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ABSTRACT

We present a new derivation of the acceleration of fast charged particles by random compressions and expansions
based on a quasilinear approximation applied to the Parker transport equation, and explore its consequences. This
process has been suggested in a recent series of papers by Fisk & Gloeckler (F&G) as the origin of the quiet-time
suprathermal ion population observed throughout the inner heliosphere with an omnidirectional distribution function
close to the form f (v) ∝ v−5. Our derivation does not agree with a recent equation derived by F&G. We show that,
while our equation conserves particles, the F&G equation does not. Solutions of the correct quasilinear equation
are presented, which show that the compressive acceleration process does not produce power-law velocity spectra
with indices less than (i.e., softer than) −3. We show that the transport equations for two other types of stochastic
acceleration, by a spectrum of Alfvén waves and by transit-time damping of oblique magnetosonic waves, yield
comparable acceleration rates but also do not produce power-law spectra with indices less than −3. Conversely, the
process of diffusive shock acceleration, responsible for energetic storm particle events, corotating ion events and
probably most large solar energetic particle (SEP) events, readily produces power-law velocity spectra with indices
in a range including −5. It is suggested that the quiet-time suprathermal ion population is composed predominantly
of remnant ions from these events as well as a contribution from impulsive SEP events.
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1. INTRODUCTION

In a recent series of publications and presentations, Fisk &
Gloeckler have presented evidence for a ubiquitous suprather-
mal “tail” characterizing the ion distributions in the solar wind
(Gloeckler et al. 1994; Fisk & Gloeckler 2006, 2007, 2008).
In the frame of the solar wind the tail in velocity space is ap-
proximately isotropic, extends from the solar wind speed vsw up
to ∼30 times vsw (in the approximate range 1 keV nucleon−1

–1 MeV nucleon−1), and is generally characterized by an omni-
directional distribution function of the form f (v) ∝ v−5. These
suprathermal ions occur in both fast and slow solar wind, and in
the inner and outer heliosphere. Their composition is similar to
that of the solar wind (Fisk & Gloeckler 2008). At the highest
energies in this range of ∼1 MeV nucleon−1, the observed dis-
tributions often exhibit an exponential rollover. In view of their
ubiquitous occurrence in the heliosphere, often far removed
from any observed shock waves, Fisk & Gloeckler (2006, 2007,
2008) have suggested that they are accelerated by stochastic ac-
celeration due to turbulent compressions and rarefactions in the
solar wind plasma.

However, this suprathermal tail also occurs in the vicinity
of shock waves. The characteristic spectrum appears in the
compression region bounded by the forward and reverse shocks
in corotating interaction regions (CIRs) in the solar wind
(Gloeckler et al. 1994), a region certainly containing ions
accelerated by the process of diffusive shock acceleration (Fisk
& Lee 1980). In addition, Voyagers 1 and 2 have observed
energetic ions downstream of the solar wind termination shock
with a power-law spectral index close to −5 for energies up to
a few MeV nucleon−1 (Decker et al. 2005, 2008; Stone et al.
2005, 2008). These “termination shock particles” (TSPs) have a
spectral index reasonably close to that of the suprathermal ions
observed by Ulysses within a heliocentric radius of 5 AU (e.g.,

Fisk & Gloeckler 2006). Fisk et al. (2006) have interpreted the
TSPs as a suprathermal tail upstream of the termination shock,
compressed adiabatically at the shock.

Mewaldt et al. (2007a) and Dayeh et al. (2009) have also
investigated the energy spectra of suprathermal ions during
quiet-times in order to eliminate as thoroughly as possible ions
originating at the Sun or at interplanetary shock waves. Quiet-
times are defined as periods with intensities below a prescribed
low intensity for a prescribed period of time. Mewaldt et al.
(2007a) based their study on ACE and STEREO data in the
energy range 0.1–30 MeV nucleon−1. Dayeh et al. (2009)
based their study on Wind and ACE data from 1995 to 2007
in the energy range 0.04–2.56 MeV nucleon−1. Dayeh et al.
(2009) found that the energy power-law index of the differential
intensity ranged from −1.27 to −2.29, a range that includes
−1.5 corresponding to a −5 index for the dependence of the
omnidirectional distribution function on particle velocity. Both
studies found suprathermal tails during quiet times but with
varying and often different spectral indices from the putative
value −5 found by Fisk & Gloeckler. Dayeh et al. (2009) also
found an ion composition distinct from the solar wind, which
correlated with solar energetic particle (SEP) and energetic
storm particle (ESP) events during solar maximum and with a
mixture of solar wind and CIR-associated energetic ions during
solar minimum.

Mewaldt et al. (2007b) performed another pertinent study
based on ACE and GOES data, of the fluence energy spectra
integrated over each year from 1997 to 2005. These spectra
include all particles: quiet-time suprathermal particles, grad-
ual SEPs presumably accelerated at shock waves, impulsive
SEPs presumably accelerated at magnetic reconnection sites as-
sociated with a solar flare, ESPs accelerated at interplanetary
shocks, particles accelerated at CIRs, anomalous cosmic rays
presumably accelerated at the solar wind termination shock,
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and any “remnant” particles left over from the discrete events
listed above. Interestingly, the observed energy spectral index of
the fluence in the energy range from 0.1 to 2 MeV nucleon−1 for
the eight different years varied between −1.3 and −2.1, which
corresponds to a velocity index not far from the ubiquitous value
−5 observed by Fisk & Gloeckler.

We conclude that observations do not always show a −5
spectrum, but that values near −5 are frequently observed. In
view of this and the presence of these spectra both at shocks and
during quiet times, we address the possible explanations of the
suprathermal energy spectrum from a theoretical perspective,
investigate the mechanism of stochastic acceleration in some
depth, provide a critical assessment of the derivation provided
by Fisk & Gloeckler (2008) for a statistical ensemble of
compressions and rarefactions, and finally discuss the likely
origin for these suprathermal ions.

2. POSSIBLE ACCELERATION MECHANISMS

Ultimately, because of the absence of collisions, the electric
field of the plasma is responsible for all particle acceleration. In
the solar wind, at the scales of interest here, the copious supply
of electrons, which are extremely mobile and available to “short
circuit” any significant electric field in the local plasma frame,
ensures that in the coordinate frame where the plasma velocity is
V, the electric field E may be expressed in terms of the magnetic
field B by

E ∼= −c−1 V × B. (1)

There are locations in the space environment where this equation
is violated: e.g., above the auroral oval in Earth’s magnetosphere
where electric fields are generated parallel to the magnetic field,
at shock waves due to separation of electrons and ions in the
shock ramp, or at high frequencies where electrostatic waves
may be generated. However, in the bulk solar wind at scales
relevant for the acceleration of energetic ions, Equation (1) is a
valid approximation.

