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Abstract

Even after decades of study using advanced observing instruments and sophisticated numerical models, a number of significant

questions remain unanswered concerning the composition and chemistry of Venus’ atmosphere. The primary chemical cycles and the

interactions among sulfur and chlorine radicals in Venus’ middle atmosphere are reviewed to assess the current status of our knowledge,

identify unresolved questions, and assess how the Venus Express mission may contribute to their resolution.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Prior investigations of Venus’ atmospheric chemistry
have deduced three primary cycles: the CO2 cycle, the
sulfur oxidation cycle, and the polysulfur cycle. Clear
observational evidence supports the existence of the first
two cycles, but many details of how these cycles operate in
Venus’ atmosphere remain unresolved. The observational
evidence for the third cycle still is controversial and less is
known about it.

Krasnopolsky and Parshev (1983), von Zahn et al.
(1983), Krasnopolsky (1986), and Esposito et al. (1997)
provide detailed reviews of our understanding of Venus’
atmospheric chemistry in the early 1980’s, mid-1980s, and
mid-1990s, respectively. Krasnopolsky (2006a) and Mills
et al. (2007) update those reviews by focusing on
observations made over the past decade. This review
complements these contemporary works by emphasizing
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the synthesis of recent laboratory experiments and
observations into atmospheric chemistry models and by
connecting the expected contributions from Venus Express
observations to gaps in our understanding of Venus’
atmospheric chemistry.
Venus Express data have the potential to address several

of the unresolved issues that remain. This review uses a
one-dimensional photochemical model, described in Sec-
tion 2, to illustrate some of the discussion points. Model
and data shortcomings specific to each of the three primary
chemical cycles are discussed in Sections 3–5. The possible
contributions of coupled sulfur and chlorine chemistry are
explored in some detail in Section 6. Prospects for
developing an improved understanding of Venus’ atmo-
spheric chemistry based on data from Venus Express are
summarized in Section 7.

2. Model description

The Venus model used here is based on the Caltech/JPL
code (Allen et al., 1981) and solves the continuity equation
simultaneously for 47 species. This model is similar to that
used to study the photochemistry of Mars (Nair et al.,
1994). It is a one-dimensional model which is converged to
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a steady-state solution via a finite-difference iterative
algorithm. The model atmosphere, noon local solar time
(Seiff, 1983), extends from 58 to 112 km altitude with 2-km
thick layers. The model represents the ‘‘global average’’
photochemistry, so diurnal variations have not been
explicitly modeled. Photodissociation was calculated for
45� latitude at local noon and then divided by 2. The solar
fluxes used represent high solar irradiance conditions.
Diffuse radiation was calculated using the Feautrier
method generalized to arbitrary anisotropic scattering with
aerosol scattering properties based on Pioneer Venus
measurements (Crisp, 1986). Photoabsorption and chemi-
cal kinetic data were drawn from critically reviewed
compilations (e.g., DeMore et al., 1997) whenever possible.
Changes in kinetic rate recommendations since 1997 are
not expected to be significant. The nominal equilibrium
constant for ClCO formation and decomposition, KClCO ¼

1:6� 10�25 expð4000=TÞ (Sander et al., 2002) is based on
laboratory work by Nicovich et al. (1990). Temperature
dependent cross sections were used for CO2 (Lewis and
Carver, 1983; Shemansky, 1972), SO2 (Freeman et al.,
1984b; Hearn and Joens, 1991; Leroy et al., 1983; Manatt
and Lane, 1993; Martinez and Joens, 1992; McGee and
Burris, 1987; Sprague and Joens, 1995; Suto et al., 1982),
O3 (Anderson and Mauersberger, 1992; Burkholder and
Talukdar, 1994; Freeman et al., 1984a; Griggs, 1968;
Molina and Molina, 1986; Tanaka et al., 1953; Yoshino
et al., 1988, 1993),and OCS (Molina et al., 1981). UV cross
sections for photolysis of ClC(O)OO were included
(Pernice et al., 2004). No reactive nitrogen species were
included in the calculations. Vertical transport via eddy
diffusion was set based on observations (Lane and
Opstbaum, 1983; von Zahn et al., 1980; Woo and
Ishimaru, 1981). The H2O profile was fixed to match the
equilibrium vapor pressure over 75wt% sulfuric acid
(Mills, 1999b). At the lower boundary, the mixing ratio
for CO2 was set to 0.965 (von Zahn et al., 1983), HCl to
0.4 ppm (Young, 1972; Connes et al., 1967), OCS to 1 ppb
(as was assumed by Bezard et al., 1990), and SO2 to 1 ppm.
The concentration gradient at the lower boundary for all
other species was set to zero. At the upper boundary, the
upward flux of molecules, such as CO2, was set equal to the
downward flux of their photodissociation products to
simulate photodissociation occurring above the upper
boundary. Additional detail on the model and its inputs
is available in prior publications (Mills, 1998, 1999a, b;
Pernice et al., 2004; Mills et al., 2006).

