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[1] Solar Occultation at Infrared (SOIR), which is a part of the Spectroscopy for
Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument on
board Venus Express, combines an echelle-grating spectrometer with an acoustooptical
tunable filter. It performs solar occultation measurements in the IR region at a high
spectral resolution better than all previously flown planetary spectrometers. The
wavelength range probed allows for a detailed chemical inventory of the Venus
atmosphere above the cloud layer, with an emphasis on the vertical distribution of the
gases. A general description of the retrieval technique is given and is illustrated by some
results obtained for CO, and for a series of minor constituents, such as H,O, HDO,
CO, HCI, and HF. Detection limits for previously undetected species will also be

discussed.
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1. Introduction

[2] Venus is a very warm and dry planet with a dense
atmosphere composed mainly of carbon dioxide (CO,,
96.5%) and Nitrogen (N,, 3.5%). Chemically active species,
such as sulfuric bearing gases (OCS and SO,) and halides
(HCI and HF) have already been reported (see de Bergh et
al. [2006] for a general review on the composition of the
atmosphere of Venus below 100 km altitude). Measure-
ments have been performed essentially in the mesosphere
below 100 km and below the clouds. Information about
minor atmospheric constituents, their concentration, reac-
tions, sources and sinks is incomplete, as for example only
scarce measurements have been performed above 100 km
altitude. In particular, photochemical models of the middle
atmosphere would benefit from abundance measurements of
Cl-bearing gases.

[3] The Solar Occultation at Infrared (SOIR) spectrome-
ter is an extension mounted on top of the Spectroscopy for
Investigation of Characteristics of the Atmosphere of Venus
(SPICAV) instrument [Bertaux et al., 2007a]. SPICAV/
SOIR is one of the seven instruments on board Venus
Express, a planetary mission of the European Space Agency
(ESA) that was launched in November 2005 and inserted
into orbit around Venus in April 2006 [Titov et al., 2006].
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[4] SOIR [Nevejans et al., 2006] is designed to measure
at high resolution (0.15 cm ') the atmospheric transmission
in the IR (2.2-4.3 pm) using solar occultations. This
technique allows for the derivation of unique information
about the vertical structure and composition of the Venus
mesosphere. SOIR is the first high-resolution NIR spec-
trometer on board a spacecraft investigating the Venusian
atmosphere and it enables a sensitive search for new minor
species from the top of the clouds up to about 125 km of
altitude.

2. Description of the Instrument

[5] The instrument has already been extensively described
elsewhere [Bertaux et al., 2007a; Mahieux et al., 2008;
Nevejans et al., 2006] and will only be briefly described
here. SOIR is an echelle-grating spectrometer operating in
the IR, combined with an acoustooptic tunable filter
(AOTF) for the selection of the diffraction-grating orders.
The free spectral range (FSR) of the echelle spectrometer,
i.e., the spectral interval in which there is no interference
or superposition of light from adjacent orders equals
22.38 cmfl, whereas the bandwidth of the AOTF was
originally designed to be 20 cm™', as measured on ground
before launch [Nevejans et al., 2006]. The real measured
bandwidth of SOIR is ~24 cm™ ' [Mahieux et al., 2008],
creating some order leakage on the detector. The wave
number domain that can be investigated by the SOIR
instrument extends from 2256 to 4369 cmfl, and is divided
into 94 smaller ranges corresponding to the different orders
(from 101 to 194). The detector width for orders 101 to 122
is smaller than the FSR of 22.38 cm™' and hence the
detector will miss part of the spectrum. For orders 123 to
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Example of spectra obtained during one occultation (sunset 15 April 2007). Each

transmittance is obtained by making the ratio of the solar spectrum seen through the Venus atmosphere to
the unattenuated solar spectrum measured above the atmosphere. The selection of a spectral interval is
achieved through the acoustooptic tunable (AOT) filter, tuned in this case to (a) 15809 kHz for
diffraction order 121, (b) 19869 kHz for diffraction order 149, (c) 23031 kHz for diffraction order 171,
and (d) 25742 kHz for diffraction order 190. In these particular ranges of wave number, the main
absorption lines are from HDO (Figure 1a), CO, (Figure 1b), H,O (Figure 1c), and CO (Figure 1d).

194 the inverse happens: the detector width is equal to or
larger than the FSR and the detector will not be completely
covered by the selected order.

[6] The SOIR detector has 320 columns along the wave
number axis and 256 rows along the spatial axis. The slit is
projected on 32 fixed rows only. Since, owing to imposed
telemetry limitations, only a data volume equivalent to
8 rows of 320 pixels can be retrieved per second, one is
forced to bin the rows in eight groups of four rows,
provided only one order (or AOTF frequency setting) is
used during a given second. It is however possible to select
up to four different orders (not necessarily sequential) per
second, allowing us to gather a more versatile set of
absorption lines. This reduces the maximum measurement
time per order to 250 ms and implies that only 2 larger bins
of 16 rows will be used if the complete slit height has to be
covered. Later, the binning was changed to 2 bins of 12 rows
because the outside rows of the illuminated part of the
detector received a lower signal, because that part of the slit
was too close to the edge of the Sun [Mahieux et al., 2008].
Background measurements are subtracted onboard from the
measurements themselves.

[7] Raw spectra, registered by SOIR and transmitted to
Earth, need dedicated processing in order to upgrade them
to a calibrated data set. This involves detector nonlinearity
correction, spectral calibration and division by a reference
solar spectrum. Ideally, the reference spectrum that is taken

outside the atmosphere would be measured with an identical
relative slit position with respect to the solar disk. Attitude
drift of the spacecraft, however, makes the slit float which
results in a gradual linear change of the intensity. This effect
is also corrected for Mahieux et al. [2008].

[8] A SOIR occultation observation can be taken either at
sunset or sunrise. In the case of a sunset, the measurement
cycle is started well before the instrument’s line of sight to
the Sun intersects with the top layers of the atmosphere, and
reference spectra are recorded (at a rate of 1 spectrum s~ ).
Once the top of the atmosphere is reached, solar light is
absorbed and the intensity of the recorded signal starts to
decrease until the Sun gets so flattened by refraction that the
spectrometer slit moves out of the refracted solar disk. One
of the main advantages of solar occultations is that it is a
self-calibrated technique in terms of transmission: dividing
a spectrum obtained during the occultation by a reference
solar spectrum recorded outside the atmosphere removes the
solar signature and leaves a transmittance containing only
information about the composition of the Venus atmo-
sphere. The reference spectrum is in fact defined by selecting
spectra recorded within the 40 s before the level at 220 km
is reached.