According to Equation (1) the electric field, and therefore
significant particle acceleration, is intimately connected to
spatial and/or temporal variations of V. If V is constant, the
energy gain or loss is limited to that which occurs in the
single transformation from the original frame to the plasma
frame. However, if V is variable in space or time, energy gains
may be larger. This intimate connection between acceleration
and variable V underlies the origin of the two “classical”
categories of acceleration described and developed by Fermi
(1949, 1954): first-order Fermi acceleration and second-order
Fermi acceleration. According to Equation (1), the scattering
of particles in a parcel of plasma moving with velocity V is
energy conserving when viewed in the frame of the plasma.
On the one hand, first-order Fermi acceleration occurs when
particles interact with parcels (or “clouds”) that approach each
other (∇ · V < 0) so that the particles only experience “head-on”
collisions with the individual parcels and gain energy as a result.
On the other hand, second-order Fermi acceleration occurs when
particles interact with both parcels that approach each other
(∇ · V < 0) and parcels that recede from each other (∇ · V > 0);
these interactions involve both “head-on” and “overtaking”
collisions of the particles with the parcels, and therefore both
energy gains and losses occur with a slight excess of gains.
The presence of a mean magnetic field changes this slightly,
as drift motions also play a role, but the result is basically the
same. Clearly first-order Fermi acceleration is far more efficient
than second-order Fermi acceleration; the former produces a

systematic increase in energy, whereas the latter yields a particle
“random-walk” in velocity space. At first thought it is difficult
to imagine a configuration that results in sustained first-order
Fermi acceleration. However, a shock wave provides precisely
one such configuration and we shall return to shock waves in
Section 6.

For particle speeds v ' |V| (= V ) and sufficient magnetic
scattering to maintain a nearly isotropic ion distribution (appro-
priate for the suprathermal ion enhancements), an appropriate
transport equation that addresses the acceleration of energetic
particles due to plasma velocity variations is (Parker 1965)

∂f

∂t
+ (V + VD) · ∇f − ∇ · K · ∇f − 1

3
∇ · Vv

∂f

∂v
= 0, (2)

where f (r, t, v) is the omnidirectional distribution function, K is
the spatial diffusion tensor, and VD is the drift velocity (Jokipii
et al. 1977). The acceleration arises from the term involving
the v-derivative, which is proportional to ∇ · V. Equation (2)
describes both first-order Fermi acceleration and drifts (at a
shock, for example) and second-order Fermi acceleration (due
to random fluctuations in V that produce regions of space with
both ∇ · V < 0 and ∇ · V > 0). A subtlety arises in interpreting
the acceleration due to ∇ · V (= 0 in terms of the Fermi picture
of “head-on” collisions or of “overtaking” collisions. With a
magnetic field present, this term represents also that fraction
of the energy gain or loss which is due to drift parallel to the
motional electric field given by Equation (1), and that fraction
is in general frame dependent (Jokipii 1979; Kota 1979). Thus,
Equation (2), with VD included, contains the general process of
“diffusive shock acceleration” at both parallel (Krymsky 1977;
Axford et al. 1978; Blandford & Ostriker 1978; Bell 1978) and
quasi-perpendicular (Jokipii 1982, 1987) shocks.

The fluctuations of V need not only be due to different
parcels or “clouds” of plasma with different velocities, as envi-
sioned by Fermi, but may also be due to hydromagnetic waves
propagating through the plasma, which satisfy Equation (1)
but have wavelengths and phase speeds comparable with ion
gyroradii and ion speeds, respectively. The interaction of these
hydromagnetic waves with the ions involves resonances, which
occur on the kinetic scale and are not described by Equa-
tion (2). The relevant transport equation in this case is based
on the quasilinear equation describing the kinetic physics of the
wave–particle interaction, to which we shall return in Section 5.
In view of this and other important generalizations of Fermi’s
original ideas concerning particle acceleration due to a fluctuat-
ing velocity field V(r, t), the terminology “second-order Fermi
acceleration” is generally replaced by “stochastic acceleration.”

3. STOCHASTIC ACCELERATION

Following Fisk & Gloeckler (2006, 2007, 2008; see also
Ptuskin 1988; Jokipii et al. 2003; Webb et al. 2003), we consider
the transport of ions described by Equation (2) in a plasma
with small-amplitude velocity fluctuations δV(r, t). Any average
plasma velocity V0 is eliminated by expressing Equation (2) in
the average plasma frame of reference. We then consider an
ensemble of similar systems and require that the ensemble-
averaged quantities describe a spatially homogeneous system,
where averaged quantities are independent of position. Thus,
〈f 〉 = f 0(v, t) and 〈V〉 = 0, where 〈〉 denotes ensemble
average. Since the magnetic field is frozen into the plasma,
the fluctuations in velocity δV(r, t) will produce, in general,
changes in the magnetic field and hence produce a fluctuating
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spatial diffusion tensor and guiding-center drift. We then set
K = K0(v) + δK(r, t, v) and VD = δVD(r, t, v) with
〈δK(r, t, v)〉 = 0 and 〈δVD(r, t, v)〉 = 0.

If we take the ensemble average of Equation (2), we obtain

∂f0

∂t
= 1

3v2

∂

∂v
〈(∇ · δV)v3δf 〉, (3)

where the fluctuations describe any particular realization of
the ensemble. Subtracting Equation (3) from Equation (2) and
retaining only those terms that are linear in the fluctuating
quantities, we obtain the “quasilinear” approximation

∂δf

∂t
− ∇ · K0 · ∇δf − 1

3
(∇ · δV)v

∂f0

∂v
= 0. (4)

We first consider the Green’s function, G(x, t; x′, t′), which
satisfies

∂G

∂t
− ∇ · K0 · ∇G = δ(x − x′)δ(t − t ′). (5)

For simplicity we take the diffusion tensor K0 to be isotropic.
(Note, however, that K0(v) is symmetric. Hence, if K0(v) is
not isotropic, it may be diagonalized by a coordinate rotation
and made isotropic by rescaling the spatial coordinate in the
direction i by K

