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Abstract.  The Rankine-Hugoniot (R-H) jump conditions at the heliospheric termination shock provide a 
means of knitting together the in situ measurements from Voyager 2 (VGR2) with the remote sensing of the 
heliosheath plasma via energetic neutral atom (ENA) imaging by IBEX and Cassini/INCA.  The VGR2 
instrument suite has a gap (~1-30 keV) in the ion measurements.  While the ENA images (0.2-6 keV and 5-
55 keV) fill the VGR2 gap in the pixel containing the VGR2 spacecraft, they do so only in the sense that 
they provide the ion intensity integrated along the radial line of sight throughout the entire heliosheath.  
The synthesis we attempt is further complicated by the observational results from all three spacecraft that 
the non-thermal component of the ion pressure dominates that of the thermal component.  We therefore 
have developed (and applied) a generalized formulation of the R-H conditions that does not invoke an 
equation of state, but rather can directly ingest the instrumentally-measured non-thermal spectrum.  The 
result is an estimate that the ratio (upstream/downstream) of the non-thermal pressure is ~43%, confirming 
anew that the termination shock (at least at VGR2) is strongly mediated by non-thermal ions. 
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INTRODUCTION 
   
   We argue in this paper that the Voyager 2 (VGR2) measurements at its multiple 
termination shock crossings are of particular importance, because their substitution into 
generalized Rankine-Hugoniot (R-H) jump conditions can place a strong constraint on 
non-thermal plasma pressures and energy densities.  Conventional formulations of the R-
H conditions utilize an equation of state plus a “closure” (adiabatic) condition.  This is 
not appropriate for VGR2 (because the non-thermal pressure dominates), but we can still 
write down useful R-H conditions in terms of the conserved quantities (the flow of mass, 
momentum and energy across the shock) if we can generalize the R-H conditions to the 
actual measurements made by the instruments. 
   Marvelous as they are, the Voyager spacecraft (VGR1/2) suffer a gap in their 
instrumentation for measurements of ions ~1-30 keV.  The gap has become critical now 
that VGR1/2 are both immersed in the heliosheath (HS) beyond the solar wind 
termination shock (TS), because we know that non-thermal ions provide the dominant 
pressure in that region in the energy range ~1-30 keV of heated pickup ions (PUIs).  
Fortunately, the recently published all-sky images of the HS from the energetic neutral 



atom (ENA) cameras IBEX [1] and Cassini/MIMI/INCA [2] may help fill that energy 
gap.  The ENA technique images singly-charged energetic ions that undergo charge-
exchange collisions when they are immersed within a neutral gas medium.  In the case of 
the heliosheath, the dominant energetic ion species is protons, and the gas consists 
predominantly of relatively cold hydrogen atoms (T~10,000K).  However ENA imaging 
has one fundamental limitation:  the ENA intensity (jENA) within an imaging pixel is 
produced by the integration of the energetic ion intensity (jion) multiplied by the the 
neutral H-atom density (nH) along the entire line of sight (LOS) of that pixel.  Although 
there is some spatial variation in nH the heliosheath, the dominant variation is expected in 
the energetic ion intensity (jion).  The ambiguity of the LOS integration has so far allowed 
many explanations of the remarkable IBEX “ribbon” and the INCA “belt” to be put 
forward that invoke a variety of spatial and/or temporal variations.  However, the 
VGR1/2 observations provide in situ “ground truth” for the ENA images, albeit within 
only two pixels out of hundreds in the ENA images.  Nonetheless, these two pixels are 
critical to the interpretation of the global images.  The Voyager pixels are rather 
strategically located: VGR1 lies on the northern edge of the belt but outside the ribbon, 
whereas VGR2 lies in heart of the belt and on the southern edge of the ribbon. 
   The first indication that a new paradigm might be required for the heliosheath came 
with the surprising VGR2 plasma observation (the plasma instrument on VGR1 failed 
after its Jupiter flyby) that the thermal plasma remained supersonic beyond the 
termination shock (TS) [3].  This immediately implied that the downstream suprathermal 
plasma flow had to be subsonic and that the bulk of the downstream pressure had to be 
produced by the suprathermal plasma. Both the IBEX and INCA ENA spectra in the 
VGR pixels were much harder than a simple extrapolation of the VGR thermal spectrum, 
suggesting that the bulk of the downstream pressure was generated by 0.2-30 keV ions 
[1,2,4].  In addition, the LECP observations [5] from both VGR1 and VGR2 for ions 
>30keV revealed non-thermal high-energy power-law “tails” (E-k) with k~1.5.  The 
pressure from such a hard spectrum would diverge logarithmically with energy if it 
extended to very high energies, so even over the finite energy range 30-3500 keV the ion 
tails make a significant pressure contributions [2,5].  Consequently, there is certainly no 
simple “equation of state” for the downstream heliosheath plasma, e.g., no single-
temperature Maxwellian or kappa-function could describe the complicated ion phase 
space density.  Therefore, if we wish to extract the information contained in the R-H 
jump conditions at the TS, we must re-formulate them more generally without invoking 
any equation of state. We will go back to very basic concepts in order to establish the 
generality of our results. 
 