3. CO2 cycle

The CO2 cycle, the dominant chemical cycle above
Venus’ clouds, involves the photodissociation of CO2 on
the day side, production of O2, and conversion of CO and
O2 into CO2. CO2 and CO have been observed with mixing
ratios of 0.965 (von Zahn et al., 1983) and �1� 10�5 �
3� 10�3 above �60 km (Connes et al., 1968; Lellouch
et al., 1994; Gurwell et al., 1995), respectively. Ground-
state O2 has not been detected and the observational upper
limits are equivalent to uniform mixing ratios above 60 km
of 0.3–2 ppm (Traub and Carleton, 1974; Trauger and
Lunine, 1983; Mills, 1999a). (A mixing ratio of 0.3 ppm
corresponds to a column abundance of 1:5� 1018 cm�2

above 58 km altitude.) An alternative and more restrictive
interpretation of the smallest nondetection limit corre-
sponds to an O2 column abundance of 8� 1017 cm�2 above
62 km (Krasnopolsky, 2006a). (The reported detection of
O2 with a mixing ratio of 44� 25 ppm near 52 km, Oyama
et al., 1980 was marginal and has not been confirmed.
Indirect tests suggest such a high abundance of O2 near
52 km is not plausible (von Zahn et al., 1983; Krasnopols-
ky, 1986; Mills, 1999a).) The large observed abundance of
CO2, the low observed abundance of CO, and the stringent
observational limit on ground-state O2 imply production of
CO2 approximately balances its loss via photodissociation.
In addition, rapid production of ground-state O2 has been
inferred from observations of intense airglow emission in
the O2ða

1D! X 3SÞ band at 1:27mm on both the day and
night sides (Connes et al., 1979; Crisp et al., 1996).
Numerical modeling, therefore, suggests CO2 must be
produced via catalytic processes because its direct produc-
tion from CO, O, and O2 is slow (Nair et al., 1994; Mills,
1998).
The identity of the chemical mechanism(s) by which CO2

is produced in Venus’ atmosphere, however, has not been
resolved. The inability of previous photochemical models
(Winick and Stewart, 1980; Krasnopolsky and Parshev,
1981a–c, 1983; Yung and DeMore, 1982) to match the
current observational limit on the ground-state O2

abundance was seen as their major failing. The calculated
O2 in these models exceeded the Trauger and Lunine (1983)
observational limit by at least a factor of 2.5 (which is five
standard deviations for the original interpretation of the
observation). More recent modeling (Pernice et al., 2004;
Mills et al., 2006; Sundaram et al., 2007) has identified two
potential mechanisms by which CO could be oxidized at a
sufficiently rapid rate in Venus’ middle atmosphere
(58–110 km) to reduce the calculated O2 abundance to a
level that is closer to the observational limit. One
mechanism produces CO2 via ClC(O)OO (Yung and
DeMore, 1982), and is the basis for Schemes A, B, and C
in the Appendix. This mechanism has been verified in
laboratory experiments (Pernice et al., 2004), but none of
the intermediate species have been observed yet. Detection
of ClCO, ClC(O)OO, or COCl2 would be a major
confirmation of this mechanism. (COCl2 is a likely by-
product of these Schemes.) The second mechanism, Scheme
D, oxidizes CO via (photocatalytic?) reactions on or within
aerosols or cloud particles (Mills et al., 2006; Sundaram
et al., 2007). The aerosol mechanism was postulated based
on qualitative laboratory studies (Mills and Phillips, 1993,
1996; Rowland and Phillips, 2000; Rowland et al., 2002),
and requires detailed laboratory confirmation. Atreya and
Blamont (1990) suggested heterogeneous oxidation of CO
might be important in Mars’ atmosphere, but Choi and
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Leu (1997) found the reaction probabilities for the
heterogeneous oxidation of CO on inorganic oxides and
on water ice were too small for this to be a significant
source for CO2. However, laboratory measurements of
photocatalytic oxidation of CO on TiO2 (Thevenet et al.,
1974), which is more similar to the photocatalytic oxida-
tion of CO on/in sulfuric acid proposed for Venus, suggest
photocatalytic oxidation could be a significant source for
CO2 on Mars (Choi and Leu, 1997) and possibly on Venus.

Due to the difficulty that models have had in obtaining a
calculated O2 column abundance that is compatible with
the observational limit, the primary issue in understanding
the CO2 cycle on Venus typically has been phrased in terms
of reproducing this limit in model calculations. However,
there are really four inter-related issues (and observational
constraints) associated with modeling and understanding
the CO2 cycle. The first is the observational limit on
ground-state O2. The second is the intense oxygen airglow
observed in the O2ða

1D! X 3SÞ and other bands. The
third and fourth are the abundance ratio for CO/O2 and
the spatial distribution of CO (and presumably of O2).

3.1. Ground-state O2

The failure of spectroscopic searches to detect ground-
state O2 (Traub and Carleton, 1974; Trauger and Lunine,
1983; Mills, 1999a) can be expressed easily as a limit on
absorption by O2 but its translation into an upper limit on
the column abundance has been subject to varying
interpretation (Trauger and Lunine, 1983; Mills, 1999a;
Krasnopolsky, 2006a). None of the instruments on Venus
Express will be able to provide a detection of ground-state
O2 but Earth-based spectroscopy might.