[v] Figure 1 gives an example of the evolution of the
spectra through one occultation (sunset 15April 2007) in the
orders 121, 149, 171, and 190 corresponding to the 2725—
2750, 3330-3357, 38203855, and 4245-4283 cm ™'
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Figure 2. Latitudinal distribution of measurements of (a) CO,, (b) CO, (c) HF, and (d) HCIL. Dots
represent measurements performed when Venus Express is separated from limb at 65 km tangent height
by less than 5000 km and crosses when this distance is larger. In the latter case, the vertical resolution is
coarser. Only measurements corresponding to the smallest distances have been considered in this study.
Most of those correspond to north polar air masses.

ranges, respectively. These transmittances show the charac-  sets, the light path goes deeper and deeper into the atmo-
teristic behavior observed on all occultation series measured — sphere, and two absorption processes take place: the overall
by SOIR. At the beginning of the series, the light path does  signal decreases owing to extinction by aerosols and absorp-
not cross the atmosphere. No absorption signatures are tion signatures appear. At the end of the observation, no
present and transmittances are equal to unity. As the Sun light is captured anymore when the Sun disappears behind
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Figure 3. Typical examples of the vertical resolution for different types of orbits. The geometry of the
orbit defines the field of view (instantaneous range of altitude encompassed by the instrument entrance
slit taken at the beginning of the measurement, solid line) and the vertical resolution (dashed line). This
corresponds to the portion of atmosphere sounded during one measurement, thus 250 ms. It highly
depends on the distance from the planet and the velocity of Venus Express (VEX). Figures 3a and 3b
show the vertical resolution and the field of view during orbits 223 (30 November 2006; distance to the
limb at 65 km tangent height is 2000 km; 81°N) and 332 (19 March 2007; distance to the limb is 11198 km;

4°N) as a function of time.

the cloud deck or moves out of SOIR’s field of view owing
to diffraction. The structures seen in the spectra of Figure 1
are mainly attributed to HDO (Figure 1a), CO, (Figure 1b),
H,O (Figure 1c), and CO (Figure 1d). From Figure 1, it can
also be seen that in general, the SOIR spectra contain
information on the Venus atmosphere between 65 and
110 km for molecules such as HDO or HCI. For H,O and
CO signatures are still observable up to 130 km altitude
and CO, features are seen up to 125—130 km [Bertaux et
al., 2007b; Wilquet et al., 2007].

[10] Most of the measurements of SOIR occur at high
northern latitude because of the shape of the orbit with its
pericenter located at about 250 km above the northern pole
and its apocenter at about 65,000 km. When solar occulta-
tion occurs, a sunset or a sunrise can be observed. When the
satellite is close to the planet the vertical resolution is less
than 1 km. Measurements correspond to latitudes ranging
from 60° to 90°N. When the satellite is located far from
Venus, measurements have a poorer vertical resolution and
occur at lower latitudes, typically from 70°S to 60°N. Figure
2 illustrates the latitudes and longitudes, corresponding to the
tangent altitude of 65 km, of the measurements yielding
information on CO,, CO, HCI, and HF. We have distin-
guished two types of geometries, when the distance between

Venus Express (VEX) to the limb (at 65 km tangent height)
is less than 5000 km (dots), and when it is larger (crosses).
Figure 2 will be discussed in more detail in section 4, where
results for each species will be described individually.

[11] We define the vertical resolution at the tangent point
as the total altitude range scanned during one measurement.
Because the slit is not always parallel to the limb, but
rotating slightly, and because the measurement lasts for
250 ms, this vertical resolution may vary between 100 m
and several kilometers in the worst cases. Another variable
is the field of view, which is defined as the instantaneous
height encompassed by the instrument slit at the beginning
of the measurement. This parameter always gives a lower
limit to the vertical resolution. The vertical resolution is
mainly a function of the distance of the satellite to the
planet. The distance of the spacecraft to the planet and the
velocity of the spacecraft influence the vertical resolution in
the following ways: (1) the further the spacecraft is from the
limb, the larger the size of the instantaneous height mea-
sured in the atmosphere; (2) the velocity of the spacecraft
projected at the limb on the atmospheric local vertical
depends on the position of the spacecraft on its orbit around
Venus at the moment of the occultation.

4 of 16



E00B23

VANDAELE ET AL.: VENUS MESOSPHERE COMPOSITION BY SOIR

E00B23

VEX
Exo atmosphere \
Tangent point
7§ A Ray 1
< /2&8‘3“,- V2 Asi<
ToSun ./ NN Ray 2
— 4 . \\‘ e
/ YDs N % Ds\
Vs Dy Yals  \ RayN
N / ’ % \ \
' 4 b % 4 \
I N " \T ' ] L]
; .' ; Bt B IE v
! i h v '
' H : ' ot T :
Venus LaverL Laver 1
Layer 2

Figure 4. Geometry of solar occultation measurements and definition of the onion- peeling method.

[12] Figure 3 shows the variation of the field of view
and vertical resolution as a function of time of orbit 223
(30 November 2006; distance to the limb at 65 km tangent
height is 2000 km; 81°N) and 332 (19 March 2007; distance
to the limb is 11,198 km; 4°N). During orbit 332, the
spacecraft was far away from the planet which implies a
large atmospheric height seen by the instrument slit. The
field of view and vertical resolution are very similar because
the Sun is rising almost vertically in the atmosphere and the
velocity of the spacecraft is not too high (the spacecraft is
almost at the equator). During orbit 223, spacecraft is close
to the planet and the instantaneous height of the sounded
atmosphere is much smaller. The velocity is higher, because
the spacecraft is almost at pericenter (87°N). For the reasons
explained just above, we will limit the retrieval to spectra
obtained under favorable conditions, i.e., corresponding to
low distance between VEX and the limb at 65 km tangent
height (<5000 km) and with vertical resolution of less than
2 km. As can be inferred from Figure 2, this condition limits
the selection to regions near the north pole, with latitudes
above 60°N.