BASIC TRANSPORT EQUATION AND MOMENTS 
  

∂f/∂t + v⋅∇f + (Ze) (E+v×B)⋅∂f/∂p = Q   (1) 
  
   This “fine-grained” equation describes the evolution of the phase-space density f(r,p,t) 
for a single species of charge (Ze) and mass (m) with p=mv using conventional notation; 
species subscripts are suppressed for clarity. The electric and magnetic fields (E,B) are 
considered to be self-consistent.  We indicate the electric field as the vector (E), whereas 
we will reserve the scalar symbol (E) for its customary use as a particle energy. The 



“source/sink” function (Q) is a “catch-all” for all other physical processes, including 
mass loading, momentum transfer (Boltzmann-like), and energy change due to 
“collisions” with other species of particles. The general equation (Eq. 1) can be converted 
into a set of coupled relations among momentum moments over phase space of ascending 
order [6] ; the first three moment equations are summarized in Table 1 and the moments 
(N,K,Ψ ,Π ,…) are defined in Table 2.  In a first step away from dependence upon an 
equation of state, the moments may be re-cast in terms of the directly measureable uni-
directional differential particle intensity j(r,up,E,t) through the general relationships 
f=j(E)/p2 and dE=vdp, where up=p/p=v/v is the unit momentum (or velocity) vector, and 
E is the kinetic energy.  See Table 2.  The remaining quantities (Q0,Q1,Q2) in the moment 
equations describe the exchanges of mass, momentum and energy, respectively.  
 
TABLE 1.  Moment equations (individual species) for conserved quantities. 
  

∂ρ/∂t + ∇⋅(ρV) = Q0 Mass density (ρ=mN) 
∂K/∂t + ∇⋅Π  - ZeN(E+V×B) = Q1 Momentum density (K=ρV) 
∂ε/∂t + ∇⋅Ψ  + ZeE⋅(NV) = Q2 Energy density (ε) 

 
    The closure of the hierarchy of moments, i.e., the familiar terms of MHD equations, is 
usually achieved by imposing an equation of state, e.g., PV=NkT and invoking a 
thermodynamic constraint, e.g., PN-γ=constant.  However, we have no need of such 
closure, because we can measure directly the moments themselves. Nor need we invoke 
an equation of state (except for the lowest energy plasma, and that only for notational 
convenience), or any thermodynamic constraint.  Instead, we express the moments 
directly in terms of the measured particle intensity (j).  We write <xj>=(4π)-1∫dΩpxj for 
the average over all momentum directions (at a fixed energy) of the quantity (xj).  The 
first three intensity directional moments (integrated over momentum space holding 
E=constant) are assigned the notations j0(E)=<j>,  j1(E)=<upj>, and j2(E)=<upupj>. The 
total moment of the quantity (X) for a single species is the integral over all momentum 
space of (xf).  The preceding definitions yield the moments summarized in Table 2. 
 