3.2. Oxygen airglow

Huestis (2002), Slanger and Copeland (2003), and
Slanger et al. (2006) provide excellent reviews of excited
state oxygen chemistry and its application to Venus’
atmosphere. The detailed processes associated with forma-
tion of O2 from two oxygen atoms are very difficult to
disentangle due to strong apparent interactions and inter-
system crossings among the various excited states of O2.
One key conclusion from recent laboratory studies,
however, is that a large fraction (possibly near 100%) of
the O�2 produced in Reaction 1 is likely to be produced in or
to go through one of the Herzberg states of O2 (A

3S, A0
3D,

and c1S) (Huestis, 2002), which are the upper source states
for the three Herzberg bands.

2OþM ! O�2 þM. (1)

A second key conclusion is that the interplay among the
many vibrational levels of the three Herzberg states and the
5P state is sufficiently strong that rapid population
redistributions appear to occur within and among these
four states so the net yield of O2ðcÞ from Reaction 1 on
Venus may be near 100% (Slanger and Copeland, 2003).
Given the net yield of O2ðcÞ from Reaction 1 may be near
100%, the amount of O2ðcÞ that must emit a photon in the
Herzberg II band to produce the observed airglow
(Krasnopolsky et al., 1976; Lawrence et al., 1977;
Krasnopolsky, 1983, 1986) is only 0.5% of the O2ðcÞ that
is produced (Slanger et al., 2006). The remaining O2ðcÞ will
be collisionally quenched to produce a broad range of
vibrationally excited O2 in the three lowest electronic states
(X 3S, a1D, and b1s). Laboratory studies (Wildt et al., 1991;
Knutsen et al., 1994; Bednarek et al., 1994; Wildt et al.,
1988; Fink et al., 1991) as reviewed by Huestis (2002)
suggest collisional quenching by CO2 of O2ðcÞ and O2ðbÞ

leads to O2ða
1DÞ with net yields �95%. Hence, the net yield

of O2ða
1DÞ from Reaction 1 may be �95%. Smaller (more

conservative) net yields of O2ða
1DÞ from Reaction 1 were

assumed in the photochemical model calculations pre-
sented in Table 1: 0.6 for M ¼ N2 and 0.75 for M ¼ CO2

(Crisp et al., 1996). Even with these conservative net yields
and a ground-state O2 column abundance that is an order
of magnitude smaller than in the Yung and DeMore (1982)
Model C, Table 1 shows that model calculations can
produce ‘‘global average’’ 1:27 mm airglow intensities that
are in reasonable agreement with the observed ‘‘global
average.’’
Venus Express airglow observations will provide a much

more solid understanding of typical atmospheric condi-
tions, particularly on the day side. A high degree of
correlation between CO abundance and O2 airglow
intensity would confirm the role of dynamics in controlling
the distribution of these species. An anti-correlation
between oxygen green line emission and 1:27 mm airglow
would lend support to the O2ðcÞ mechanism for CO
oxidation, Scheme E, that was recently proposed (Slanger
et al., 2006; Mills et al., 2006).

3.3. CO abundance and distribution

There are two issues with the existing state of compar-
isons between models and observations for CO. The first is
that the current proposed mechanisms for oxidation of CO
do not yield the large ratio of CO to O2 that is observed.
Table 1 and Fig. 1 illustrate how the reductions in the
modeled O2 abundance that result from enhancements in
the production rate for CO2 via the ClC(O)OO mechanism
are accompanied by corresponding decreases in the
modeled CO mixing ratio. Similar results are found using
the aerosol mechanism (Sundaram et al., 2007). For the
calculations in Table 1 and Fig. 1, the uncertainty in the
equilibrium constant was calculated via (Sander et al.,
2002),

f ðTÞ ¼ f ð298KÞ exp DB
1

T
�

1

298

� �� �
, (2)

where f ¼ uncertainty, T ¼ temperature, DB ¼ uncertainty
in the equilibrium constant’s exponential factor which is
500K for ClCO, and f ð298Þ ¼ 5 for ClCO. The rate
coefficient for the thermal decomposition reaction for
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Table 1

Comparison of model calculations and observations

Parameter Observation Model calculation

þ2sa þ1s þ0:5s Nominalb

O2 column (1018 cm�2) o0:8c, o1:5d 2.0 2.4 3.1 8.6

O2ða
1D! X 3SÞ 1:27mm 1.5 (day)e 1.2f 1.3f 1.3f 1.5f

Airglow emission (MR)g 1–1.2 (night)h

S8 production ð109 cm�2 s�1Þ 8.6 5.4 1.2 �0

H2SO4 production ð1011 cm�2 s�1Þ �2210i 4.0 4.2 4.6 4.8

aClCO thermal stability increased by twice the assessed uncertainty in the equilibrium constant (Sander et al., 2002) and model atmosphere temperatures