3. Description of the Retrieval Technique

[13] The retrieval technique is based on the onion peeling
method, illustrated in Figure 4. The atmosphere is treated as
an onion-like composite of spherical layers, in which the
temperature, pressure, and mixing ratios of the constituents
are held constant.

3.1. Forward Model

[14] Quantitative analysis of the recorded spectra needs
first the calculation of synthetic spectra through a forward

model based on the fundamental knowledge of the optical
properties of the atmosphere. In the forward model, SOIR
spectra are simulated using a line-by-line (LBL) code
developed initially for Earth exploration [Vandaele et al.,
2006] and adapted for the conditions on Venus. The general
equation describing radiative transfer through the atmo-
sphere can be written as

Sobs
1) = Ip(v)e ™ 0) 1 / B(v, T(s))a(v,s)e "")ds (1)
0

where [, represents the light intensity of the source (here the
Sun) placed at the starting point of the raypath situated at
the distance s,,,, from the observer, a(v, s) is the absorption
coefficient, B(v, T) is the Planck function, and

2

T(v,s1,52) = /\ a(v,s)ds (2)

is the optical depth along the path between the points s; and
s,. In solar occultation, the second term is often negligible
with respect to the Sun intensity. The optical depths 7 of the
absorbing constituents along the line of sight (see Figure 4)
are calculated at high resolution in each layer considering
the temperature and pressure determined by the ray-tracing
procedure:
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where 7 is a function of wave number and depends on the
tangent height. This, in turn, depends on the solar zenith
angle ¢ and on the atmospheric refraction characteristics,
which, on Venus, are far from negligible. Starting from
known temperature and pressure vertical profiles, the ray-
tracing calculations are carried out on a finer grid (with a
200 m step) and the final results, i.e., the effective
temperature and pressure in each layer as well as the
effective densities, are obtained using the Curtis-Godson
approximations [Goody and Yung, 1995]. In this work, we
have used temperature and pressure vertical profiles from
the VIRA model for altitudes up to 100 km [Seiff et al.,
1985]. For higher altitudes (from 140 km and upward), data
were taken from the model of Hedin et al. [1983] as
suggested by Mueller-Wodarg and Tingle [2008]. The
transition between the two data sets was performed by
spline interpolating the temperature and reconstructing the
pressure through the hydrostatic law. In the following we
will refer to this composite model as the VENUSREF
model.

[15] The extinction coefficient (P, 7, v) is a function of
the temperature and pressure prevailing at altitude z. It
represents all absorption processes, including Rayleigh oy
and aerosol ay extinction and absorption by molecular
species:

+Y (P, TE), VN2) (4)

where M is the number of absorbing species, o; and N; are
the absorption cross section and number density of species i.
The contribution of the aerosols will be further described
and discussed in a later paper (V. Wilquet et al.,
Characterization of the upper Venusian haze from UV to
mid-IR by SPICAV/SOIR on Venus Express, submitted to
Journal of Geophysical Research, 2008). The contribution
of each species is determined using a line-by-line model
based on a line catalog specific to Venus, as explained later
(see sect1on 3.2). The absorption coefficient Fk; (cm?
molecule ") for a particular line j of species i is given as

ky(v, T, P,p;) = Sy(T) x ¢(v,vy, T, P,p;) (5)
where ¢(. . .) is a normalized line shape. The intensity S;(7)
exhibits a temperature dependence which can be described
as

(o) (‘ZE’ <T() 7)) 1— e’{‘zm’/’

Si‘ T :Sz T T o]
«1( ) /( 0) Qz(T) e 1 — e—C2vy T

(6)

where ¢, is the second Planck constant ic/kp (1.4387 cm K),
with % the Planck constant, kz the Boltzmann constant, and
¢ the speed of hght vy, 1s the central wave number of the jth
transition, £; is the energy of the lower state (cm™ ", and

S;(To) is the 1nten51ty at the reference temperature T, (cm ™'
molecule™" ecm?). O(T) and Q(Ty) are the total partition
functions under local thermodynamic equilibrium condi-
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tions, at temperature 7 and 7, respectively. These functions
describe the temperature dependence of the line intensity of
the transition. They are approximated by

OT) =ay +a\T +ayT* + a3 T° (7)

where aq, ai, a», and as are tabulated coefficients [Gamache
et al,, 1990]. ASIMUT allows the user to select between
different line profiles, the Voigt profile being the default. In
the case of the H,O and CO, molecules, sub- and super-
Lorentzian line profiles have been observed [Clough et al.,
1989; Pollack et al., 1993], which are characterized by a
symmetric or asymmetric y function:

¢ (V) = x(v) X ¢ (v, P,T) (8)
This correction factor has been introduced to take into
account the fact that far from the line center, the line
displays marked deviations from the Lorentzian behavior
¢;. Typically, CO, displays a sub-Lorentzian behavior (the
opacity far from the line center is less than that predicted by
a Lorentzian profile) whereas H,O shows a super-
Lorentzian behavior. The x function is usually defined on
large spectral intervals.

[16] The spectral grid, on which the profile must be
determined, must be fine enough so that the narrowest line
be adequately represented. In the upper atmosphere, the
Doppler width is the limiting factor for selecting an adequate
sampling value. As Doppler width depends on temperature,
it varies with altitude; the line profile must therefore be
sampled with different steps as the altitude varies. ASIMUT
determines for each layer, of temperature 7" and pressure P,
the optimized sampling step as

