

A global PIC view at pulsar magnetospheres

Collaborators: S. Philippov (*CCA*), A. Spitkovsky (*Princeton*), K. Parfrey (*Princeton*), B. Crinquand (Grenoble), C. Guépin (JSI fellow), J. Mortier (*Grenoble*), A. de Valon (*Grenoble*), G. Dubus (*Grenoble*)

ISSI pulsar magnetosphere working group meeting, Bern, Dec. 9-13, 2019

PIC simulations of pulsar magnetosphere: An overview

References	Aligned/ Oblique	Particle injection	Extra physics
Philippov & Spitkovsky (2014)	Aligned	Volume injection	
Chen & Beloborodov (2014)	Aligned	Pair creation	
Cerutti et al. (2015)	Aligned	Stellar surface	
Belyaev (2015)	Aligned	Injection E.B≠0	
Philippov et al. (2015a)	Oblique	Pair creation	
Philippov et al. (2015b)	Aligned	Pair creation	GR corrections
Cerutti et al. (2016a,b)	Oblique	Stellar surface	Radiation & Polarization
Cerutti & Philippov (2017)	Oblique (2D)	Stellar surface	
Philippov & Spitkovsky (2018)	Oblique	Pair creation	GR & radiation & ions
Kalapotharakos et al. (2018)	Oblique	Volume/surface injection	Radiation (curvature)
Brambilla et al. (2018)	Oblique	Volume/surface injection	
Crinquand et al. (2019)	Aligned	Pair creation	Merging binary pulsar
Guépin et al. (2019)	Aligned	Pair creation	ions
Chen et al. (2019)	Aligned	Pair creation (surface only)	

The numerical setup: an aligned rotator (2D)

Light cylinder radius

A digression about modeling curvature radiation

Radiation reaction force (Landau-Lifschitz):

$$\mathbf{g} = \frac{2}{3} r_{e}^{2} \Big[(\mathbf{E} + \boldsymbol{\beta} \times \mathbf{B}) \times \mathbf{B} + (\boldsymbol{\beta} \cdot \mathbf{E}) \mathbf{E} \Big] \Big] \quad \text{"Non-relativistic" term,} \\ \frac{1}{3} r_{e}^{2} \gamma^{2} \Big[(\mathbf{E} + \boldsymbol{\beta} \times \mathbf{B})^{2} - (\boldsymbol{\beta} \cdot \mathbf{E})^{2} \Big] \boldsymbol{\beta}, \Big] \quad \text{"Relativistic" term}$$

Consider a particle moving along a magnetic loop with zero pitch angle

Toroidal magnetic field

B. Cerutti

Cerutti et al. 2015

Pulsar spin down and dissipation

B. Cerutti Energy transferred to energetic particles and radiation!

Particle / radiation mean energy (χ =30°)

Relativistic reconnection

Mostly synchrotron radiation

Particle energy in the sheet given by :

$$\sigma_{LC} \approx \frac{\Phi_{PC}}{\Gamma_{LC} \kappa_{LC}} \approx 50 \quad \text{(here)}$$

Plasma multiplicity, depends on microphysics ! Cerutti et al. 2015; Philippov & Spitkovsky 2014; 2017

Particle acceleration and e⁺/e⁻ **asymmetry**

Particle acceleration and e⁺/e⁻ asymmetry

Particle acceleration and e⁺/e⁻ asymmetry

2D

B. Cerutti

Cerutti et al. 2015

Positron orbits in oblique pulsar (30°)

In the co-rotating frame

From Cerutti et al. 2016

See also Philippov & Spitkovsky 2018 and Brambilla et al. 2018 B. Cerutti

Electron orbits in oblique pulsar (30°)

In the co-rotating frame

From Cerutti et al. 2016

See also Philippov & Spitkovsky 2018 and Brambilla et al. 2018 B. Cerutti

Proton acceleration

From Guépin, Cerutti & Kotera (2019)

Proton acceleration

From Guépin, Cerutti & Kotera (2019)

Proton acceleration

From Guépin, Cerutti & Kotera (2019), see also Philippov & Spitkovsky 2018

High-energy radiation flux ($\nu > \nu_0, \chi = 0^\circ$)

B. Cerutti

Cerutti et al. 2016

High-energy radiation flux ($\nu > \nu_0$, $\chi = 30^\circ$)

Presence of spatial irregularities due to kinetic instabilities in the sheet (e.g., kink and tearing modes)

B. Cerutti

Cerutti et al. 2016

The tearing mode in action (mid-plane)

Island mergers create Poynting flux fluctuations

After substracting the DC wind component

Pulse-to-pulse variability : radio profile from the sheet

<u>Observed</u> high-energy radiation flux ($\nu > \nu_0, \chi = 0^\circ$)

<u>Observed</u> high-energy radiation flux ($\nu > \nu_0$, $\chi = 30^\circ$)

Gray : **Total** flux (all directions) **Light curve shaped by the geometry of the current sheet Color** : **Observed** flux

One pulse per crossing of the current sheet

B. Cerutti

Cerutti et al. 2016

Skymaps

High-energy photons are concentrated within the equatorial regionsB. Ceruttiwhere most of the spin-down is dissipated.

A few typical lightcurves

Cerutti et al. 2016 See also Philippov & Spitkovsky 2018 Kalapotharakos+2018

B. Cerutti

Pulse-to-pulse variability

Cerutti & Philippov 2017

Pulse-to-pulse variability

B. Cerutti

Deshpande & Rankin 1999

Cerutti & Philippov, submitted, 2017

Fitting Fermi-LAT pulsar lightcurves

B. Cerutti

Courtesy of Aloïs de Valon (Univ. Grenoble Alpes), Master thesis project

Crab pulse profile

(Incoherent) Polarization signature : Observations

[Słowikowska+2009]

(Incoherent) Polarization signature : **PIC**

B. Cerutti

[Cerutti, Mortier & Philippov 2016]

The Crab pulsar as we may see it !

Gray : **Total** flux (all directions) **Color** : **Observed** flux

Obs

ON versus OFF pulse polarization

Merging binary pulsar

Interacting magnetospheres: an electromagnetic precursor to merging neutron star?

Merging binary pulsar: PIC simulations

Establishement of the magnetospheres

Inspiral begins

[Crinquand, Cerutti & Dubus 2018]

Driven reconnection in the inspiral phase. Reconnection of the poloidal field => Strong magnification of dissipation

A detectable precursor?

2 orders of magnitude gamma-ray luminosity increase during the inspiral ! Still **too weak to be detected.** Go to 3D + orbital motion !

Conclusions

- **Global PIC simulations is the way to go** to solve particle acceleration in pulsars
- Simulations demonstrate the major role of **relativistic reconnection** in particle acceleration
- High-energy emission could be synchrotron radiation from the current sheet >~ R_{LC}
- **Pulse profile and polarization** provide robust constraints on **Crab pulsar** inclination and viewing angles.
- Open questions :
 - How to scale simulations up to realistic pulsars ?
 - How to refine pair creation modeling ?
 - What is origin of the radio emission ?

- •••