary Alfvén waves can gener-
ate them spontaneously above some threshold (see Pelletier &
Kersalé 2000). In the interstellar medium VA � 3 cs; it is already
sufficient to get the backscattering process. The domination of
the Alfvén velocity over the sound speed is even increased at
the external shock of SNr because of their convexity. Indeed
in the shock frame, the ambient medium converges towards the
front at a velocity −Vsh that points towards the center of curva-
ture, the density increases and therefore the frozen in magnetic
field has an amplified transverse component. From the evolu-
tion equations multiplied by τadv, we introduce the dimension-
less parameter

κ ≡ π
12

cVA

βsV2
sh

, (45)

which measures the importance of the backscattering process as
compared to advection. Typically, κ is a number close to one.

For the most interesting cases where the backscattering pro-
cess efficiently remodels the stable spectra, the asymptotic spec-
tra, determined externally by the turbulence in the interstel-
lar medium, can be ignored. The spectra are then proportional
to S ∗(k‖)k

−q
⊥ . Because the diffusion length is generally not con-

stant, but dominated by the spectrum of unstable waves, for
numerical simulation purpose, it is convenient to describe the
profiles of the wave spectra with the help of a dimension-
less variable y defined by dx = �D(rL = 1/k‖, x)dy. Then
the function φ = e−y. We have to bear in mind that, when the
problem is solved for the variable y, we can reconstruct the
spectrum profile in the variable x. Since �D(rL = 1/k‖, x) =
(1/3)(c/Vsh)k−1

‖ (k‖/kmin)β−1η−1(x), one finds:

y = 3
Vsh

c

(
k‖

kmin

)2−β ∫ x

0
dx′kmin η(x′).

The quantity r∗(x) is defined by y = 1 for rL = r∗, hence
y =

(
k‖r∗

)2−β. The regions with y ≥ 1 (y ≤ 1) correspond to
far (close) distances to the shock front and is dominated by the
non-resonant (resonant) waves. Therefore the evolution of the
spectra reduces to a differential system that governs the evolu-
tion of their amplitude as a function of the y variable. As long
as κ is small, the solution given by Eq. (39) is slightly modified
and the order three system that describes the generation of back-
ward A-wave and forward S-wave is sufficient (see Appendix A).
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Fig. 2. Solutions of third order system for different value of the κ param-
eter (see the definition in the text). Even if they have been defined for y
between 0 and 1, the resonant waves profiles are calculated between the
shock front and y = 10 where they match their asymptotic interstel-
lar values. The wave-particle resonance depends on the particle pitch-
angle α, at rL = r∗ we have k‖r∗ cosα � 1, the product k‖r∗ and then y
can be above 1. In the upper panel, κ = 1 is high leading to a strong
conversion of forward Alfvén waves into backward Alfvén waves and
sound waves. For y ≤ 5, the resonant instability takes over the non-
linear transfer, the forward Alfvén waves are produced and the back-
ward waves are pumped. The sound waves are heavily produced be-
tween y = 5 and the shock front. The ratio of forward to backward
Alfvén waves at the shock front is about three orders of magnitude. In
the lower panel κ = 0.1, the production of backward Alfvén and sound
waves is less intense. In both cases the amplification factor B∗/B∞ = 10.
The boundary conditions are: X+ = X− = X∞ = A−2 � 1 and Xs = 0.
All simulations have been performed with ε = 0.

The numerical integration leads to the solutions sketched in
Fig. 2, that shows that for, increasing κ, more and more conver-
sion into backward A-waves and forward S-waves is realized.
However when κ is increased significantly, one has to take ac-
count of the secondary process where backward A-waves de-
cay into forward A-waves and backward S-waves. The evolution
is then described by a system of order four (see Appendix B).
The numerical solutions are displayed in Fig. 3. It can be that
a significant backward spectrum is generated; however without
changing the order of magnitude of the primary spectrum.

5. Downstream: dynamo action and turbulence
relaxation

If turbulence is still moderate downstream, then the spectra
built upstream are transmitted across the front, and thus a k−1

‖
1D-spectrum is maintained downstream. Bohm diffusion would
then applies downstream as well.