Av(P,T) =%

ap(T) +ai(P,T) ©)
with ap the Doppler width obtained for a molecule of mass
20.0, and «; the Lorentzian width obtained for a molecule
characterized by no self-broadening, a foreign broadening
of 0.04 cm ' atm ', and a temperature coefficient of 0.5.
However, for some particular temperature and pressure
conditions, this sampling step might be too large compared
to the desired final resolution. In that case, the sampling is
set to the value of final resolution/15. LBL calculations
often require the computation of a large number of line
shapes over large to very large spectral intervals. The num-
ber of points might then become prohibitive. However, it
can be observed that the line profile changes slower at a
distance from the line center than it does near the center.
The solution implemented in ASIMUT is the use of a
nonuniform grid: near the center of the line, the optimized
step derived with the help of equation (9) is used; the step is
then progressively enlarged as one goes away from the
center. Our algorithm is based on the study of Fomin
[1995], which splits the spectral grid in a series of
subintervals. Let us assume that the line shape must be
calculated on the interval D, for which a value of 25 cm™"
is considered sufficiently large for most of the simulations,
except when applying a  factor. The cutoff value D is then
determined by the interval on which this function is given.
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Figure 5. Description of the order overlap occurring in the instrument owing to the combined presence
of the AOTF filter and the different diffraction orders of the echelle grating. In the top, a simulated
spectrum is shown containing only CO,. It spans several diffraction orders whose limits are also
indicated. This spectrum is first filtered by the AOTF, and only the portion under the filter bandwidth
enters the spectrometer. Because this bandwidth is larger than the free spectral range (FSR) of the echelle
spectrometer, more than one order of diffraction is transmitted. This is illustrated in the middle, where the
contributions of the different orders are represented. Finally, in the bottom, the sum of all of these

contributions is measured on the detector.

The limits of the center zone are defined by [v - C, v + C]
with C = 2/3 (ap + a;), ap and «; being the Doppler and
Lorentzian widths of the line. The grid is divided into 2L
portions located at unequal intervals:

[v—D,v—2"'C],..., [v—2*C,v—2C],[v—2C,v— (],
central zone, [v + C,v + 2C], [v +2C,v +2°C], ...,

[v+2-'C,v+ D] (10)
The number of intervals is related to D and C through the
following expression:

2Lxc=D (11)
In the central zone, the sampling is set to the optimized
value determined with equation (9). Then in each
subsequent interval, the sampling is doubled. This drasti-
cally reduces the number of points on which the line profile
is calculated, without losing accuracy at the center of the
line. At the end, the absorption line shape is interpolated to
correspond to the sampling used for the determination of the
optical depth (OD). The latter is chosen by considering the
step asked for the radiance or transmission simulation and
an oversampling factor either provided by the user or
chosen such that the OD wave number step is a factor 10
lower than the final radiance step.

[17] Radiances are finally convolved by the instrumental
function of the instrument, which is chosen to be a Gauss-
ian, whose width varies between 0.13 and 0.25 cm !
depending on the spectral interval simulated [Mahieux et
al., 2008].

[18] At this point, one must take into account the effect of
the AOTF on the measured spectrum. As already noted, the
filter has a bandwidth larger than the free spectral range of
the echelle spectrometer, implying some order overlap on
the detector. This is illustrated in Figure 5 where the
contribution of four adjacent orders on top of the central
one are considered. The incoming spectrum is represented
in the Figure 5 (top), along with the position of the different
orders of diffraction spanned by the AOTF filter bandwidth.
The position of the maximum of the AOTF bandwidth is
determined by the selected RF applied to the device. It is
necessary to determine the best possible (AOTF frequency—
wave number) calibration curve to increase the accuracy of
the simulation. This is done through the careful analysis of
specific measurements of some selected solar lines, whose
positions are well known [Mahieux et al., 2008]. In the case
illustrated here, the RF applied to the AOTF corresponds to
the central order number 121. The entire signal received on
the detector comes from the adjacent orders as no absorp-
tion is present in the incoming spectrum in the range of the
central order of diffraction. The contribution coming from
the noncentral orders is certainly not negligible and has to
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be taken into account when simulating SOIR spectra. In
general, we consider a total of 7 contributing orders to
determine the final transmittance.

[19] The resulting transmittance is then interpolated to
correspond to the wave number values of the observed
spectrum. It is possible to fit a wave number shift between
the observed and simulated transmittances to optimize the
correspondence.

3.2. Spectroscopic Data Sets

[20] Spectroscopic data, i.e., line parameters, have been
taken from the latest version of the HITRAN database
[Rothman et al., 2005]. However, broadening coefficients
have been modified in order to take into account the
presence of CO, as main buffer gas, whereas data reported
in HITRAN are given for Earth-like air conditions.

[21] Sung and Varanasi [2005] reported CO,-broadened
half widths and CO,-induced line shifts for the fundamental
(1-0) of '2C'%0 at 201, 244, and 300 K, as well as for the
first (2—0) overtone and the second (3—0) overtone bands at
298 K. We have considered their values for the lines in
common with the HITRAN database. Those which are not
reported by Sung and Varanasi have been corrected by a
conversion factor air width (shift) to CO, width (shift)
derived from the comparison of available common values.
The temperature coefficient has been held constant for all
lines (n = 0.73), as suggested by Sung and Varanasi.

[22] Toth and Darnton [1974] have performed measure-
ments of the HCI line widths by CO, in the 1-0 and 2—
0 bands of HCI. Their values have been taken for the lines in
common with the HITRAN database. A correction similar
to the one devised for CO was applied to the lines not
reported by those authors.

[23] Air-broadening measurements performed by the
Brussels-Reims group [Fally et al., 2003; Jenouvrier et
al., 2007; Mérienne et al., 2003] up to 25,000 cm ! have
revealed that there is a large vibrational dependence of the
width for most of the H,O transitions. This is also the case
under a CO, rich atmosphere. Various attempts [Brown et
al., 2007; Gamache et al., 1995] have tried to give simple
relations between the quantum vibrational numbers and the
width and shift of the lines. However, the spectrum of water
is so complex that it is virtually impossible to obtain
measured values for each band, reducing the validity of
the proposed relations. A simplistic solution is to scale the
broadening coefficients obtained with other perturbing
gases, such as N, or air, although it has been pointed out
by Brown et al. [2007] that “simple scaling of existing
values of air- or nitrogen-broadened parameters will not
achieve sufficiently reliable CO,-broadened H,O coeffi-
cients”, as these authors found considerable scatter of the
ratio of CO, to air broadened width (from 0.95 to 3.07)
around the mean value of 1.67. However, no data, neither
experimental nor calculated, are available in the spectral
region investigated by SOIR and the constant factor of 1.67
was applied to correct the air-broadening coefficient given
in HITRAN. This value has to be compared to the value of
1.3 usually used in Venus studies [Pollack et al., 1993].