(Seiff, 1983) at 84–90 km were decreased by 6K.
bThe nominal ClCO equilibrium constant was used, but the model atmosphere temperatures (Seiff, 1983) at 84–90 km were decreased by 6K.
cKrasnopolsky (2006a).
dTrauger and Lunine (1983).
eConnes et al. (1979).
fGlobal (diurnal) averages.
g1 mega-Rayleigh ðMRÞ ¼ 1012 photons cm�2 s�1 into 4p sr.
hCrisp et al. (1996) and Connes et al. (1979).
iYung and DeMore (1982) and Winick and Stewart (1980).
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ClCO was decreased by 0.5, 1, and 2 times this uncertainty
for the þ0:5s, þ1:0s, and þ2:0s calculations, respectively,
in Table 1 and Fig. 1. The nominal temperatures at
84–90 km were decreased by 6K to further enhance the
stability of ClCO. This change in temperatures is well
within the variability observed on the night side of Venus
(Clancy et al., 2003). These increases in the thermal
stability of ClCO enhance the likelihood that ClCO will
react with O2 to form ClC(O)OO before ClCO thermally
decomposes and thereby enhance the production rate for
CO2. The low CO abundances that accompany the low O2

abundances in these model calculations may indicate this
modeling approach either is not appropriate or is not
complete. However, the observational record for CO is
incomplete in spatial coverage, particularly on the day side,
and observations on the night side indicate substantial
temporal variability (Fig. 1). Three-dimensional maps of
CO would markedly improve the quality of data against
which photochemical model calculations can be compared.
Vertical profiles of CO for 50–100 km altitude would
enable photochemical models to assess the vertical profile
of the rate of CO oxidation. Furthermore, temporal
variations in the distribution of CO as observed by Venus
Express, when combined with the long time base of
ground-based observations, may provide the necessary
context for understanding how the composition of the
middle atmosphere on Venus may have changed over the
past three decades (Esposito et al., 1988; Clancy and
Muhleman, 1991; Lellouch et al., 1994; Na et al., 1994).
The second issue in the current state of comparisons

between model calculations and observations for CO is the
lack of coupling between chemical and dynamical effects in
existing models. Models with simple dynamics and
chemistry have been quite successful at explaining the CO
distribution above �90 km altitude (Lellouch et al., 1994;
Gurwell et al., 1995), indicating that dynamical influences
need to be considered in modeling the full CO2 cycle. No
model has been constructed to date that incorporates the
full chemistry of the CO2 cycle and transport of species due
to dynamics; the observational data needed to develop and
test a good chemical transport model (CTM) have not
existed. Venus Express observations of winds and tem-
peratures will provide the data required for creation of a
CTM, and contemporaneous observations of CO should
provide an excellent test of the CTM’s capabilities.
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4. Sulfur oxidation cycle

This cycle involves primarily the oxidation of SO2 in the
upper cloud to form H2SO4, condensation and downward
transport of the sulfuric acid, and evaporation and
decomposition in the lower atmosphere to produce SO2,
CO2, and H2O. Good observational evidence exists for
most steps in this cycle (Krasnopolsky and Pollack, 1994),
but there are inconsistencies among the models that have
been used to study the various parts of the cycle (Esposito
et al., 1997). Krasnopolsky and Pollack (1994) developed
two models for the condensation and evaporation of
sulfuric acid that gave good agreement with a range of
observational constraints at 30–50 km altitude. A new
analysis of Venera optical spectra (Ignatiev et al., 1997)
agrees well with interpretations of Earth-based observa-
tions (Pollack et al., 1993) so that Model 1 from
Krasnopolsky and Pollack (1994) is now strongly favored.
The required production rate for H2SO4 in this model is
2:2� 1012 cm�2 s�1. Previous photochemical models pre-
dicted H2SO4 production rates of 9� 101121:1�
1013 cm�2 s�1 (Yung and DeMore, 1982; Krasnopolsky
and Pollack, 1994), but the þ2s, þ1s, and þ0:5s models in
Table 1, which have better agreement with the observa-
tional limit on O2, have smaller H2SO4 production rates,
425� 1011 cm�2 s�1. In addition, Krasnopolsky (2006b),
found that inclusion of NOx in a photochemical model
opened additional important pathways for oxidizing SO
and producing O2 via

NO2 þ SO! NOþ SO2, (3)

NO2 þO! NOþO2. (4)

So, Reactions (3) and (4) may further reduce the H2SO4

production rates in photochemical models. Previous
observational estimates of the H2SO4 production rate were
in the range of 2� 101121� 1012 cm�2 s�1 (Winick and
Stewart, 1980; Yung and DeMore, 1982).

If the H2SO4 production rate in the upper cloud is as
large as has been modeled by Krasnopolsky and Pollack
(1994), then a critical process may be missing from
photochemical models. Production of H2SO4 via ClSO4

(DeMore et al., 1985) could be a very efficient mechanism
for oxidizing SO2 but has not been tested in more recent
models, see Section 6.2.

5. Polysulfur cycle

The polysulfur cycle involves photodissociation of
SO2 or OCS, formation of polysulfur ðSxÞ, downward
transport of the Sx, and thermal decomposition followed
by reaction with CO in the lower atmosphere to produce
OCS or reaction with SO3 to form SO2. The polysulfur
cycle was originally proposed when OCS was believed
to be the primary sulfur species in Venus’ atmosphere
(Prinn, 1978), More recently, Krasnopolsky and Pollack
(1994) established a relationship between the fluxes
of H2SO4, CO, and S,