Fig. 3. Solutions of the fourth order system. The non-linear transfer
parameter κ = 1 and the damping rate of sound waves is gs = 5 ×
10−3. This choice corresponds to a ratio VA/cs = 3. All simulations
have been performed with ε = 0. The results show that as long as the
damping or growing effects do not dominate the transfer among the
waves (for y ≤ 5), the non-linear transfer mostly produce backward
and forward sound waves equally. In both cases the amplification factor
B∗/B∞ = 10. The boundary conditions are: X+ = X− = X∞ = A−2 � 1,
and Xs+ = Xs− = 0.

5.1. Helicity and estimate of dynamo amplification
downstream

The non-resonant regime of the streaming instability induces
a left-right symmetry breaking. Therefore the turbulence carries
helicity which offers grounds for dynamo action. The helicity
can be calculated in term of the difference between the spec-
trum of right-handed modes S RH and the spectrum of left-handed
modes S LH (the k⊥ dependence has been integrated out):

H ≡ 〈u · rot u〉 = 2V2
A

∫
(S RH − S LH)k‖

dk‖
2π
· (46)

The integrand can be considered as the helicity spec-
trum S H. This spectrum is used to calculate the so-called
“alpha”-parameter of the turbulent dynamo theory:

αD =

∫
Γ(k‖)

ω2
k + Γ

2(k‖)
S H(k‖)

dk‖
2π
, (47)

where Γ is the damping rate of the turbulence in stationary state.
In our problem the main damping mechanism is the shock ad-
vection: Γ(k‖) = 1/τadv(k‖). For the non-resonant modes ω2

k �
Γ2(k‖) and the dynamo coefficient reads:

αD =
2
3

c
V2

A

V2
sh

∫
S RH − S LH

S + + S −
1
k‖

dk‖
2π
=

2c
3π

V2
A

V2
sh

ln
r∗
r0
, (48)

The helicity is transfered through the shock as has been cal-
culated by Schlickeiser (1998). Helicity in the spectrum matrix
leads to a third diffusion coefficient for the cosmic rays because
the two transverse space variable are correlated 〈∆x1∆x2〉 � 0
(see Paper II).

The mean field evolves in the turbulent plasma according to
the following equation:

∂

∂t
A = αDB + u × B + νt∆A, (49)

where νt is the turbulent magnetic diffusivity. A typical scale
for the variation of the mean field arises, namely �dyn = νt/αD
with an associated time scale τdyn = �dyn/u2. More precisely,
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the dynamo modes of wavelength larger than νt/αD grow and it
is expected that the mean field reaches an intensity on the order
of the equipartition value, not more.

5.2. Relaxation or compression downstream

The turbulence properties downstream (level of turbulence,
spectral index) can be constrained from the size of the X-ray
filaments in young SNr (see Parizot et al. 2006). It is shown that
the relativistic electrons with tens of TeV energies producing the
observed synchrotron radiation have a diffusion coefficient close
to the Bohm value. Recently, Pohl et al. (2005) have pointed out
the importance of the relaxation length of the turbulence down-
stream the shock. The authors stressed that the size of the X-ray
filaments observed in young SNr (see the discussion in Sect. 6)
may be well controled by the turbulence rather than by the syn-
chrotron losses. However, the previous analysis has been made
assuming an isotropic turbulence spectrum, which is not correct
at least for two reasons: the turbulence is already anisotropic up-
stream and the magnetic field amplified upstream is compressed
in the direction parallel to the shock front.

In order to elucidate the way the turbulence acts on rela-
tivistic particles, we compare the non-linear Alfvén transfer time
tn−lin(k‖) = [k‖VA(k‖)]−1

tn−lin(k‖) =
l‖

VA
√
β − 1

(l‖k‖)(β−3)/2, (50)

and the term β − 1 in the prefactor should be replaced by
1/log (kmax/kmin) when β = 1. The downstream return timescale
reads:

tret = κ

(
c

Vs

)2 2
3

ts, (51)

ts = (2π)−βη−1(l‖/c)(rL/l‖)2−β being the angular scattering
timescale downstream; in the above expressions, l‖ is the coher-
ence length in the parallel direction. The prefactor κ < 1 ac-
counts for the shortening of the return timescale in compressed
turbulence. The condition tret < tn−lin means the particle does
explore distances smaller than the relaxation length of the tur-
bulence downstream and experience a compressed rather than
a relaxed turbulence during their journey downstream. In the
case of Bohm type turbulence (meaning β = 1) the ratio of the
two timescales translates into

tret

tn−lin
� κ

3π
c

VshMA∞
log(kmax/kmin)−1/2

(1 − η)1/2η
· (52)