−1/2
0ii .) The solution of Equation (5) is then

G(x, t; x′, t ′) = [4πK(t−t ′)]−3/2 exp{−|x−x′|2[4K(t−t ′)]−1}
(6)

for t > t′ and G(x, t; x′, t′) = 0 for t < t′, where K is
the ensemble-average isotropic diffusion coefficient expressed
without the zero subscript for convenience. Writing δf as the sum
of the solution of the homogeneous equation with “initial” value
δf(x, t0) = δf0(x) and the solution of the inhomogeneous equation
based on Equation (6), we obtain the solution of Equation (4) as

δf (x, t) =
∫ ∞

−∞
d3x′

{
G(x, t; x′, t0)δf0(x′)

+
∫ t

t0

dt ′G(x, t; x′, t ′)
1
3

(∇′ · δV′)v
∂f0(v, t ′)

∂v

}
,

(7)

where in (∇′ · δV′) the gradient operates on the variable x′.
Substituting Equation (7) into Equation (3) we obtain

∂f0

∂t
= 1

v2

∂

∂v

{
v3

3

∫ ∞

−∞
d3x′G〈(∇ · δV)δf0(x′)〉

+
v4

9

∫ ∞

−∞
d3x′

∫ t

t0

dt ′G〈(∇ · δV)(∇′ · δV′)〉∂f0(v, t ′)
∂v

}
,

(8)

where the arguments of the function G in the two terms have
been suppressed. The first term in curly brackets involves the
correlation of δV(x, t) and δf0(x′), or equivalently the correlation
of δV(x, t) and δV(x′, t0). If t − t0 ' T, where T is the
correlation time, then this term is small and the influence of
the initial condition is negligible. However, we also require that
|δV| is sufficiently small that, during period T, |δf | - f 0 so the
quasilinear approximation remains valid.3 These are essentially

3 It is important to note that neither the drift velocity nor the fluctuations in
the diffusion tensor appear in the transport equation in this quasilinear limit.
This is because neither affects the energy change directly. Both will, of course,
enter in a more general formulation.

the conditions for a Markov process. Under these conditions
we may ignore the initial value term in curly brackets in
Equation (8) and take t0 → −∞. We may also replace the
ensemble-averaged distribution f 0(v, t′) by f 0(v, t), since the
difference is third order in |δV|. Under these conditions we
obtain

∂f0

∂t
= 1

v2

∂

∂v

{
v4

9

∫ ∞

−∞
d3x′

×
∫ t

−∞
dt ′G(x, t; x′, t ′)〈(∇ · δV)(∇′ · δV′)〉∂f0(v, t)

∂v

}
.

(9)

Thus, the application of quasilinear theory to Equation (2) for
this ensemble yields an equation describing spatially homoge-
neous particle transport in stochastic compressions and rarefac-
tions, which is an isotropic diffusion equation in velocity space
of the form

∂f0

∂t
= 1

v2

∂

∂v

[
v2D

∂f0

∂v

]
, (10)

where D, the isotropic velocity–space diffusion coefficient, is
given by

D = v2

9

∫ ∞

−∞
d3x′

∫ t

−∞
dt ′G(x, t; x′, t ′)

〈
(∇ · δV)(∇′ · δV′)

〉
.

(11)
D(v) is dependent on v through the explicit factor v2 apparent in
Equation (11) and the dependence of G on K(v). Equation (10)
has the standard form of a “continuity” equation expressing
the transport of a conserved quantity, which in this case is
the number density of particles. The particle flux is isotropic
in velocity space and diffusive. This basic process of particle
diffusion in velocity space due to random fluid compressions and
rarefactions has been discussed previously by Ptuskin (1988),
Jokipii et al. (2003), and Webb et al. (2003). The similar problem
of particle acceleration at an ensemble of shocks separated
by rarefactions was considered by Bykov & Toptygin (1981a,
1981b, 1993) and Schneider (1993).

For a simple illustrative example, take K to be independent
of v, in which case D is proportional to v2. The Green’s
function of Equation (10), obtained by adding N(4πv2

0)−1

δ(v − v0)δ(t) to the right-hand side of Equation (10) and
requiring f 0(v, t < 0) = 0, describes the time evolution of
N particles per unit spatial volume distributed isotropically in
velocity space with v = v0 at t = 0. One might naively assume
that the Green’s function relaxes to the equilibrium power-
law distribution given by requiring that the quantity in square
brackets in Equation (10) is a constant, that is f 0 ∝ v−3 for the
case that D ∝ v2. However, that assumption is incorrect because
the resulting distribution has a divergent number density both as
v → 0 and as v → ∞. The Green’s function of Equation (10)
with D = D′v 2 and D′ constant is in fact given by

G(v, v0, t) = N

4πv3
0

1
(4πD′t)1/2

(
v

v0

)−3/2

exp
(

−9
4
D′t

)

× exp
(

− (ln v/v0)2

4D′t

)
. (12)

Equation (12) reveals a power-law distribution at long times with
an index of −3/2, which “fills out” logarithmically at both small
and large v as time increases, and which decreases exponentially
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to accommodate the increasing extension of the distribution to
small and large v.

An interesting more general case of Equation (10) occurs for
D(v) ∝ vα−2. Normalizing v to speed v0, at which particles are
injected at normalized time τ = 0, the appropriate version of
Equation (10) for this Green’s function G(v, τ ; 1, 0) is

∂G

∂τ
= 1

v2

∂

∂v

[
vα ∂G

∂v

]
+

1
4π

δ(v − 1)δ(τ ), (13)

where G is normalized as
∫ ∞

0
4πv2G(v, τ )dv = 1. (14)

The solution of Equation (13) for integer and noninteger values
of α is

G = v(1−α)/2

|4 − α|4πτ
I±p

[
2v(4−α)/2

(4 − α)2τ

]
exp

[
− 1 + v4−α

(4 − α)2τ

]
,

(15)
where p = (1 − α)/(4 − α) and Ip(z) is the standard modified
Bessel function of the first kind. The special cases for α = 3
and α = 1 are given by Tverskoi (1967) and Liu et al. (2007),
respectively. It is clear that solution (12) for α = 4 is a special
case, which corresponds to both the index and the argument of
the Bessel function in Equation (15) diverging. The behavior of
G and the appropriate choice of the sign of the Bessel function
index depend on the value of α. There are three distinct cases:
(1) α > 4; (2) 1 < α < 4; and (3) α < 1. The appropriate choice
of the Bessel function index in the three respective cases is (1)
(α – 1)/(α – 4) > 0, (2) (α – 1)/(4 – α) > 0, and (3) (α – 1)/
(4 – α) < 0. At small times G spreads as a Gaussian distribution
in the variable v(4−α )/2 with G ∼ exp[− (1 − v(4− α )/2)2(4 −
α)−2τ −1]. For large times case (1) behaves differently than the
other two.