 X = 0∫∞dpp2
4π∫dΩpxf = 0∫∞dp4π<xj> = 4π 0∫∞dE(1/v)<xj>   (2) 

 
TABLE 2. Momentum-space moments for individual particle species in terms of uni-directional intensities. 
 

N = 4π 0∫  ∞ dE(1/v)j0(E) j0(E) = <j(E,up)> number density (x=v0) 
ρ = 4π 0∫  ∞ dE(m/v)j0(E) j0(E) = <j(E,up)> mass density (x=mv0) 
NV = 4π 0∫  ∞ dEj1(E) j1(E) = <upj(E,up)> number flux (x=v) 
K = 4π 0∫  ∞ dEmj1(E) j1(E) = <upj(E,up)> momentum density (x=p) 
Ψ  = 4π 0∫  ∞ dEEj1(E) j1(E) = <upj(E,up)> energy flux density (x=vE) 
Π   = 4π 0∫  ∞ dEpj2(E) j2(T) = <upupj(E,up)> particle stress tensor (x=pv) 

 
   In order to examine the meaningful physical quantities in the R-K conditions, in Table 
3 we express the moments in the shock frame (unprimed quantities) in terms of their 
values in reference frames upstream and downstream of the shock (primed quantities) for 
each individual species. The trace of the particle stress tensor is twice the energy density 
(ε′), while if the stress tensor is isotropic (diagonal), its trace also equals three times the 



(isotropic) pressure (P): Tr(Π ′)=2ε′=3P′.  Thus the relation ε′=(3/2)P′ follows from the 
basic definition of the stress tensor and not from any thermodynamic considerations. 
 
TABLE 3.  Transformations from shock frame into plasma frames (upstream or downstream). 
  
N = ∫d3pf(p) = ∫d3p′f′(p′)=N′ N = N′ 
K = ∫d3ppf(p) = ∫d3p′(p′+mV)f′(p′) K = K′+ρV 
Ψ  = ∫d3p 
v(mv2/2)f(p) 

=(m/2)∫d3p′(v′+V)(v′2+2V⋅v′+V2)f′(p′) Ψ=Ψ′+Vε′+V⋅Π ′+VV⋅K′+(V2/2)K′+(ρV2/2)V 

Π  = ∫d3ppvf(p) = ∫d3p′(p′+mV)(v′+V)f′(p′) Π  = Π ′+VK′+K′V+ρVV 
S = (1/µ0)E×B   = S′+(1/µ0)(-V×B)×B S = S′+(1/µ0)(VB2-BB⋅V) 
 

Representation of moments in terms of instrumental measurements 
  
   Suppose we have a set of instruments that cover all energies 0<E<∞ in a set of energy 
ranges 0<E<E1, E1<E<E2,…, Ek<E<∞ for each species of interest. For a first example, 
consider how the number flux (NV) can be calculated directly from the measurements. 
  

NV/4π = 0∫  E1 dEj1(E)+ E1∫
 E2 dEj1(E)+…+ Ek∫

 ∞ dEj1(E)  (3) 
  
If the first integral, i.e., the measurement from the thermal plasma instrument over the 
lowest energy range (0<E<E1), dominates all the rest, then it alone (NV)th provides a 
good estimate of the total number flux NV and also of the bulk velocity for the species 
(V) because N~Nth. 
   For a second example, the scalar pressure (P) is proportional to the trace of the particle 
stress tensor (Π).  The total particle pressure can be written as the sum of partial 
pressures measured by all the instruments: P=ΔPth+ΔP1+…+ΔPk. Henceforward we 
suppress the prime (′) notation on the partial pressures (ΔP), since pressures are always 
calculated from intensities (j′) transformed into the plasma frame. 
 

3P/4π = 0∫  E1 dEpj0(E)+ E1∫
 E2 dEpj0(E)+…+ Ek∫

 ∞ dEpj0(E)  (4) 
  
The first partial pressure (lowest energy) may be usefully parametrized in terms of a 
temperature as ΔPth=NthkTth, because Nth≅N (most of the density is in the thermal range).  
This is not really invoking an equation of state for the low-energy “thermal” plasma;  it is 
done for convenience because the Voyager plasma results have been reported in terms of 
a temperature (Tth) derived from the plasma momentum moments. The important 
observational result from VGR2 is that the thermal partial pressure is smaller than the 
non-thermal partial pressures in the higher energy instruments (ΔPth<<ΔP1+…+ΔPk), and 
that these higher energy distributions do not exhibit “thermal” spectra. 
 