Using typical values of the magnetic field, mean density and
shock velocity in our problem (see next section) and acknowl-
edging for a saturation level ofMA∞ξCRB∗/B∞ � η/(1 − η) �
1/(1 − η), we find a ratio tret/tn−lin � 0.5κ (V−1

sh,−1ξCR/Φ)3/4

where Vsh,−1 is the shock velocity in units of 0.1c. The previ-
ous ratio is thus expected to be ≤1 unless the shock velocity is
lower than 10−2c.

6. Astrophysical consequences

Supernova blast waves explore different external interstellar me-
dia (ISM) during their evolution. We consider only two phases of
the SN evolution: the very early free expansion phase where the
shock velocity can reach extreme values as high as Vsh � 0.1c
and the late free expansion phase (or early Sedov self-similar

phase) where the shock velocity drops to Vs � 10−2c. These
two phases are the more relevant concerning high energy cos-
mic ray production. In the latter phase the remnant may expand
either in a hot rarefied (T � 106 K, n � 10−3/−2 cm−3) inte-
rior of a massive star wind bubble or in a warm partially ionised
(T � 104 K, n � 10−1/0 cm−3). The mean ISM magnetic field in
both cases is conservatively taken to 3 µGauss. In the very early
phase of the SNr evolution, the medium is probably much denser
with n � 10−100 cm−3.

The ratio of the saturation magnetic field energy density of
the non-resonant and resonant instability (when both regimes are
present) respectively is S n−res/S res �

√
Vsh/(ξCR c). The non-

resonant regime appears to dominate for the very early free-
expansion phase as already pointed out by Bell (2004), while the
resonant regime dominates by a factor 10−100 (see discussion
in Sect. 3.2.2) in the late free-expansion phase and Sedov self-
similar phases. The magnetic field deduced (only lower limits)
from the size of bright X-ray filaments in young SNr (Berezhko
& Völk 2004; Vink 2004; Völk et al. 2005; Parizot et al. 2006)
is expected to be mostly produced in the resonant regime should
then scale approximately as

√
Vsh (see Eq. (35)). We have seen

above that if the non-resonant regime contributes substantially to
the amplification this dependence is not as simple and the way
the shock decelerates during the earlier phases can modify it.
The amplification by the non-resonant instability may lead in
the most extreme cases to very high amplification levels, point-
ing towards SNr in very early free-expansion phase as efficient
CR accelerators. In that case, the magnetic density should scale
as V3

sh as pointed out by Bell (2004). This issue is of prime
importance and should deserve detailed observational investi-
gations, unfortunately difficult to perform in this SNr evolution
stage. However, this early phase lasts for a very small fraction of
the whole SNr lifetime except in a low density and highly mag-
netised medium as expected in a turbulent hot ISM phase of-
ten called as superbubbles (see for instance Parizot et al. 2004).
Answering the question of the maximum CR energy expected
in SNr and the origin of the CR knee at ∼3 × 1015 eV requires
then a time dependent CR spectrum calculation (see Ptuskin &
Zirakshvili 2005) and to account for the CR diffusion regimes
correctly. If the first point is beyond the scope of the present
work, the second point will be discussed in Paper II.