3.3. Onion-Peeling Method

[24] The onion-peeling method was implemented to
coherently treat a series of spectra recorded during one
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occultation. In this method, one starts the analysis in the
uppermost layer, i.e., with the first spectrum containing
absorption structures due to the constituents of the atmo-
sphere, deriving concentrations in that layer, and progres-
sively goes deeper into the atmosphere taking into account
the results from the layers above. Vertical profiles of several
key species of the Venusian atmosphere have been obtained
by applying this technique, as will be demonstrated hereafter.
[25] For the sake of clarity, we will consider in the
following that the second right term in equation (1) is
negligible. The observed transmittance 77, corresponding
to ray | passing through the uppermost layer (layer 1 in
Figure 4) is then given by
Try(v) = exp[—ou (V) Asy] (12)
where «;(v) stands for «(7T;, P;, v) determined using
equation (4) and As] is the length of the raypath in layer 1
obtained by the ray-tracing procedure already explained. In
this expression, the only unknowns are the concentration ;
of each species and the aerosol loading in layer 1, which are
retrieved from the analysis of this first layer. Transmittance
observed for ray 2 will result from the combination of the
absorption of light in layer 1 (As?) and layer 2 (As3). If we
moreover consider the atmosphere as spherical and homo-
geneous, we can further write

Try(v) = exp [—az(y)Asg — m(l/)Asﬂ (13)
in which the only unknowns are the concentration N; of
each species and the aerosol loading in layer 2. By going

down progressively, the vertical profiles of the interacting
species can be derived.

4. Results

[26] In this section, we will present some results of our
analysis concerning the various species unambiguously
detected with SOIR. CO,, being the most prominent absorber
in the IR region, can be probed in different spectral regions.
Combining different diffraction orders in one occultation
moreover allows the possibility to use different bands
presenting very distinctive absorption levels, therefore per-
mitting the extraction of the CO, vertical profile from the
top of the clouds up to 170 km high. There is also the clear
possibility to probe different absorption bands originating
from the different isotopologues of the CO,. CO has been
shown to act as a potential tracer of the dynamical processes
occurring in the Venus atmosphere and its detection in the
high-altitude range is of high interest. HCI and HF have also
been detected in the SOIR spectra and vertical profiles are
described. Some results will be briefly described concerning
H,0 and HDO but we refer to the paper of Fedorova et al.
[2008] for a detailed discussion. Finally the detection limits
of a series of species, which have not yet been unambigu-
ously detected, are reported and discussed.

41. CO,

[27] CO, is the main component of the atmosphere of
Venus (96.5%). The first measurements of the atmospheric
composition of Venus were made by Adams and Dunham
[1932] using the 100 inch reflector at Mount Wilson. They
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Table 1. Possible Orders Where CO, Can Be Detected®

Temperature
Order Isotopologue Intensity Dependence Category
101 628 S M 1
102 628 S M 1
103 626 (628) S S 1
104 626 (628) S S 1
105 626 (628) S S 1
106 626 (628) S S 1
107 626 M W 2-3
108 626 w w 3
109 626 w Y 3
111 628 % W 3
112 628 w \ 3
115 628 4 w 3
116 628 w w 3
117 628 w W 3
118 628 4 w 3
140 626 w w 3
141 626 w \ 3
142 626 w w 3
143 626 w w 3
147 626 w Y 3
148 626 M w 2-3
149 626 M 4 2-3
150 626 M w 2-3
151 626 w w 3
154 626 M w 2-3
155 626 M w 2-3
156 626 M w 2-3
157 626 M M 1
158 626 M M/W 2-3
159 626 M M 1
160 626 S M 1
161 626 S M 1
162 626 S M 1
163 626 M M 1
164 626 S M/W 2
165 626 S M/W 2
166 626 S M/W 2
167 626 S M 1
168 626 M M 1
169 626 w 4 3
170 626 4 4 3
171 626 W Y 3

“Indication on the altitude range probed and on the isotopologue
measured. W, M, and S are for weak, medium and strong, respectively.
Category is defined as the following: 1 means S/M intensity with S/M
temperature dependence (cases for probing high altitudes CO, and
temperature); 2 means S/M intensity but W temperature dependence (cases
for probing high altitudes CO,, less sensitive to temperature); 3 means M/W
intensity with W temperature dependence (cases for probing lower altitudes
COy).

discovered three bands that they tentatively attributed to
CO,. Since then, CO, has been proven to be the main
absorber in the infrared region. Its absorption bands are
present throughout the spectral domain covered by SOIR,
with intensities varying over a wide range of values.
Combining different spectral intervals (orders of diffraction)
in which the CO, line strengths differ widely, the CO,
vertical profile can be obtained from lower altitudes around
65 km to higher altitudes of about 170 km. Indeed, the
interval where the CO, absorption is the largest will lead to
information on the highest layers of the atmosphere, but will
saturate for lower tangential height and, on the contrary,
spectral intervals where the CO, lines are weaker will
provide information on the deepest layers. Moreover, the
choice of the spectral interval has to be done with great care,
because of the high temperature dependence of some
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absorption bands. This, in turn, could lead to the retrieval
of temperature profiles if CO, bands characterized by high
temperature dependency are selected. In general, a mix of
intervals is chosen such that one is optimal for the CO,
detection at high altitude, a second for CO, detection at
lower altitudes, and finally two intervals, with higher
temperature dependency, are chosen to give potential infor-
mation on the temperature as a function of altitude. A
summary of the possible spectral intervals and their char-
acteristics i.e., the altitudes sounded and their temperature
dependence is given in Table 1.

[28] The possibility to retrieve different isotopologues of
CO; has already been illustrated by the discovery of the
01111-00001 band of 'C'°0'™0 in the SOIR spectra
[Bertaux et al., 2007b; Wilquet et al., 2007]. Besides this
new band, ">C'°0'®0 abundances can be derived from well
known features around 2500 cm ™. A series of occultations
dedicated to the measurement of the isotopologues which
can be detected by our instrument were performed during
MTP 21 (orbits 583 to 598) which occurred in January 2007.
The spectral region in which SOIR is active contains a
large number of lines owing to the three of the four main
isotogjologues of CO,. S7pectral signatures of '*C'°0'°0,
12¢'°0'0, and '*C'°0'’0 have been clearly identified in
the SOIR spectra, as shown in Figure 6. Simultaneous
measurements of the different isotopologues will lead to
the determination of the '’0/'°0 and '*0/'°0 isotopic
ratios as a function of altitude.