For case (1) the exponential rollover for v < 1 at small τ
still occurs for large τ . However, the characteristic high-energy
rollover speed vr → ∞ as τ → (α – 4)−2. For larger times,
G ∼ τ −(2α−5)/(α−4)v (1−α), multiplied by the exponential
factor, which is a small correction at high speeds and provides
the rollover at low speed. The power-law behavior yields a
net (multiplied by 4πv2) positive flux of particles, which is
independent of v for arbitrarily large v. This strange behavior
results in an effective “free escape boundary” such that the net
flux for any τ > 0 does not vanish as v → ∞. The exponential
factor ensures a v-dependence of the net flux so that the left-hand
side of Equation (13) is nonzero and in fact results in the power-
law decrease with increasing τ noted above. The temporal
decrease supplies the particles that extend the exponentially
decaying “front” to smaller v and those that escape to large v.
Thus, the solution exhibits a time-decaying approximate power
law in v to arbitrarily large values, with an exponential rollover
for small v. Note that since α > 4 the power law in v results
in a convergent number-density integral as v → ∞. However,
since that power-law decays with time, it is inconsistent with
the positive escaping flux to v → ∞. The correct interpretation
of solution (15) in this case is that it is valid up to any finite
v, which is then allowed to approach infinity. Since the power
law in v would produce a divergence of the number density
integral at small v, the power law has a low-energy rollover
for any value of τ . Interestingly, the power-law slope changes
discontinuously as α decreases to α = 4, for which the slope
at intermediate values of v is −3/2 as shown explicitly in
Equation (12).

For cases (2) and (3) the exponential factor in Equation (15)
gives a high-energy rollover at vr, which increases with increas-
ing τ . For larger τ the lead term of the series expansion of Ip(z)
yields G ∼ τ−3/(4−α), multiplied by the exponential factor. The
positive flux that arises from the exponential factor provides the
particles that diffuse to higher v and causes the temporal decay.
We note that G evolves to a flat distribution extending from
v = 0 up to the rollover at v ∼ vr. The only difference between
cases (2) and (3) is that the index of the Bessel function changes
sign, which assures that G is nearly independent of v for larger
τ and that the temporal decay rate decreases as α decreases be-
low 1 and becomes negative. In the limit of very large negative
α the advancing “front” of particles moves very slowly toward
larger v where the diffusion coefficient is very small; the parti-
cles fill uniformly the region of large diffusion coefficient and
only decay very slowly to fill the advancing front.

In summary, the Green’s function solutions of Equation (13)
given by Equation (15) evolve toward a power law for α > 4
(G ∼ v1−α) that extends to smaller v as time increases, whereas
for α < 4 they evolve to a uniform distribution that extends
to larger v as time increases. The transition solution for α
= 4, given by Equation (12), has a power-law form at an
intermediate range of v with a unique index (−3/2), and has
the unique property that the solution has advancing “fronts” at
both large and small v. If the Green’s functions are convoluted
with an initial particle distribution f 0(v0, 0) to yield f (v, t), then
f (v ' v0, t) exhibits the same behavior as G(v ' v0, v0, t).

We now evaluate D defined by Equation (11). For purposes
of illustration, we may assume a simple form of the two-point
correlation function in Equation (11), which is already assumed
to be isotropic. We assume

〈(∇ · δV)(∇′ · δV′)〉 = 〈(∇ · δV)2〉
× exp[−|x − x′|2λ−2 − (t − t ′)T −1],

(16)

where λ is the correlation length and T is the correlation time.
In reality, the function is probably different, but the form in
Equation (16) is sufficient to illustrate our points. Substituting
Equations (6) and (16) into Equation (11), we obtain

D = v2

9
〈(∇ · δV)2〉

∫ ∞

0
dτ exp

(
− τ

T

) (
1 +

4Kτ

λ2

)−3/2

,

(17)
which may be evaluated as

D = v2

9
〈(∇ · δV)2〉 λ2

2K

{
1 − π1/2 λ

(4KT )1/2
exp

(
λ2

4KT

)

×
[

1 − erf
(

λ

(4KT )1/2

)]}
. (18)

Equation (17) or (18) yields for T - λ2/(4K)

D = v2

9
〈(∇ · δV)2〉T (19)

and for T ' λ2/(4K)

D = v2

9
〈(∇ · δV)2〉 λ2

2K
. (20)

Since K(v) generally increases with increasing v, it is clear from
Equation (17) that Dv−2 decreases with increasing v. Referring
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to Equations (11) and (13), α < 4. Therefore, it would appear
that the power-law solutions of Equation (13) at large times are
not relevant.

However, another relevant case is that of continuous injection
of particles with v = v0 starting at τ = 0. Although the spatial
number density of particles in this case may increase without
limit, it corresponds to a continuous injection of “seed” particles
in the solar wind, for example, due to continuous ion pickup
from the ionization of neutral atoms. The solution for D(v) ∝
vα−2 is clearly given in this case by H(v, τ ), where

H (v, τ ) =
∫ τ

0
dτ ′G(v, τ ′; 1, 0) (21)

and G(v, τ ; 1, 0) is given by Equation (15). For p > 0, where p
is the index of the Bessel function in Equation (15), the integral
in Equation (21) converges as τ → ∞ to yield

H (α > 1, v, τ → ∞) = v(1−α)/2

4π |4 − α|
[(1 + v4−α) − |1 − v4−α|]p

× 1
p(2v(4−α)/2)p

. (22)

For both cases (1) and (2) Equation (22) yields

H (α > 1, v > 1, τ → ∞) = (4π )−1(α − 1)−1v1−α, (23)

H (α > 1, v < 1, τ → ∞) = (4π )−1(α − 1)−1. (24)

These solutions are finite because the amplitude adjusts itself
so that the rate of injection equals the rate of escape in case (1),
or that the rate of injection equals the rate at which particles fill
out the divergent power law as v → ∞ in case (2). For case (3)
with p < 0 the integral in Equation (21) diverges as τ → ∞
at the upper limit of integration. For large τ the integral yields
asymptotically

H (α < 1, v, τ → ∞) ∼ (4 − α)2(1−α)/(4−α)

4π (1 − α)Γ(1 − (1 − α)/(4 − α))

× τ (1−α)/(4−α). (25)

This distribution is independent of v below the rollover at
v ∼ vr, where vr

4−α ∼ (4−α)2τ . The spatial number den-
sity N is given approximately by the phase-space density in
Equation (25) multiplied by the volume in velocity space,
(4/3)πvr

3. Differentiating this quantity we obtain

dN

dτ
= − (4 − α)3

3(1 − α)2Γ[(α − 1)/(4 − α)]
, (26)

which equals unity, the particle injection rate, when α is large
and negative so that the advancing “front” is steep. Thus,
continuous injection of particles yields power-law spectra at
large times ifα> 1. Accordingly, for a power-law dependence of
K(v) that increases with energy, the omnidirectional distribution
function may have a power-law form with index in the range −3
to 0 for speeds v < vr. For α < 1 the index is 0 as described by
Equation (25).