7. Conclusion

We summarize the main results of the work as follows. Upstream
of an astrophysical shock, the cosmic ray streaming triggers
an instability that has two different regimes: one occurs un-
der resonant condition and dominates the longer wavelengths of
the Alfvén spectrum, the other occurs off resonance and domi-
nates at shorter wavelengths (this is the Bell regime of the in-
stability Bell 2004). In the purpose of investigating the turbulent
transport of the highest energy cosmic rays both regimes have
to be considered over the remnant evolution. The non-resonant
instability saturates either by non-linear transfer effects or by
a quenching effect at kcr∗ = 1. The saturation level is k‖S (k‖) �
ξCR(Vsh/c) M2

A∞/(Φk‖r�). The main saturation mechanism for
the resonant instability stems from the fact that the shock front
catches up with the growing waves over a diffusion length. The
saturation level is modulated by the non-resonant saturation level
according to: k‖S (k‖) � ξCR (MA∞/Φ) × Bn−res/B∞. The non-
resonant regime of the instability dominates the resonant contri-
bution only for very fast shock velocity.
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The streaming instability partially determines the spectrum,
namely its k‖ dependence. The spectra are close to k−1

‖ , which, as
will be shown in the second paper, can lead to a Bohm scaling
for the transport of cosmic rays. The k⊥ dependence of the spec-
trum is remodeled by the non-linear cascade of Alfvén waves,
that essentially works transversally, the transfer time being
short enough as compared to the advection time. The ex-
cited Alfvén turbulence constitutes the scattering medium for
the cosmic rays and it would be incomplete if only the for-
ward Alfvén waves would be present as a result of the reso-
nant streaming instability. A second nonlinear transfer devel-
ops which is the backscattering of primary Alfvén waves off
slow magneto-sonic modes, and which re-distributes the energy
from the forward Alfvén waves to the backward ones and to the
magneto-sonic ones. This process turns out to be unavoidable
because the Alfvén speed exceed the sound speed upstream and
is sufficiently fast compared to the advection time.

Some turbulent dynamo action can be expected downstream,
but the intensity of the mean field should not significantly ex-
ceed the equipartition value. The turbulence is also compressed
at the shock front producing reduced residence time of the rel-
ativistic particles downstream. Apart for low shock velocities,
i.e. lower than 10−2 c, the residence time downstream is lower
than the non-linear transfer time controled by the Alfvenic cas-
cade. The turbulence spectra downstream are likely similar to
those that have been formed upstream, since they correspond to
stationary solutions of the turbulence equations in a mean field,
according to recent developments of the theory of Alfvénic tur-
bulence. This implies that the Bohm regime of cosmic ray trans-
port if true upstream would also apply downstream. Regarding
the magnetic turbulence in the Galaxy where a mean field im-
poses its constraint, a question rises about the determination of
the two indices α and β of the anisotropic spectrum. They are
only linked by the relation 3α+ 2β = 7 (Galtier et al. 2005). It is
reasonable to think that β and thus α are determined by shocks
and thus β = 1 and α = 5/3 (anisotropic Kolmogorov spectrum)
would be ubiquitous.
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Appendix A: The nonlinear operator
of backscattering

The energy spectra are normalized such that ωaNa = S a
3d/ρ0V2

A;
in other words, the Na have the dimension of an action (namely,
an occupation number times �).

Ṅ+ = −
∫

d3 k−

(2π)3

d3 ks

(2π)3
w

× (N+N− + N+Ns − N−Ns) (A.1)

Ṅ− =
∫

d3 k+

(2π)3

d3 ks

(2π)3
w

× (N+N− + N+Ns − N−Ns) (A.2)

Ṅs =

∫
d3 k+

(2π)3

d3 k−

(2π)3
w

× (N+N− + N+Ns − N−Ns). (A.3)

The transition probability has been calculated by Akhiezer &
Akhiezer (1975) and reads

w =
π

8
f

V4
A

ρ0

(k+‖ )2(k−‖ )2(ks
‖)

2

ω+ωfωs

× (2π)3δ(k+ − k− − ks)δ(ω+ − ω− − ωs) (A.4)

with the angular factor f depends on the unitary vectors n ≡ k/k
and defined by

f = f (n+, n−, ns) ≡ ((n+ × eb) · (n− × eb))2

(n⊥+)2(n⊥−)2
(A.5)

where eb is the unitary vector in the direction of the mean
field Bo. The transition probability w can be rewritten in the fol-
lowing way:

w =
π

8
f
| cos θ−|
βsρ0

k+‖ |k−‖ |ks
‖ (2π)2δ(k+⊥ − k−⊥ − ks

⊥)