4.2. HCL and HF

[20] HCI and HF were observed for the first time in the
Venus atmosphere by Connes et al. [1967], who estimated
their mixing ratios at the cloud top as being 0.6 ppm
(refined to 0.4 + 0.07 ppm by Young [1972]) and 5 ppb,
respectively. More recent nightside observations [Bézard et
al., 1990] provided measurements of HCI and HF below the
clouds. These authors reported values of 0.5 + 0.15 ppm and
5 + 2 ppb, respectively, which are similar to the values
found by Connes et al. [1967]. Preliminary measurements
of Bjoraker et al. [1992] corresponding to altitudes above
72 km yielded a HF mixing ratio of 6.5 + 0.3 ppb, in
agreement with the values found previously. Recently,
Iwagami et al. [2008] measured hemispheric distributions
of HCI mixing ratio above and below the Venus cloud deck.
These authors reported mean values of 0.76 = 0.1 ppm at
altitudes between 61 and 67 km and 0.4 £ 0.05 ppm at about
20 km. They argued that the larger HC] mixing ratio found
above the clouds than that existing below the cloud requires
the presence of a production process of HCI in the cloud
region or above.

[30] HCI abundances are retrieved from SOIR data using
a series of lines belonging to the 1-0 band in the 2905—
2995 cm™ " spectral range (orders 130 to 133), whereas HF
determination is based on two lines of the 1-0 transition
(R1 and R2 at 4038.96 cm™' and 4075.29 cm™', respec-
tively, in the orders 180 and 181). The measurement points
reproduced in Figure 2 correspond to occultations where
one of these orders was observed. Moreover, the P3 line at
3833.66 cm ™' is also used to derive the HF abundance. This
line, however, lies in a spectral region rich with H,O lines
which render the determination of the HF abundance less
accurate.
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Figure 6. The isotopologues '*C'°0'°0, '*C'°0'®0, and '*C'°0'’0O have been observed during
MTP 21 which was fully dedicated to the measurement of CO, and the determination of the '’0/'°0 and
¥0/'%0 isotopic ratios as a function of altitude. Top shows observed spectra recorded by SOIR, and
bottom presents the corresponding simulations. The asterisks correspond to '*C'®0'70 lines absorbing in
the same region as '*C'®0'®0, and the circles correspond to '2C'°0'®0 lines absorbing in the same

region as '*C'°0'70.

[31] Figure 7 shows some typical vertical profiles found
for HCI corresponding to the orbits 341 (28 March 2007;
distance to the limb at 65 km tangent height is 3346 km;
82°N), 356 (12 April 2007; distance to the limb is 3298 km;
84°N), and 366 (22 April 2007; distance to the limb is
3898 km; 73°N). The actual parameters which are retrieved
are the HCI densities in each of the sounded layers and
volume mixing ratios are obtained by considering the air
densities calculated from pressures and temperatures given
by the VENUSREF model. The HCI profiles show very
similar evolution with altitude. Almost systematically we
observe a depletion feature around 90 km altitude. For
comparison, a profile corresponding to a constant volume
mixing ratio (vmr) (0.5 ppm) is also represented. The
interpretation of the depletion feature observed around
90 km is not clear. An analysis with respect to temperature
has been performed, which is illustrated in Figure 8, where
we have considered four different vertical profiles for the
temperature: the VENUSREF model, the VENUSREF
model +20% and -20%, and a more realistic profile obtained
by the Vera instrument [Pdtzold et al., 2007]. The four
corresponding density profiles are compared in Figure 8:
the absolute values change, because of the temperature
changes, but the depletion feature does not disappear. This
would indicate that the feature is not directly temperature-
dependent. We have also investigated the sensitivity of the
retrieval to inaccuracies in the determination of the position
of the maximum of the band pass of the AOTF function.
The results, also plotted in Figure 8, show that a displace-

ment of 1.0 cm ™' of this maximum (the accuracy on this
parameter has been estimated to be 0.83 cm ') [see
Mahieux et al., 2008], implies a decrease of the HCI
retrieved density by 10%, but the depletion feature does
not disappear.

[32] If we consider the evolution of the vmr with altitude
of Figure 7, this corresponds to a more or less constant vimr
comprised between 0.1 and 0.2 ppm, except around 90 km
where it is slightly lower. The values at the lower boundary
are somewhat lower than the values found in the literature,
0.4 ppm obtained by Connes et al. [1967] at an altitude of
64 km or 0.76 ppm at 61-67 km from Iwagami et al.
[2008]. Following the interpretation proposed by Iwagami
et al. [2008] suggesting that there should be a chemical
source of HCI inside or above the clouds to explain the
gradient in HCI mixing ratio that they observed, our results
seem to indicate that this potential source is restricted to the
cloud region.

[33] Profiles obtained in the case of HF are presented in
Figure 9 for the occultations 357 (13 April 2007; distance to
the limb is 3325 km; 83°N), 462 (27 July 2007, distance to
the limb is 1864 km; 88°N), and 484 (18 August 2007,
distance to the limb is 2670 km; 70°N). The HF abundance
shows a more varying vertical distribution than HCI. Values
found with SOIR seem to be in very good agreement with
the values reported earlier, as for example, by Bjoraker et al.
[1992], who measured HF abundances of 6.5 £ 0.3 ppb
above 72 km. We note that both for HCI and HF, there is a
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Figure 7. Vertical profiles of the HCI density (left) and volume mixing ratio in ppm (right) obtained
during the three occultations 341 (solid line, 28 March 2007; distance to the limb at 65 km tangent height
is 3346 km; 82°N), 356 (dotted line, 12 April 2007; distance to the limb is 3298 km; 84°N), and 366
(dashed line, 22 April 2007; distance to the limb is 3898 km; 73°N). For comparison, the solid line with
dots corresponds to a profile of constant volume mixing ratio (vmr) (0.5 ppm). The vmr in this plot
correspond to the ratios of the HCI densities to the total air densities obtained from the temperatures and
pressures of the VENUSREF model. Error bars correspond to the fitting error on the single-fitted
parameter, i.e., the density in the corresponding layer, and does not take into account the errors on the

densities in the upper layers.

region of minimum vmr. However, their altitudes are
different: 90 km for HCI, and 80 km for HF.