Altogether, for acceptable power-law velocity diffusion coef-
ficients D(v) and based on this analysis, power-law distribution
functions at higher speeds are limited to indices “harder” than
−3, and only for continuous injection. A power law with index
−5 is simply not accessible for this mechanism.

In closing this section we should qualify its results. Although
we have addressed primarily the specific problem addressed
by Fisk & Gloeckler (e.g., particle transport based on the
Parker equation, spatial homogeneity and isotropy of ensembled
quantities, the limiting form of D(v) for large K(v) given by
Equation (20)), we note that the actual problem could be more
complicated. Adiabatic deceleration of the particles in the solar
wind could modify the predicted distribution function. Also
as v increases, D(v) could transition from the form given in
Equation (19) to that given in Equation (20) with the result that
D(v) does not exhibit a power-law dependence on v. A more
subtle issue is that in the theory we have presented D does
not vanish as K approaches zero as expected for an essentially
adiabatic process. This behavior presumably arises from either
the assumed form of the correlation function in Equation (16),
the test particle approach in which the accelerating particles have
no dynamical effects, or an inherent limitation of quasilinear
theory. Finally, the diffusion Equation (10) exhibits a common
feature of diffusion equations in that the distribution function,
immediately after injection, has a finite value at arbitrarily large
values of v. This fact is simply a limitation of the diffusion
approximation and does not invalidate its utility. In our view
these issues all remain open questions.

4. FISK–GLOECKLER DERIVATION OF STOCHASTIC
ACCELERATION

Fisk & Gloeckler (2008, hereafter F&G) have presented a
quite different derivation of the transport equation governing
the stochastic acceleration of suprathermal ions due to random
velocity fluctuations in the solar wind. This treatment builds on
the more qualitative ideas of Fisk & Gloeckler (2006, 2007)
and derives the transport equation resulting from these ideas.
As in Section 3, their basic equation is Equation (2), the Parker
transport equation. Since neither the derivation of Section 3
nor that of F&G includes the back reaction of the accelerating
particles on the core plasma velocity fluctuations, these are both
test-particle theories.

F&G initially work with the dependent variable Ev (∝ v4 f ),
which is the differential energy density of the ion distribution
function. Using this variable, Equation (2) becomes

∂Ev

∂t
+ δV · ∇Ev − ∇ · K · ∇Ev +

5
3

(∇ · δV)Ev

− 1
3

(∇ · δV)
∂

∂v
(vEv) = 0, (27)

which is identical with their Equation (3). Starting with our
Equation (27), which includes all the temporal and spatial
complexity of a “realization” of the velocity fluctuation field
(initially an ensemble average is not employed), F&G make a
number of ad hoc approximations: (1) the total energy flux Qdiff
vanishes, where

Qdiff = −
∫ ∞

0
dvK · ∇Ev, (28)

which appears to be inconsistent with the basic energization
mechanism of a random compression combined with the irre-
versibility of diffusion away from the compressed parcel; (2)
F&G replace the spatial diffusion term in our Equation (27)
by a term representing relaxation toward an “equilibrium”,
which is not specified as a function of v or t; (3) F&G as-
sume that the solution of Equation (27) is separable of the form
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Ev = g(v, t)h(r, t), which again appears to be inconsistent with
the basic process that the energization is due to localized regions
of compression or rarefaction (that is, evolution in v is coupled
to the specific location r).

These approximations lead to an equation for g(v, t), which
eliminates the (5/3)-adiabatic-compression term and the con-
vective term (presumably appropriate for a spatially homoge-
neous function g(v, t)), but it includes a remnant of the “relax-
ation” version of the spatial diffusion term. At this point F&G
employ a quasilinear analysis based on an ensemble of similar
systems, which is very similar in spirit to that presented here in
Section 3. However, the spatial dependence of a realization of
the ensemble is specified by the multiplicative function h(r, t),
so that it is unclear how the ensemble average is defined. With
a reasonable choice for the relaxation time, F&G obtain a tem-
poral transport equation for g0, the ensemble average of g(v, t).
With g0 = v4fv that transport equation becomes

∂fv

∂t
= 1

v4

∂

∂v

[ 〈δV 2〉
9K

v
∂

∂v
(v5fv)

]
, (29)

where δV is essentially the magnitude of the compressive
velocity fluctuations and K is an effective isotropic spatial
diffusion coefficient. Although fv is defined in terms of the
function g(v, t), it should correspond to the ensemble average
distribution function f 0(v, t) defined in Section 3.

Equation (29) has similarities to Equation (9). The factors
(1/9) and 〈(∇ · δV)2〉 are common to both, although Equation (9)
involves integrals dependent on correlation length and correla-
tion time. However, the form of Equation (29) is fundamen-
tally quite different from that of Equation (9). The fact that
Equation (29) is not in the form of a continuity equation in
velocity space means that it does not conserve particles. Par-
ticles will be created or destroyed at any arbitrary velocity.
Also, the inverse dependence on K(v) raises the question as to
why the process is so efficient for small K. With the veloc-
ity correlation function given by Equation (16), Equation (11)
yields an inverse dependence on K(v) only when T ' λ2/(4K),
as shown by Equation (20). For λ2/(4K) ' T, the integral in
Equation (11) is proportional to T and independent of K, as
shown by Equation (19).

It may appear that a stationary solution of Equation (29) is
fv ∝ v−5. However, as discussed in Section 3, this solution is
divergent as v → 0 and is therefore not acceptable. A rollover at
small v would be required, which forces an acceptable solution
to depend on time.