FH2SO4
¼ FSO3

¼ FCO þ 2FS (5)

for the situation where CO and SO2 oxidation are
comparable in importance. They found FS ¼ 2:5� 1011 or
FS8 ¼ 3� 1010 in their Model 1 (Krasnopolsky and
Pollack, 1994), which gave a mass ratio Sx=H2SO4 in
Model 1 of 0.04. This is somewhat smaller than the nominal
mass ratio, 0.1–0.15, inferred from Vega gas chromato-
graph measurements (Porshnev et al., 1987; Krasnopolsky,
2006a). S3 has been reported in the lower atmosphere
(Maiorov et al., 2005), but there is some controversy over
this detection (von Zahn et al., 1983). There has been no
definitive detection of Sx in the middle atmosphere, but the
presence of Sx aerosol has been inferred from measurements
by the Vega gas chromatograph (Porshnev et al., 1987). Sx

has been suggested as a potential candidate for the UV
absorber at 320–500nm (Esposito et al., 1997; Krasnopols-
ky, 2006a). Photochemical models (Winick and Stewart,
1980; Yung and DeMore, 1982 have sometimes assumed all
SO2 transported into the upper cloud is oxidized to sulfuric
acid. However, this may not be the case if the oxygen
abundance in the upper cloud is sufficiently low, which is
what is implied by the observational limits on O2, assuming
the observational limits are representative of global average
conditions. Coupling between sulfur and chlorine chemistry
may be important for understanding how the disproportio-
nation of sulfur between sulfuric acid and polysulfur occurs,
Section 6.3.

6. Coupled sulfur and chlorine chemistry

Reactions that couple sulfur and chlorine chemistry may
play important roles in all three of the primary chemical
cycles in Venus, atmosphere but have received compara-
tively less attention in photochemical models to date.

6.1. Coupled CO and SO2 oxidation

Scheme F (Yung and DeMore, 1982) links the CO2 and
sulfur oxidation cycles via Reaction F7 and efficiently
breaks the O–O bond in O2, which is an important
difference from Schemes A, B, and C. Scheme F likely
requires vertical transport of SO because photodissociation
of CO2 occurs predominantly above 75 km altitude while
photodissociation of SO2 occurs predominately below
70 km altitude. Vertical transport of significant amounts
of O2 would likely require violating the observational
upper limits on its abundance and the lifetime of ClO
should be short.

6.2. Coupled Cl and SO2 chemistry

Scheme G (DeMore et al., 1985) produces sulfuryl
chloride, SO2Cl2, which could be a significant reservoir for
chlorine although there have been arguments against this
(Pollack et al., 1993). If a different loss pathway for ClSO2,
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Table 2

Reactions involving SmCln and Sx

Reaction Rate coefficienta Ref.

72 SOþ hnðlo232nmÞ ! SþO J72 ¼ 7:2� 10�4
b

74 SO2 þ hnðlo210nmÞ ! SþO2 J74 ¼ 1:1� 10�6
c

79 S2 þ hnðlo280nmÞ ! 2S J79 ¼ 1:2� 10�2
d

88 SClþ hnðlo500nmÞ ! Sþ Cl J88 ¼ 1:1� 10�1
e

89 SCl2 þ hnðlo460nmÞ ! SClþCl J89 ¼ 9:0� 10�3
f

91 S2Clþ hnðlo485nmÞ ! S2 þCl J91 ¼ 2:8� 10�1
e

151 SþO2 ! SOþO k151 ¼ 2:3� 10�12
g

167 2SO! SO2 þ S k167 ¼ 1� 10�12 e�1700=T h

196 ClSO2 þ SCl! SO2 þ SCl2 k196 ¼ 5� 10�12
e

217 2SþM! S2 þM k217 k0 ¼ 1:18� 10�29
i

k1 ¼ 1� 10�10
e

218 Sþ S2 þM! S3 þM k218 k0 ¼ 1� 10�30
e

k1 ¼ 3� 10�11
e

219 2S2 þM! S4 þM k219 k0 ¼ 2:2� 10�29
i

k1 ¼ 1� 10�10
j

226 S2 þ S4 þM! S6 þM k226 k0 ¼ 1� 10�30
e

k1 ¼ 3� 10�11
e

228 2S4 þM! S8 þM k228 k0 ¼ 1� 10�30
e

k1 ¼ 3� 10�11
e

240 Oþ S2 ! SOþ S k240 ¼ 2� 10�11
k

242 Oþ S4 ! SOþ S3 k242 ¼ 2� 10�11
e

262 SþOCS! S2 þCO k262 ¼ 4� 10�12 e�1830=T l

266 Sþ Cl2 ! SClþ Cl k266 ¼ 2:8� 10�11 e�290=T m

267 Clþ S4 ! S2Clþ S2 k267 ¼ 2� 10�12
e

268 Oþ SCl! SOþ Cl k268 ¼ 1:2� 10�10
n

270 Clþ SClþM! SCl2 þM k270 k0 ¼ 1� 10�30
o

k1 ¼ 5� 10�11
e

271 SClþO2 ! SOþ ClO k271 ¼ 2� 10�15
p

272 2SCl! S2 þ Cl2 k272 ¼ 6� 10�12
q

290 SOþ ClþM! OSClþM k290 ¼ 3� 10�33ð T
300
Þ
�5 e

292 OSClþ Cl! Cl2 þ SO k292 ¼ 2:3� 10�11
e

293 SOþOSCl! SO2 þ SCl k293 ¼ 6� 10�13
r

336 SClþ S! S2 þCl k336 ¼ 1� 10�11
s

337 SClþ Cl2 ! SCl2 þ Cl k337 ¼ 7� 10�14
t

339 2SCl! S2Clþ Cl k339 ¼ 5:4� 10�11
q

344 S2Clþ Cl! Cl2 þ S2 k344 ¼ 1� 10�11
s

aThe units for mean photodissociation rates (J) and two-body and three-body reaction rates (k) are s�1, cm3 s�1, and cm6 s�1, respectively. The