43. CO

[34] The primary source of CO in the atmosphere of
Venus is the photodissociation of CO, by solar UV at
altitudes higher than 120 km. The mixing ratio of CO was
measured by the Pioneer Venus gas chromatograph [Oyama
et al., 1980] at different altitudes in the lower atmosphere
(between 22 and 62 ppm at 52 km, 30 = 18 ppm at 42 km
and 20 £ 3 ppm at 22 km). The gas chromatograph on
Venera 12 [Gel’'man et al., 1980] confirmed the low value
found below 42 km (28 = 7 ppm). Connes et al. [1968]
reported a value of 45 + 10 ppm at 64 km from Earth-based
observations in the near-infrared. This value was corrected
to 51 £ 1 ppm by Young [1972], who reanalyzed the spectra
recorded by Connes et al. [1968]. These measurements
seem to indicate the presence of a gradient in the mixing
ratio of CO at least in the altitude range sounded. This was
confirmed by observations of microwave lines of CO,
which yielded CO mixing ratio for altitudes between 75
and 105 km. The CO mixing ratio increases from 55 ppmv
at 75 km, to 130 ppmv at 85 km and 200 to 1000 ppmv at
105 km. Moreover it was shown that CO exhibits a
significant diurnal variation but also strong year to year

variations [Clancy and Muhleman, 1991; Clancy et al.,
2003; Gurwell et al., 1995]. Ground-based observations of
the night side of Venus [Marcq et al., 2005; Marcq et al.,
2006] have reported that the CO abundances in the lower
atmosphere (below the clouds) showed a pronounced lati-
tudinal enhancement of more than 10% when going toward
the poles. Observations by the VIRTIS-M instrument on
Venus Express [lrwin et al., 2008] have shown that there
was little spatial distribution of CO just above the cloud
(approximately 65—70 km) at midlatitudes, with abundan-
ces of the order of 40 + 10 ppm, with higher values at the
poles, consistent with rapid downwelling bringing CO-rich
air from higher altitudes.

[35] Retrieval of the vertical CO profile from SOIR
spectra relies on several absorption lines of the (2—0) CO
band located between 4178 cm ™! (order 187) and 4325 cm ™'
(order 192). All orbits during which this spectral region is
investigated are shown in Figure 2b, distinguishing orbits
corresponding to low and high (>5000 km) distance to the
limb. Typically the vertical profiles are obtained from 70 to
125 km altitude, as can be seen from the examples repro-
duced in Figure 10. Those profiles correspond to the orbits
341 (28 March 2007, distance to the limb is3346 km; 82°N),
356 (12 April 2007, distance to the limb is 3298 km; 84°N),
and 366 (22 April 2007; distance to the limb is 3898 km;
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Investigation of the temperature effect on the detection of HCI. In the left, the corresponding

density profiles are shown. For comparison, the line with dots corresponds to a profile of constant vir of
0.5 ppm. The feature around 85 km does not disappear. In the right, the relative difference in the retrieved
HCI densities is shown for the different test cases. Four different temperature profiles have been
considered: VENUSREF, VENUSREF with —20% and +20% excursions, and a vertical temperature
profile obtained by the Vera instrument on board Venus Express [Pdtzold et al., 2007]. The effect of
displacing the AOTF function maximum by 1.0 cm ™' is also indicated.

73°N). CO vmr have been obtained from the retrieved CO
densities using the air densities calculated from temperature
and pressure from the VENUSREF model at the considered
level. All three profiles show values for the CO vmr
between 10 and 50 ppm below 90 km, and then increasing
up to 4-8 x 10* ppm at 125 km, consistent with the
existence of a source of CO, the photodissociation of
CO,, at high altitudes. These profiles were obtained at the
northern polar region and seem to be consistent with the
observations performed by VIRTIS-M [Irwin et al., 2008]
which indicate high values of the CO abundance at the
south pole for altitudes between 65 and 70 km. They found
values ranging from 100 to 200 ppm, these values being
mostly influenced by the position relative to the brightest
features of the polar vortex dipole.

[36] Our value at 75 km (30 to 50 ppmv) is slightly lower
than that derived from ground-based microwave (55 ppmv)
by Clancy et al. [2003]. However, there is a major discrep-
ancy above 75 km: our measurements show a decreasing
vmr with increasing altitude, while microwave measure-
ments indicate a steady increase. We find a minimum of CO
(at 10 ppmv around 85 km). At higher altitudes, we find a
steady increase of the vmr with altitude up to the limit of our
measurements (4,000—8000 ppmv at 125 km). This steady
exponential increase, when extrapolated upward to 140 km,
would give a mixing ratio of 1, while in situ measurements
with the Pioneer Venus Bus Mass Spectrometer yielded 0.4

[von Zahn et al., 1980]. The increase of vmr from 90 km
upward is not due to diffusive separation of CO from CO,,
because the homopause as determined by N, measurements
is at an altitude of 136 km. Rather, the CO gradient is
dominated by the production rate of CO from CO, which
increases with altitude. More puzzling is the strong mini-
mum region (80—90 km) found by SOIR, which had
escaped detection up to now. It should be recognized that
the technique of solar occultation provides an unprecedented
vertical resolution. It could be of dynamic origin or it could
be the result of a strong chemical sink.

4.4. H,0 and HDO

[37] Water is scarcely present today and it is not yet
known if Venus was already dry at its formation or evolved
slowly to its present state. In order to refine theories and
models describing the formation and evolution of Venus and
its atmosphere, to characterize the escape of D atoms from
the upper atmosphere and to provide a robust explanation to
the problem of the origin of water on Venus, high-resolution
vertically resolved measurements of H,O and HDO and
their temporal variations are needed. As illustrated in
Figure 1, SOIR is able to measure both isotopologues of
water simultaneously during the same occultation. Three
absorption lines owing to HDO are clearly seen in the spectra
recorded in the 2720-2725 cm™! region (order 121),
whereas most of the features in the 38253855 cm ™' region
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Figure 9. Vertical profiles of the HF density (left) and volume mixing ratio in ppb (right) obtained
during the occultations 357 (solid line, 13 April 2007; distance to the limb at 65 km tangent height is
3325 km; 83°N), 462 (dotted line, 27 July 2007; distance to the limb is 1864 km; 88°N), and 484 (dashed
line, 18 August 2007; distance to the limb is 2670 km; 70°N). For comparison, the solid line with dots
corresponds to a profile of constant vmr (5 ppb). Error bars correspond to the fitting error on the single
fitted parameter, i.c., the density (vmr) in the corresponding layer, and does not take into account the
errors on the densities (vmr) in the upper layers. The following values from the literature are also
indicated: Connes et al. [1967] (circles) and Bjoraker et al. [1992] (inverted triangles).