More importantly Equation (29) is seriously flawed in that
it does not conserve particles as mentioned above. The number
density of the energetic particles is

N =
∫ ∞

v0

4πv2fv(v), (30)

where v0 is a low speed threshold below which the Parker
transport equation is not formally valid. The number density
moment of Equation (29) yields after two integrations by parts

dN

dt
= − 4π〈δV 2〉v3

0

9K(v0)

[

v0

(
∂fv

∂v

)

v=v0

+ 7fv(v0)

]

+
2〈δV 2〉

9

∫ ∞

v0

dv

[
2
K

+
1

K2
v
dK

dv

]
4πv2fv(v).

(31)

Although it does not represent a diffusive flux, the first of the
two terms on the right-hand side of Equation (31) presumably
represents the change in the number density due to the transport
of particles across v = v0. However, the second term is in
general not zero and represents a spontaneous production or
loss of particles throughout velocity space. The only exception
to the spontaneous production or loss occurs if K ∝ v −2, an
unlikely velocity dependence of the spatial diffusion coefficient.
The two terms in Equation (31) cannot in general cancel each
other. This may be seen by considering the initial-value problem
with particles initially localized in velocity space with speeds
v ' v0. The second term immediately yields a growth or decay
rate for the number density, while the first term is limited in
magnitude by the number of particles that can diffuse to the
low speed threshold in a short amount of time. This argument
may be strengthened by considering the choice that K → ∞ for
speeds v ∼ v0 so that no particles can diffuse in velocity to v0.

5. OTHER VARIATIONS OF STOCHASTIC
ACCELERATION

Stochastic acceleration does not only arise from the interac-
tion of particles with a random ensemble of large-scale com-
pressions and rarefactions as described by Equation (9). It may
also occur due to physical processes not included in Parker’s
Equation (2). One other form of stochastic acceleration occurs
via the interaction of particles with the electric field fluctuations
of an ensemble of smaller-scale waves propagating in various
modes and directions. A common version of this process in-
volves right-hand and left-hand circularly polarized hydromag-
netic waves propagating parallel and antiparallel to the ambient
magnetic field. Bogdan et al. (1991), for example, derive a trans-
port equation in this case of the form presented in Equation (10)
with D given by

D = π

(
qVA

mc

)2 ∫ 1

−1
dµ

1 − µ2

v|µ|
I+(kr )I−(kr )

I+(kr ) + I−(kr )
, (32)

where q and m are the charge and mass of the energetic ion
species, VA is the Alfvén speed, I±(k) is the intensity of waves
propagating parallel (+) or antiparallel (−) to the ambient
magnetic field, µ is the cosine of the ion pitch angle, kr is the low-
wave-frequency version of the cyclotron-resonant wavenumber
given by kr = Ω/(vµ), and Ω is the ion cyclotron frequency.
Note that if all waves propagate in the same direction then D = 0.
The requirement for stochastic acceleration to occur is that
a particle with specified velocity may interact with waves of
different phase speeds.

Another form of stochastic acceleration arises from the in-
teraction of ions with the parallel magnetic field fluctuations of
magnetosonic waves propagating at an oblique angle to the am-
bient magnetic field (Fisk 1976; Lee & Völk 1975). Associated
with “transit-time” damping of the waves, the ions diffuse in
their velocity component parallel to the ambient field through
their Landau resonance with the waves. Qualitatively, the reso-
nant ions are accelerated or decelerated toward the parallel wave
phase speed (ω/k‖) by mirroring with constant first adiabatic
invariant in the “magnetic bottles” associated with the com-
pressive wave. Pitch-angle scattering in the associated Alfvénic
turbulence ensures the near isotropy of the ion distribution
function.

Lee & Völk (1975) give the general quasilinear velocity–space
diffusion equation for the interaction of ions with magnetosonic
waves. Retaining only the Landau resonance, which describes
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the “transit-time” acceleration process, and restricting the treat-
ment to low frequency waves for which the Bessel function may
be replaced by its small-argument value, we obtain

∂F0

∂t
= ∂

∂vz

[
π

2

∫
d2k⊥

k2
z k

2
⊥

k2

v4
⊥

|vz|
IM (kz = ωMv−1

z , k⊥)

B2
0

∂F0

∂vz

]
,

(33)
where F 0(v, t) is the ensemble-averaged velocity–space distri-
bution function, the z-direction and “⊥” refer to the ambient
field, ωM(k) is the wave frequency, and IM(k) is the magne-
tosonic wave intensity with

∫
d3kIM(k) = 〈|δBM |2〉. Adding

pitch-angle scattering in Alfvénic turbulence, which ensures
near isotropy of the distribution, we obtain the equation satis-
fied by the omnidirectional distribution function as

∂f0

∂t
= 1

v2

∂

∂v

[
v2 π

4

∫ 1

−1
dµµ2

∫
d2k⊥

k2
z k

2
⊥

k2

v4
⊥

|vz|

×
IM (kz = ωMv−1

z , k⊥)

B2
0

∂f0

∂v

]
. (34)

Equation (34) exhibits the standard form of isotropic diffusion
in velocity space with the attendant conservation of particles.

The diffusion coefficient for vz in Equation (33) satisfies
approximately

Dvzvz
∼

k2
z k

2
⊥v4

⊥
k2ωM

(
δBM

B0

)2

=
k2
z v

4
⊥

ωM

(
δBM,z

B0

)2

. (35)

Equation (35) may be derived in a simpler fashion. Conservation
of the first adiabatic invariant yields

dvz

dt
= − v2

⊥
2B

dδBz

dz
(36)

or, approximately,

∆vz ∼ v2
⊥kz(δBz/B0)∆t, (37)

where we ignore numerical factors. The relevant diffusion
coefficient is then given by

〈
∆vz∆vz

∆t

〉
∼

k2
z v

4
⊥

ωM

(
δBz

B0

)2

, (38)

where we set ∆t ∼ ωM
−1. Equation (38) is identical to

Equation (35).
The functional form of D(v) for Alfvén wave stochastic

acceleration can be estimated from Equation (32). Spacecraft
measurements in the solar wind show that I(k) ∝ k −γ , where
typically 1 < γ < 2 (Coleman 1968). Since kr ∝ v−1 we expect
D ∝ vγ −1, which implies in Equation (13) that 2 < α < 3.
For transit-time acceleration of ions by magnetosonic waves we
investigate the form of D(v) in Equation (34), which includes
efficient pitch-angle scattering by Alfvén waves. The Landau
resonance requires that kz = ωM/vz so that the integrand of D
includes v⊥

4/|vz|3. The vz dependence of IM is more difficult to
determine. If refraction and/or turbulent processes are efficient
at replenishing the highly oblique waves that are damped by
the high-v ions, then IM should be nearly isotropic in k-space
and insensitive to vz. In this case D ∝ v and, with regard to
Equation (13), α = 3.