numerical values for photodissociation refer to 70 km, mid-latitude.
bData drawn from Colin (1969), Phillips (1981), Nee and Lee (1986), Manatt and Lane (1993), Phillips, personal communication (1992), and Manatt,

personal communication (1993).
cData drawn from Manatt and Lane (1993), Martinez and Joens (1992), Felder et al. (1988), Kawasaki and Sato (1987), and Ebata et al. (1988).
dEstimated based on Oommen (1970), Watanabe et al. (1953), and Okabe (1978).
eEstimated. See Mills (1998).
fEstimated based on Colton and Rabalais (1974), Tiemann et al. (1989), Howe et al. (1995), and Samuel (1946).
gSander et al. (2002).
hMartinez and Herron (1983).
iNicholas et al. (1979).
jFowles et al. (1967).
kSingleton and Cvetanovic (1988).
lData drawn from Mallard et al. (1994).
mBaulch et al. (1981).
nMurrells (1988b).
oEstimated based on Eibling and Kaufman (1983) and Murrells (1988a).
p0:1� upper limit from Murrells (1988b).
qBased on Murrells (1988a).
rEstimated based on Donovan et al. (1969).
sEstimated based on Murrells (1988a).
tMurrells (1988a).
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Fig. 3. Same as Fig. 2 for the nominal ClCO thermal stability model. (See

notes for Table 1.).
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Fig. 4. Reaction rates for SCl loss pathways that lead to production of S2
in the þ2s (blue with squares) and nominal (red with triangles) ClCO

thermal stability models. (See notes for Table 1.) Short dashed lines are for

Reaction 339. Long dashed lines are for Reaction 272.
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Reaction A.17, is important, then Scheme H (DeMore et
al., 1985) may provide a means for increasing the rate of
production of H2SO4. Scheme H may contribute signifi-
cantly to the production of H2SO4 if the rate coefficient for
Reaction A.17 is larger than about 2� 10�32 cm6 s�1. This
work has not been developed further as neither Reaction
A.16 nor Reaction A.17 was included in the Table 1
models.

Reaction A.15, with loss of ClSO2 via reactions,

ClSO2 þO! SO2 þ ClO, (6)

ClSO2 þ Cl! SO2 þ Cl2, (7)

ClSO2 þ SCl! SO2 þ SCl2 (8)

was included in the Table 1 models and contributes to
increasing the SO2 scale height near 70 km altitude from
�2:5 km (Yung and DeMore, 1982) to �3:0–3.5 km. Both
scale heights are within the 2–4 km observational con-
straint (Na et al., 1994).

6.3. Chlorosulfane chemistry

Chlorosulfanes, SmCln, have received very little attention
but are likely to form in the upper cloud layer when the
oxygen abundance is sufficiently small and the chlorine
abundance is sufficiently large, as defined below. Table 2
lists the most important reactions involving chlorosulfanes
and polysulfur in the Table 1 models (Mills, 1998).

The most important chlorosulfane pathways are shown
in Figs. 2 and 3 for the þ2s and nominal ClCO models,
SO

S2Cl

S

SCl S2 S4SCl2

Fig. 2. Reactive pathways for production of polysulfur via chlorosulfanes

in the þ2s ClCO thermal stability model. (See notes for Table 1.) The

solid black arrows indicate a pathway is important for both the

production of the product and the loss of the reactant. The long-dashed

black arrows indicate a pathway is important for the production of the

product but not important for the loss of the reactant. The dotted black

arrows indicate a pathway is important for the loss of the reactant but not

important for the production of the product. A pathway was considered

‘‘important’’ if it contributes at least 10% of the total loss of these species.

The pathways shown as green dotted arrows (for loss of S2 to SO, S4 to

SO, SCl to SO, and SCl to S2Cl) contribute 5–10% of the total loss of

these species.
respectively. In both models, the primary path for
production of S2 is via SCl and S2Cl. Almost all of the
S2Cl that is formed is lost via Reactions 91 and 344, so the
net production of S2 (excluding that from reactions
destroying Sx where x42) is approximately the sum of
the rates for Reactions 272 and 339. Production of S2
occurs predominately at 59–65 km altitude, Fig. 4, and, as
expected, the production rate for S2 is markedly smaller in
the nominal ClCO thermal stability model.
There are three primary points at which the balance

between production of S4 and SOx from S are determined,
Figs. 2 and 3. The first is Reaction 151 versus Reaction 266.
The second is Reactions 268 and 271 versus Reactions 272
and 339. The third is Reaction 240 versus Reaction 219.
Assuming photochemical steady state, the balance between
production of SmCln (or Sx) and SO at each of these three
primary branching points can be described by

SCl production from S

SO production from S
¼

k266½Cl2�

k151½O2�
, (9)

S2Cl and S2 production from SCl

SO production from SCl
¼
ðk272 þ k339Þ½SCl�

ðk268½O� þ k271½O2�Þ
,

(10)
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Fig. 7. Oxidation and reduction loss paths for SCl in the þ2s (blue with

squares) and nominal (red with triangles) ClCO thermal stability models.