Summation over all species for conserved quantities 
 
   The symbol (∑) indicates a summation operation over all particle species (ions, 
electrons and neutrals) for all mathematical terms to the right of the symbol. The 
electrons should be included in general.  The neutrals will not contribute to the jump 



conditions because their momentum, energy flux and pressure are continuous at the 
shock.  There are five scalar jump conditions (the u⋅∑Π  equation has three components).  
The jump conditions for a given species at a given energy are too complicated to write 
down here, since they involve the other species.  Only when we sum over all species do 
the conservation laws give us simple jump conditions.  When the moment equations for 
individual species in Table 2 are summed over all species (including neutrals) in Table 4, 
exchanges of mass, momentum and energy cancel out:  ∑Q0, ∑Q1=0, ∑Q2=0. Also, we 
identify the following sums over all species: ∑mN=∑ρ  (total mass density), ∑ZeN=0  
(total charge neutrality), and ∑ZeNV=J  (electric current intensity).  
  
TABLE 4.  Total moment equations summed over all species (including neutrals). 
 

∂∑ρ/∂t + ∇⋅∑K = 0 ∂∑ρ/∂t + ∇⋅∑K = 0 
∂∑K/∂t + ∇⋅∑Π  - J×B = 0 ∂(∑K+S/c2)∂t + ∇⋅(Π-BB/µ0+IB2/2µ0) = 0 
∂∑ε/∂t + ∇⋅∑Ψ  - E⋅J = 0 ∂/∂t(∑ε+B2/2µ0) + ∇⋅(∑Ψ+S) = 0 

 
In Table 4, we have replaced the electro-magnetic terms (J×B and E⋅J) with terms 
involving Maxwell stresses and Poynting’s vector S=(1/µ0)E×B. The electric field stress 
tensor and energy density is neglected, because they are O(V/c)2 compared to those of the 
magnetic field. These equations are now in a “conservation law” format.  Since they have 
been formulated in the shock frame, the time derivatives vanish. Then Gauss’s law, 
applied to a “pillbox” containing the termination shock with a unit normal vector (u) 
yields the Rankine-Hugoniot jump conditions for a plasma shock [7]: 
 

u⋅[∑K]=0 u⋅[Π-BB/µ0+IB2/2µ0]=0  u⋅[∑Ψ+S]=0  (5) 
 
where the notation u⋅[x] indicates the jump in the quantity x projected along the shock 
normal.  
 

SIMPLIFIED GENERAL RANKINE-HUGONIOT CONDITIONS 
  
   For simplicity, we will now assume isotropic pressures (P′) and neglect residual 
momentum intensity (K′) and heat flux (Ψ′) in the upstream/downstream frames.  Also, 
S′=0 in the plasma frames because E′=0, so u⋅S=u⋅(VB2-BB⋅V)/µ0≅(B2/µ0)(u⋅V) for a 
quasi-perpendicular shock.  Please refer to Table 3.  Conservation of mass density 
becomes continuity of total momentum (mass flux) across the shock, while conservation 
of energy density becomes continuity of total energy density flux across the shock. 
 

u⋅[∑ρV]→[∑ρu⋅V] = 0 u⋅[∑Ψ+S]→[∑(ε′+P′+ρV2/2+ B2/µ0)u⋅V]=0  (6) 
  
Note the natural appearance of the specific enthalpy (ε′+P′) in the total energy density 
flux, representing the energy necessary to “put the gas together”, even though no 
thermodynamic concepts have been invoked explicitly.  This quantity is more easily 
recognized in its familiar representation as the enthalpy of classical thermodynamics if it 
is multiplied by a volume V, since ε′V=U′ is the internal energy within that volume while 



P′V is the work done against a pressure reservoir (P′=constant) while creating that 
volume of gas. 
   In Eq. (6), we can either write P′=2ε′/3 or ε′=3P′/2 and consider the term ρV2/2 to be 
either the kinetic energy of the bulk flow or half the total ram pressure.  The units can 
either be those of energy (pJ/m3) or pressure (pPa) because 1J=1N-m and 1Pa=1N/m2.   
  