6. ORIGIN OF THE v−5 SPECTRUM

At this point, after discussing several acceleration mecha-
nisms, it is worthwhile to speculate about the origin of the ions
observed throughout the heliosphere with omnidirectional dis-
tribution approximately proportional to v−5. Presumably the
three stochastic acceleration mechanisms described above are
independent processes. Ignoring small numerical factors and
distinctions between the components of k and v parallel and
perpendicular to the ambient magnetic field, the timescales of
the three acceleration processes described by Equations (9) (in-
cluding both limits described by Equations (19) and (20)), (32),
and (34) or (35) are, respectively

t−1
C1

∼= k2δV 2
CT /9, (39)

t−1
C2

∼= k2δV 2
Cλ

2K−1/18, (40)

t−1
A

∼= πωA(VA/v)(δB/B0)2, (41)

t−1
T

∼= ωM (δBz/B0)2, (42)

where the subscripts C, A, and T refer to “compression,”
“Alfvén” and “transit-time,” δVC only includes the compressive
part of δV, ωA, and ωM are characteristic Alfvén and magne-
tosonic frequencies, and δB in Equation (41) is restricted to the
cyclotron resonant frequency range. We assume that K is domi-
nated by its quasilinear component parallel to the magnetic field
so that

K = v2Ω−1(B0/δB)2. (43)

In addition, we take the compressive power to be reduced by
a factor of 0.1 (Coleman 1968) so that (δVC)2 = 0.1 (δV)2 and
(δBz)2 = 0.1 (δB)2. We also take (δV/VA)2 = (δB/B0)2. Then
Equations (39)–(42) may be rewritten as

t−1
C1

∼= 0.1Ω(ωA/Ω)(δB/B0)2, (44)

t−1
C2

∼= 0.1Ω(VA/v)2(δB/B0)4, (45)

t−1
A

∼= πΩ(VA/v)2(δBres/B0)2, (46)

t−1
T

∼= 0.1Ω(ωA/Ω)(δB/B0)2, (47)

where we have also taken ωM = ωA, kλ = 2π , and ωAT =
2π . Admittedly in this brief discussion we have ignored differ-
ent dominant frequencies for the different processes, and the ex-
tent of the cyclotron resonant frequency range in Equation (46).
Nevertheless, these acceleration rates are comparable. Interest-
ingly the compressional acceleration with velocity diffusion co-
efficient proportional to K−1 described by Equation (45), which
is the primary subject of this paper, appears likely to have the
slowest rate of acceleration. It is also worth noting that, for
the scalings we have chosen, T ' λ2/(4K) for the suprather-
mal ions we are considering so that Equation (45), and not
Equation (44), should be used to describe stochastic acceler-
ation due to random compressions and rarefactions. It should
also be noted that application of these formulae depends on the
values of the parameters at the site considered.

An important issue for these stochastic acceleration mecha-
nisms is that they are limited by the power in the fluctuations
or by how rapidly that power can be replenished. Generally
the fluctuation power is limited by the power in the ambient
magnetic field, which is, for example, small in the outer helio-
sphere. However, the major weakness of stochastic acceleration
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as a source of the quiet-time suprathermal ions is that for α <
4 the distribution for impulsive particle injection relaxes to a
value independent of v for v < vr that decreases with time as
vr increases with time. For α < 4 and continuous particle injec-
tion the distribution relaxes to a power law with index greater
(“harder”) than −3. As we have shown in Sections 3 and 5, for
all three types of stochastic acceleration α < 4.

The other possible acceleration mechanism for these ions is
shock acceleration. An advantage of shock acceleration is that,
unlike stochastic acceleration, it naturally produces power-law
distributions. A stationary planar shock accelerates low energy
ions to an omnidirectional distribution function with a power law
in v with index −3X/(X−1), where X is the shock compression
ratio. An index of −5 requires X = 2.5, which is a reasonable
compression ratio for the large shocks in interplanetary space
that produce most of the energetic particles, but which has not
yet been shown to be a particularly “favored” value. Actually
the ions respond to the average wave-frame compression ratio.
Since the wave-frame compression ratio is thought to be less
than the plasma compression ratio, an observed index of −5
would arise for a shock with a compression ratio somewhat
larger than 2.5. Another advantage of shocks may be that more
energy is available to convert to the energetic particles.

In our opinion the most promising explanation for the origin
of the ions is a superposition of remnant ions from previous
gradual SEP, impulsive SEP, and corotating ion events, with
possible re-acceleration of ions by solar wind turbulence as
described in this paper. Of course adiabatic deceleration in
the expanding solar wind systematically reduces ion energy
and partially counteracts the acceleration mechanisms. The
ACE fluence spectra of ions summed over all these particle
populations have spectral indices rather close to −5 (Mewaldt
et al. 2007b). In addition, the composition of the quiet-time
suprathermal particles investigated by Desai et al. (2006) and
Dayeh et al. (2009), featuring SEP and ESP abundances during
solar maximum, and CIR and solar wind abundances during
solar minimum, supports this explanation.

The so-called TSPs observed downstream of the termination
shock by both Voyager 1 and Voyager 2 deserve additional dis-
cussion. They also exhibit a speed power-law index close to
−5, particularly those observed by Voyager 1. Fisk et al. (2006)
interpret this particle distribution as a result of adiabatic com-
pression of the ubiquitous heliospheric suprathermal particles
at the termination shock, which preserves their spectral index
of −5. Apart from the issue of why these ions do not partic-
ipate in the required increase in entropy at the shock and the
established process of diffusive shock acceleration, the uniform
upstream intensity of advected suprathermal ions (on which are
superposed the TSPs escaping from the downstream TSPs to
create the termination shock foreshock) is far too small to sup-
port the hypothesis of Fisk et al. (2006). This issue has recently
been studied by Giacalone & Decker (2010), who come to a
similar conclusion. A more reasonable explanation is that the
TSPs are predominantly the higher energy interstellar pickup
ions in the solar wind, accelerated locally at the termination
shock with a downstream power-law index in speed determined
by the shock compression ratio. The observed index is consis-
tent with the observed shock compression ratio in the range
2–3. In contrast with the smoothly varying foreshock intensity
predicted by the planar stationary theory of diffusive shock ac-
celeration, the upstream TSPs exhibit extreme irregularity that
could possibly have been anticipated based on the irregularities
at quasi-perpendicular shocks observed at 1 AU (van Nes et al.