(order 171) originate from the main isotopologue of water
H,0 and CO,. Such simultaneous measurements have been
performed on a regular basis and are described in more
detail by Fedorova et al. [2008].

4.5. Other Minor Constituents

[38] Spectra were recorded in different spectral intervals
where some key constituents for the chemistry of the Venus
atmosphere have prominent absorption features. However,
some of those gases are only present as traces in the
atmosphere and only upper limits of detection could be
derived. As an example, OCS absorbs in the 29000—2950 cm ™
range, corresponding to the order 130, but spectra recorded
with SOIR contain no signature of this species, as illustrated
in Figure 11. The upper limit of detection for OCS has been
estimated to be 1.6 = 2 ppb between 70 and 90 km and
0.02 + 0.01 ppm above 90 km. OCS has up to now never
been observed above the cloud deck. Measurements per-
formed at lower altitudes [Marcq et al., 2005; Marcq et al.,
2006] indicate that the OCS shows latitudinal variations
with abundances between 5 and 20 ppm at 30 km decreas-
ing with altitude. At 36 km, OCS amounts to 0.55 +
0.15 ppm. The same spectral interval could also be used to
derive the upper limit of detection of H,CO leading to the
values of 3 = 2 ppb below 90 km and 0.015 + 0.01 ppm
above 90 km.

[39] Similarly, it is also possible to determine the upper
limit of other trace gases. In the case of SO,, the procedure
is somewhat more complex since the SO, signature is
overlapped by a band of CO,, as explained and discussed
by Belayev et al. [2008], who found a positive detection of
0.3 to 3 ppmv in some occultation profiles.

4.6. Error Analysis

[40] The most critical parameters influencing the retrieval
are related to the definition of the AOTF function: its
formulation, the position of its maximum, and its extension
in wave numbers (number of orders taken into account in
the forward model). To test the sensitivity of our retrieval
toward these parameters, several test cases have been
investigated: (1) the function has been approximated by a
sinc? function or by a more complex function resulting of
the sum of 7 sinc?, with different positions of their maxima
and widths; (2) the number of adjacent orders has been
varied between 2 and 4; (3) the position of the function
maximum has been shifted by 1.0 cm™', a slightly higher
value than the estimated accuracy on the determination of
this position (0.83 cm™') [Mahieux et al., 2008]. The
reference test case corresponds to the complex AOTF
function using 3 adjacent orders (simulation on 7 orders
in total), which corresponds to the normal settings used for
retrieval. The results of this sensitivity study are the
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Figure 10. Vertical profiles of the CO density (left) and volume mixing ratio in ppm (right) obtained
during the three occultations 341 (solid line, 28 March 2007; distance to the limb at 65 km tangent height
is 3346 km; 82°N), 356 (dotted line, 12 April 2007; distance to the limb is 3298 km; 84°N), and 366
(dashed line 22 April 2007; distance to the limb is 3898 km; 73°N). For comparison, the solid line with
dots corresponds to the CO in the VENUSREF model. Error bars correspond to the fitting error on the
single fitted parameter, i.e., the density (vmr) in the corresponding layer, and does not take into account
the errors on the densities (vmr) in the upper layers.

following: (1) choosing a sinc® function with 2 or 3 adjacent ~ being obtained at around 90 km; (2) using the complex
orders give rise to an underestimation of the CO, density of AOTF function but on only 2 adjacent orders implies an
20 to 50% depending on the altitude, the maximum value underestimation of 5 to 40%; (3) including more adjacent
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Figure 11. SOIR spectra recorded around 2915 cm ™' (order 130) where OCS and H,CO signatures
should be observed. The main absorption structures observed in this region are due to HCI. Absorption
features due to OCS and H,CO are also shown. From such spectra, only upper limits of detection can be
derived.
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orders leads to higher densities by 1-2%, but lengthens the
time required for the forward modeling; (4) changing the
position of the AOTF maximum implies a difference of 5 to
20%. From this discussion, it is clear that the most critical
factor in the simulation or retrieval of SOIR spectra is the
accurate definition of the AOTF function, in particular its
width and the positions and intensities of its sidelobes. In
the near future, significant efforts will be devoted to a better
yet determination of these parameters from specifically
dedicated in-flight calibration measurements.

5. Conclusions

[41] The SOIR spectrometer, which is part of the SPICAV/
SOIR instrument on board Venus Express has proven its
high potential for the detection of minor key species for the
understanding of the chemical and dynamical processes
occurring in the Venus mesosphere. Detection of CO,
HCI, HF, H,O, and HDO has been confirmed at altitudes
ranging from 65 to 105 km, even 125 km depending on the
species. Measurements have shown that the instrument was
also sensitive to temperature through its observations of
CO, absorption lines, although this will require future
development of the retrieval algorithm. SOIR is also able
to differentiate between three isotopologues of CO,, namely
12¢'°0'%0, '*C'°0'"*0, and '*C'°0'70. This will in fine
provide the vertical distribution of the '’0/'°0 and '%0/'°0
isotopic ratios. Vertical profiles of HCI, HF, and CO in the
mesosphere above the northern pole show low variability in
time. The CO vertical profiles measured by SOIR indicate
values of CO abundances from 10 to 50 ppm at 90 km with
a pronounced minimum of 10 ppm at altitudes of the order
of 85 km, followed by an increase toward the higher
altitudes. HCI volume mixing ratio is about 0.1-0.2 ppm
and that of HF decreases from 1 to 7 ppb showing some
variability from one orbit to the other. Because of its high
sensitivity and its wide spectral coverage, SOIR is also a
good tool to determine upper limit of detection for a series
of trace gases: for example, OCS upper limit of detection
has been estimated to be 1.6 = 2 ppb below 90 km and
0.02 £ 0.01 ppm above 90 km.
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