 [(5/3∑ε′+∑ρV2/2+ B2/µ0)u⋅V]=0 or [(5/2∑P′+∑ρV2/2+ B2/µ0)u⋅V]=0 (7) 
  
   In this jump condition the total energy density (ε′) is weighted by a relative factor (5/3) 
with respect to the kinetic energy of the bulk flow (∑ρV2/2), or equivalently, the total 
pressure (∑P′) is weighted by a relative factor (5) with respect to the total ram pressure 
(∑ρV2). We now can see that is not particularly helpful to make separate 
upstream/downstream comparisons of the energy density or the pressure, because they 
are combined in the specific enthalpy. The energy density (or the ram pressure) of the 
bulk flow and the magnetic pressure must also be included in the conserved quantities 
(but with the proper weighting factors, none of which is unity).  The remaining vector 
jump condition involving the stress tensors determines the deflection of the bulk velocity 
(V) across the shock. However, the VGR2 shock crossings were consistent with a quasi-
perpendicular shock [8] because [B/N]≅0, so that u⋅V≅V and, after clearing fractions, we 
are left with the simple expressions 
  

5[V∑ε′]+(3/2)[V∑ρV2]+3[VB2/µ0]=0   or   5[V∑P′]+[V∑ρV2]+2[VB2/µ0]=0 (8) 
 

Separation of Thermal from Non-Thermal Components 
 
   We now separately identify the thermal and non-thermal components.  Also, from here 
on, we’ll use the pressure formulation (because the equivalent expressions in terms of 
energy density are simply related to them through ε′=3P′/2).  Eq. (8) becomes 
  

Vup∑(NkT′)up+Vup∑ΔP′up+(Vup/5)∑(ρV2)up+2VupBup
2/µ0    

 
= Vdn∑(NkT′)dn+Vdn∑ΔP′dn+( Vdn/5)∑(ρV2)dn+2VdnBdn

2/µ0   (9) 
  
where ΔP′ now will refer only to the non-thermal pressure (because we have written the 
thermal pressure explicitly as nkT′). Because the jump condition on total momentum 
[∑ρV]=0 is dominated by the thermal plasma, we may define a compression ratio 
R=ρdn/ρup=Vup/Vdn wherein ρ and V now indicate the values for the thermal plasma 
alone. This allows us to write ∑(ρV2)dn≅(1/R)∑(ρV2)up, which is useful because the 
upstream values are better defined in the data than those downstream. From the Voyager 
2 thermal plasma observations [3], we have R≅300kms-1/(150)kms-1≅2 and R-1/R=1.5.  
From the magnetic field observations [8], if we ignore the fine structure (48s) of the 
shocks (e.g., magnetic ramp and overshoot), typical values are Bup~0.05 nT and Bdn~0.10 
nT. Finally, we divide Eqs. 8 and 9 by Vdn and then re-arrange to obtain the result from 
our (simplified) generalized Rankine-Hugoniot relations.  
 



∑ΔP′dn-R∑ΔP′up ≅          
 

(1/5)(R-1/R)∑(ρV2)up+R∑(NkT′+2 Bup
2/µ0)up-∑(NkT′+2 Bup

2/µ0)dn  (10) 
 
  All relevant observational data for the VGR2 TS are summarized in Table 5 for the 
upstream and downstream regions. The contribution of electrons is included in the 
thermal pressures, but is negligible in the non-thermal range. Only non-thermal pressures 
appear on the LHS of Eq. 10, while all quantities on the RHS are evaluated from the 
measurements of the thermal component and the magnetic field.  Substituting the values 
from Table 5 into the RHS of Eq. 10 yields   
 