(See notes for Table 1.) Dotted lines are Reaction 268; dash-dot lines are

Reaction 271; short-dash lines are Reaction 339; long-dash lines are

Reaction 272. The fraction of SCl lost via Reaction 268 increases

monotonically with altitude to 0.50 (nominal model) and 0.61 (þ2s
model) at 70 km altitude.
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Fig. 8. Oxidation and reduction loss paths for S2 in the þ2s (blue with

F.P. Mills, M. Allen / Planetary and Space Science 55 (2007) 1729–17401736
S4 production from S2
SO production from S2

¼
k219½S2�½M�

k240½O�
, (11)

where the concentrations of S, SCl, and S2 at 59–65 km
altitude (in steady state) are given approximately by

½S� 	
J72½SO� þ J88½SCl�

k151½O2� þ k266½Cl2�
, (12)

½SCl� 	
k266½S�½Cl2�

J88 þ k268½O�
þ

k293k290½SO�
2½M�

ðJ88 þ k268½O�Þðk292Þ
, (13)

½S2� 	
k339½SCl�

2

J79 þ k240½O�
, (14)

respectively.
Based on these (approximate) equations, the branching

ratios for production of polysulfur and SO are determined
by the concentrations of O, O2, SO, and Cl2, Fig. 5. The
most significant differences between the þ2s and the
nominal ClCO thermal stability models in Fig. 5 are the
concentrations of SO and O2, with the latter difference
larger by two orders of magnitude than the former.
Consequently, the differences in production rates for S2
(and, thus, for polysulfur) for these two models, Fig. 4,
appear to be largely controlled by the O2 concentrations.
Fig. 6 shows the change in branching ratios for loss of S,
Fig. 7 shows the change in branching ratios for loss of SCl,
and Fig. 8 shows the change in branching ratios for loss of
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Fig. 5. Concentrations of O, O2, Cl, Cl2, and SO in the þ2s (blue with

squares) and nominal (red with triangles) ClCO thermal stability models.

(See notes for Table 1.) Dotted lines are [O], dash-dot lines are [O2], short-

dash lines are [Cl], long-dash lines are [Cl2], and solid lines are [SO].
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Fig. 6. Oxidation and reduction loss paths for S in the þ2s (blue with

squares) and nominal (red with triangles) ClCO thermal stability models.

(See notes for Table 1.) Dotted lines are Reaction 151; dashed lines are

Reaction 266.

squares) and nominal (red with triangles) ClCO thermal stability models.

(See notes for Table 1.) Dotted lines are Reaction 240; dashed lines are

Reaction 219.
S2. The fraction of the loss not shown in these figures is
recycled to earlier stages in the polysulfur production
process, Figs. 2 and 3.
The rate coefficients in Eq. (9) have been measured and

critically assessed, so the uncertainties in this ratio are
probably the best constrained among Eqs. (9)–(11). For
Eq. (10), the individual rate coefficients in the numerator,
k272 and k339, have not been determined but their sum has
been measured (Murrells, 1988a). In the denominator, k268

has been measured but only an upper limit exists for k271.
Even if k271 were as large as the upper limit, 2�
10�14 cm3 s�1 (Murrells, 1988b), Eq. (10) would decrease
by less than a factor of two in the þ2s model, which is
probably the closest model to the real Venus atmosphere
at least for O2 concentrations. The rate coefficients in
Eq. (11) have also been measured but their temperature
dependences are also not known. The uncertainties in
Eqs. (9)–(11) due to uncertainties in the rate coefficients
are 50% at 250K, at least 60% with unknown temperature
dependence, and at least 300% at 298K with unknown
temperature dependence, respectively. The primary uncer-
tainties regarding the efficiency of the proposed chloro-
sulfane mechanism for producing S2, however, are likely to
be whether there are important oxidation loss channels for
S2Cl and SCl2, which were not included in the present
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models. These modeling results and the branching ratio
equations derived above together suggest that the chlor-
osulfane pathways in Fig. 2 are likely to be important if the
O2 abundance is as low as the observational limits imply,
regardless of whether the low O2 abundance results from
fast CO oxidation or fast SO2 oxidation. The predicted
chlorosulfane abundances are small ðo1 ppbvÞ so their
identification via remote sensing may be difficult.
7. Conclusions

Progress has been made in the past 20 years in
understanding the CO2 cycle in Venus’ atmosphere, but
major questions remain unanswered. Oxidation of CO to
CO2 via chlorine catalytic reactions (Krasnopolsky and
Parshev, 1981a–c, 1983; Yung and DeMore, 1981, 1982)
has been verified in laboratory experiments (Pernice et al.,
2004), but significant uncertainties remain in the rate
coefficients for each step in this mechanism (Sander et al.,
2002). Although the uncertainty on the thermal stability of
ClCO is small by laboratory standards, model calculations
are very sensitive to this parameter, so further laboratory
study is required. Within the large uncertainty induced by
uncertainty in the thermal stability of ClCO, it is possible
to construct a model whose column O2 abundance is
roughly consistent with the observational upper limit. Two
other proposed CO oxidation mechanisms—the aerosol
mechanism which may be important below 70 km and the
O2ðcÞ mechanism which may be important above 90
km–await laboratory confirmation. Advances in our
understanding of excited state oxygen chemistry have
enabled models to simulate the observed global average
airglow in the 1:27mm O2ða