× 2πδ

(
k+‖ − ks

‖
1 + βs

2

)
δ

(
k−‖ + ks

‖
1 − βs

2

)
·

The last product of the two δ-functions can be written under
several convenient forms for the calculation of the various in-
tegrals. The control parameter κ (Eq. (45)) rises after multi-
plying the nonlinear operator kernel by the advection time τa
(Eq. (17)). Furthermore, assuming unmodified transverse spec-
tra of the form k−q

⊥ with q > 2, when we writes the system
for S +, S − and S s, in term of the variable y, it can be real-
ized that it is scale invariant. Assuming power law solutions
for the S’s, the coefficients of the system are independent of
the wave vectors after integrating over the angles. Because of
the integration of the delta-functions over the k’s, the system
is reduced to a differential system involving three 1D-spectra
depending on a single wavenumber k‖, since k−‖ � −k+‖ and
ks
‖ � 2k+‖ . Before writing the differential system, we approxi-

mate the theory specifically for the case y < 1, where we have
already seen that the spatial variation of the rms magnetic field is
smooth compared to e−y and we fix B at its value B0 at the shock
front and introduce the amplification factor A ≡ B0/B∞. We set
N = X(y)N∗ for the three spectra, where we introduce N∗ such
that S ∗(k‖)2π(q − 2)l2(k⊥l)−q = k‖VA∞N∗(k‖)/ρ0V2

A∞.
The evolution system accounts for the case of substantial

pre-amplification by the non-resonant instability. The third-order
evolution system reads as

(X+ + X−)
∂X+

∂y
= −e−yX+ + Aκ

× [X+X− + (X+ − X−)Xs] (A.6)

(X+ + X−)
∂X−

∂y
= e−yX− − Aκ

× [X+X− + (X+ − X−)Xs] (A.7)

(X+ + X−)
∂Xs

∂y
= −Aκ

2
× [X+X− + (X+ − X−)Xs]. (A.8)

For κ = 0, the ratio of the first two equations leads to X+X− =
constant = X+(y = 1)X−(y = 1).

Appendix B: A more complete nonlinear theory

Because of the efficiency of the backscattering process when
κ ∼ 1, it is reasonable to envisage a secondary generation of
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backward sound waves from backward Alfvén waves, which
also regenerates the forward Alfvén spectrum: A− → A+ + S −.

Ṅ− = −
∫

d3 k+

(2π)3

∫
d3 ks

(2π)3
w

× (N−N+ + N−Ns− − N+Ns−) (B.1)

Ṅ+ =
∫

d3 k−

(2π)3

∫
d3 ks

(2π)3
w

× (N−N+ + N−Ns− − N+Ns−) (B.2)

Ṅs− =
∫

d3 k+

(2π)3

∫
d3 k−

(2π)3
w

(N−N+ + N−Ns− − N+Ns−). (B.3)

We combine the primary and the secondary process, include
damping of the stable waves (actually the backward waves are
damped by the cosmic ray streaming at the same rate as the for-
ward waves are amplified). The damping rate of the sound waves

is
√
π
8

me
mi

k‖cs. We proceed as in the previous appendix to describe

the nonlinear evolution of the resonant instability, and found that
the spectra proportional to S ∗ are still recovered. We then form
the four order differential system on the amplitudes of the spec-
tra that governs the y-profiles:

(X+ + X−)
∂X+

∂y
= −e−yX+ − Aκ

× (X− − X+)(X+s + X−s ) (B.4)

(X+ + X−)
∂X−

∂y
= e−yX− + Aκ

× (X− − X+)(X+s + X−s ) (B.5)

(X+ + X−)
∂X+s
∂y
= gsX

+
s − A

κ

2
× (X−X+ + X+X+s − X−X+s ) (B.6)

(X+ + X−)
∂X−s
∂y
= gsX

−
s − A

κ

2
× (X−X+ + X−X−s − X+X−s ). (B.7)

In the case ε = 0, gs is a pure number: gs = A 2
3

√
π
8

me
mi

ccs

V2
sh

which

has to be compared with κ; typically gs ∼ (10−3−10−2)κ. It turns
out that a relaxation of the sound waves is possible only for g2

s >
κ2(X+ − X−)2, which implies X+ � X−.
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