∑ΔP′dn-2∑ΔP′up ≅ 0.033 pPa      (11)   
  
TABLE 5.  Summary of measured and estimated pressures (VGR2 termination shock)  
  

Pressure types Pressure Contributions Up (pPa) Down (pPa) 
Ram (bulk flow) [3] ∑(ρV2) 0.150 (~0.075) 
Thermal [3] ∑NkT′ (0-0.2keV) 5.5x10-4 (~5.2x10-3) 
Magnetic [8] B2/2µ0 0.001 0.004 
Non-thermal    
Heated PUIs ∑ΔP′ (0.2-6keV) ??? (0.150*, 0.121**) 
Cassini/INCA[2] ∑ΔP′ (5-55keV) ??? 0.077*** 
VGR2 LECP [5] in situ ∑ΔP′ (28-3500keV) <<0.023 0.023 
Total (without PUIs) ∑ΔP′ (no 0.2-6keV) ??? 0.100 
Estimates (PUIs)    
*IBEX (Lo+Hi) LOS [4] ∫dr∑ΔP′ (0.2-6keV)   L=50AU ??? 7.5 pPa-AU 
**Simulation [9] ∑ΔP′ (0.2-6keV) ??? 0.121 
***Normed to LECP    

 
DISCUSSION OF THE NON-THERMAL PRESSURE  

  
   We can immediately conclude from Eq. 11 that the upstream non-thermal pressure is 
greater than half of the downstream non-thermal pressure.  However, we would like to 
extract more information. The Cassini/INCA energetic ion spectrum over 5-55 keV was 
derived [2] by normalizing the ENA intensity (measured in the VGR2 pixel and divided 
by the charge-exchange cross section) to the VGR2 in situ ion intensity in the 
overlapping energy range 30-55 keV.  The agreement of the spectral slope in the overlap 
was consistent with the downstream non-thermal pressure extending approximately 
uniformly from the vicinity of the TS outward into the heliosheath.  On the other hand, 
the IBEX and INCA ENA images are insensitive to the upstream ion intensities, because 
they extend only ~1AU inward of the TS and thus contribute little to the ENA LOS 
integrals.  This is why there are only (???) entries for them in Table 5. 
   There was a notable absence of the >30 keV ion intensity observed upstream of the TS 
during by VGR2 during the months before the crossing [5], but since the bulk of the 
INCA-derived pressure resides at the lower energies, we have no way of knowing what 
the upstream pressure was in the range 5-30 keV.  However, we know of two estimates of 
the downstream heated PUIs in the range 0.2-6.0 keV (see Table 5).  The first is from 



IBEX [4] where the ENA intensity in the VGR2 pixel implies an ion pressure (integrated 
over the ENA LOS) of 7.5 pPa-AU.   If we choose a LOS distance of 50AU from the TS 
out to the heliopause, then ΔP′dn~0.15 pPa.  The second is from a simulation [9] with self-
consistent magnetic turbulence based on the VGR2 plasma measurements. The computed 
proton spectrum implies a partial pressure ΔP′dn~0.121 pPa; unfortunately an upstream 
spectrum was not provided.  If we add the average (~0.13 pPa) of these two estimates to 
the remaining non-thermal pressure (0.100 pPa) in Table 5 and rewrite Eq. 11, we obtain 
 

∑ΔP′up = (1/2)(∑ΔP′dn -0.033 pPa) = (1/2)(0.230 pPa -0.033 pPa) = 0.099 pPa (12) 
 
which in turn implies ∑ΔP′up/∑ΔP′dn=(0.099 pPa/0.230 pPa)=43%.  One can see that this 
ratio is not too sensitive to the exact values of our estimates for ΔP′up in the 0.2-6.0 keV 
energy range (listed in Table 5).   
   We therefore conclude from our generalized Rankine-Hugoniot analysis that almost 
half of the downstream non-thermal pressure has to appear upstream of the termination 
shock.   This further supports earlier arguments [10,11,12] that the termination shock (at 
least at VGR2) was strongly mediated by non-thermal pressure, presumably from heated 
pick-up ions.  
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