1D! X 3SÞ band. Further
progress is needed to address the larger question of
simultaneously understanding the column O2 abundance
and the CO distribution. This question will require global
observations of the abundances of ground-state O2, O2

airglow, and CO at 50–100 km.
Further laboratory experiments, observations, and numer-

ical modeling are required to understand: (1) the mechan-
ism(s) and rate(s) for production of H2SO4, (2) the
interactions that may occur among sulfur, chlorine, and
nitrogen radicals, and (3) the interactions between chemistry
and dynamics. The first of these is a key point of
disagreement between cloud and photochemical models that
needs to be resolved. The solution may also improve the
agreement between modeled O2 abundances and the
observational upper limits. The second provides key links
among the primary chemical cycles, especially in the upper
cloud layer, and likely provides important pathways for the
production of H2SO4 and Sx. Both the first and second will
require modeling and observational data over the depth of
the cloud layers. Observations of SO, SO2, and OCS at
50–75km altitude should help resolve these questions,
particularly if the scale height of SO2 can be constrained to
within 0.5 km. The third will require development of a
multidimensional chemical transport model based on global
observations of winds, temperatures, and CO abundances.
Venus Express data will provide a more comprehensive

and detailed view than exists today for CO, SO, SO2, OCS,
O2 airglow, winds, and temperatures. Detection of ClCO,
ClC(O)OO, or COCl2 would be a major confirmation of
the ClC(O)OO mechanism for CO oxidation, while an anti-
correlation between oxygen green line emission and
1:27mm airglow would lend support to the O2ðcÞ mechan-
ism for CO oxidation. These data and the supporting
laboratory experiments, earth-based observations, and
numerical modeling should produce significant advances
in our understanding of the rich chemistry that appears to
occur within Venus’ atmosphere.
Acknowledgements

Partial funding for this research was provided by the
NASA Planetary Astronomy and Atmospheres programs
and the Australian Research Council. Part of this work was
performed at the Jet Propulsion Laboratory, California
Institute of Technology, under contract to the National
Aeronautics and Space Administration. Helpful comments
from B. Burns, S. Cavanagh, S. Gibson, T. Slanger, and
F. Taylor are gratefully acknowledged. Helpful reviews
from V. Krasnopolsky and an anonymous reviewer are
gratefully acknowledged.
Appendix A. Chemical schemes from previous studies

referenced in text

The chemical schemes referenced in the main text from
previous studies are detailed below.
A.1. CO Oxidation via ClC(O)OO

Clþ COþM ! ClCOþM ðA:1Þ

ClCOþO2 þM ! ClCðOÞOOþM ðA:2Þ

ClCðOÞOOþ Cl ! CO2 þ ClOþ Cl ðA:3Þ

ClOþO ! ClþO2 ðA:4Þ

Net : CO þO! CO2

(A)

Clþ COþM ! ClCOþM ðA:1Þ

ClCOþO2 þM ! ClCðOÞOOþM ðA:2Þ

ClCðOÞOOþO ! CO2 þ ClþO2 ðA:5Þ

Net : CO þO! CO2

(B)

Clþ COþM ! ClCOþM ðA:1Þ

ClCOþO2 þM ! ClCðOÞOOþM ðA:2Þ

ClCðOÞOOþ hn ! CO2 þ ClO ðA:6Þ

ClOþO ! ClþO2 ðA:4Þ

Net : CO þOþ hn! CO2

(C)
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A.2. CO oxidation via heterogeneous processes

COþOþ aerosol ! CO2 þ aerosol ðA:7Þ (D)

A.3. CO oxidation via reaction with O2ðc
1SÞ

2OþM ! O�2 þM ðA:8Þ

O�2 þM ! O2ðc
1SÞ þM ðA:9Þ

COþO2ðc
1SÞ ! CO2 þOð1S;1DÞ ðA:10Þ

(E)

Net : COþ 2O! CO2 þOð1S;1DÞ

A.4. Coupled CO and SO2 oxidation

Clþ COþM ! ClCOþM ðA:1Þ

ClCOþO2 þM ! ClCðOÞOOþM ðA:2Þ

ClCðOÞOOþ Cl ! CO2 þ ClOþ Cl ðA:3Þ

SO2 þ hn ! SOþO ðA:11Þ

SO2 þOþM ! SO3 þM ðA:12Þ

SO3 þH2OþM ! H2SO4 þM ðA:13Þ

SOþ ClO ! SO2 þ Cl ðA:14Þ

(F)

Net : COþO2 þ SO2 þH2Oþ hn! CO2 þH2SO4

A.5. Sulfuryl chloride production

2ðClþ SO2 þM ! ClSO2 þMÞ ðA:15Þ

2ClSO2 ! SO2Cl2 þ SO2 ðA:16Þ
(G)

Net : 2Clþ SO2! SO2Cl2

A.6. SO2 oxidation via ClSO4

Clþ SO2 þM ! ClSO2 þM ðA:15Þ

ClSO2 þO2 þM ! ClSO4 þM ðA:17Þ

ClSO4 þ Cl ! SO3 þ ClOþ Cl ðA:18Þ

SO3 þH2OþM ! H2SO4 þM ðA:13Þ

(H)

Net : Clþ SO2 þO2 þH2O! ClOþH2SO4
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