1984). The irregularities arise from the dominant contribution of
magnetic field line wandering to the spatial diffusion coefficient
parallel to the shock normal so that the ion injection rate and
the upstream particle intensity are very sensitive to the concur-
rent magnetic field configuration and its spatial and temporal
variations.

7. CONCLUSIONS

We have addressed several aspects of how to accelerate the
ubiquitous suprathermal ion populations observed throughout
much of the heliosphere at quiet times, whose omnidirectional
distribution function in the energy range from ∼1 keV nucleon−1

to ∼1 MeV nucleon−1 exhibits a power-law dependence on v
with an index which is often close to −5. We first showed how
stochastic acceleration by random compressions and rarefac-
tions follows from the Parker transport equation by applying
quasilinear theory to an ensemble of velocity fluctuations in
the solar wind. In the simplest case of an isotropic, spatially
homogeneous ensemble the resulting transport equation is an
isotropic diffusion equation in velocity space, a hallmark of
stochastic acceleration (Davis 1956; Parker & Tidman 1958).
The velocity transport equation derived by Fisk & Gloeckler
(2008), also based on the Parker transport equation and a num-
ber of ad hoc assumptions, is not of this form. We have identified
and critiqued the ad hoc assumptions and shown that the F&G
velocity transport equation does not conserve particles and is
therefore unacceptable.

The origin of the frequently observed power law with in-
dex −5 has been ascribed by Fisk & Gloeckler (2006, 2007,
2008) to compressional stochastic acceleration of solar wind
ions. Gloeckler et al. (1994) has also noted that a very sim-
ilar spectrum of energetic particles occurs between the two
shocks bounding CIRs, and Fisk et al. (2006) argue that the
similar spectrum of energetic particles downstream of the so-
lar wind termination shock is due to adiabatic compression
at the shock of the suprathermal ion population in the outer
heliosphere.

It is often assumed that stochastic acceleration results in
power-law energy spectra at long times (e.g., F&G). This
assertion may stem from the work of Fermi (1949) on cosmic
ray acceleration by “second-order Fermi acceleration” in which
a power law was derived by balancing the average rate of
particle energy gain with the rate of spallation reaction loss in
the Galaxy. Or it may stem from the specific assumption that the
long-time solution of the velocity transport equation including
a loss rate is stationary and equidimensional, a consequence of
which is a power-law spectrum. In contrast we have presented
solutions to the family of isotropic diffusion equations with
diffusion coefficients proportional to vα−2 for any real α, for
both impulsive and continuous particle injection, and for an
injected speed distribution proportional to δ(v − v0). We have
then shown for reasonable spatial diffusion coefficients K(v)
that α < 4 and that the corresponding solutions evolve to a
form of the omnidirectional distribution function approximately
independent of v up to a rollover speed vr, which increases with
time, for impulsive injection, or a power law with index greater
(“harder”) than −3 for continuous injection. These solutions
cannot produce a power-law distribution with an index close
to −5. Interestingly, the solutions with α > 4 do produce a
power-law spectrum with index 1 − α at long times (the index
−5 would correspond to α = 6), characterized by particle free
escape to v → ∞, but these solutions are not consistent with
the form of the velocity diffusion coefficient.
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We have also explored two other types of stochastic accel-
eration that in principle could be responsible for the accelera-
tion of the suprathermal ions: stochastic acceleration by a spec-
trum of Alfvén waves propagating in different directions and
“transit-time damping” of a spectrum of obliquely propagating
magnetosonic waves. By comparing the magnitudes of the ve-
locity diffusion coefficients D(v) for these types with that for
compressional stochastic acceleration, we find that they are all
comparable. However, we also find that α < 4 for these two
types of stochastic acceleration so that also they do not produce
power laws with indices “softer” than −3.

A further difficulty for stochastic acceleration is that the
energy density in the velocity and magnetic field fluctuations
must be larger than that of the energetic particles, or it must
be readily replenished, for example, by turbulent cascade
processes. This back reaction of the accelerating particles on
the fluctuations has not been considered by us or F&G and is
generally neglected in treatments of stochastic acceleration. An
exception is the work of Bogdan et al. (1991) on stochastic
acceleration of ions by a spectrum of Alfvén waves that are
damped by the accelerating particles.

The process of diffusive shock acceleration readily produces
power-law spectra with power-law indices insensitive to par-
ticle transport parameters. However, there is nothing special
about the index −5, which obtains for the omnidirectional dis-
tribution function produced downstream of a stationary pla-
nar shock with a compression ratio of 2.5. Nevertheless, most
shock-accelerated particles are produced by a few large ESP,
and presumably SEP, events, and a compression ratio of 2.5
(or somewhat higher to account for the lower wave-frame com-
pression ratio) is probably characteristic of the larger interplan-
etary shock events. (However, it must be noted that a fluence
spectrum differs from the source spectrum by the energy depen-
dence of the spatial diffusion coefficient.) Indeed the eight years
of one-year-averaged ACE fluence spectra obtained by sum-
ming over all energetic particle populations each year (Mewaldt
et al. 2007b) reveal differential-intensity energy spectral in-
dices between −1.3 and −2.1 in the energy range 0.1–2 MeV
nucleon−1, not far from the value −1.5 corresponding to −5.
Large ESP and SEP events dominate this energy range. These
fluence spectra suggest that the quiet-time particle spectra are
the remnants of those particles that dominate the ACE fluence
spectra. Dayeh et al. (2009) have found that the quiet-time ion
energy spectra in the energy range 0.04–2.56 MeV nucleon−1

exhibit spectral indices in the range from −1.27 to −2.29, which
encompasses the much narrower range quoted by F&G and is
nearly identical to the range of the ACE fluence spectra. In
addition, Dayeh et al. (2009) have found that the composi-
tion of the quiet-time suprathermal ions corresponds to that
of ESP/SEP composition during solar maximum and that of
CIR-associated particles and the solar wind during solar min-
imum. This solar-cycle-dependent composition also supports
the hypothesis that the quiet-time spectra are dominated by
remnant suprathermal particles from previous ESP, SEP, and
CIR events with at most a small contribution directly from the
solar wind.
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