The Separatrix/Current Sheet Model for Pursar VHE Emission

Alice K. Harding¹, Christo Venter² & Constantinos Kalapotharakos³ ¹Los Alamos National Laboratory ²North West University ³University of Maryland/CRESST

Detection of Crab pulsar up to 1 TeV

MAGIC - Aliu et al. 2008, 2011 Veritas - Aleksic et al. 2011

MAGIC 40 GeV - 1 TeV (Ansoldi et al. 2016)

Both peaks detected!

Vela pulsar – H.E.S.S. II

10 – 110 GeV (Abdalla et al. 2018)

Continuation of Fermi spectrum (curved subexponential) or power law?

Curvature favored by H.E.S.S. II at $\,$ > 3.0 σ

2004 – 2016: 60 hours in stereoscopic mode 3 - > 7 TeV!! 5.6 σ (Djannati-Atai 2018) 20 TeV? (Djannati-Atai 2022)

B1706-44 – H.E.S.S. II and Geminga - MAGIC

Spir-Jacob et al. 2019

10 – 70 GeV

Global particle-in-cell (PIC) models

Chen & Belodorodov 2014, Philippov & Spitkovsky 2014, Cerutti et al 2016, Kalapotharakos+ 2018)

Most particle acceleration occurs in and near the current sheet and separatrices

PIC simulations – Current and Electric field

Brambilla et al. 2018

 $E_0 \left[B_{LC} \right]$

F=9.60 FgJ

 $E_0[B_{LC}]$

F=12.50 FgJ

-0.10

- 0.10

F=0.50 FgJ

As pair injection rate from NS surface increases – region of accelerating electric field shrinks to current sheet

Rescaled accelerated particle energy

Kalapotharakos et al. 2018

Follow dynamics of particles with "real" *E* and *B* in parallel within PIC code

$$\frac{d\gamma_{\rm R}}{dt} = \frac{q_{\rm e}\mathbf{v}\cdot\mathbf{E}}{m_{\rm e}c^2} - \frac{2q_{\rm e}^2\gamma_{\rm R}^4}{3R_{\rm C}^2m_{\rm e}c}$$

Particle trajectories

Electrons falling back to the neutron star (see also Cerutti et al. 2015, Philippov et al. 2017) Brambilla et al. 2018

Surface injection

A, D – positrons at Y-point and in current sheet

B, C, E – positrons and electrons flowing out above polar cap

Simulation of radiation

Harding & Kalapotharakos 2015 Harding et al. 2018, 2021

Pairs get pitch angles through resonant absorption of radio photons when

$$\varepsilon_B = \gamma \varepsilon_R (1 - \beta cos\theta)$$

Petrova & Lyubarski 1998

Force-free magnetic field 0.2 to 2 R_{LC}

Connect to vacuum retarded dipole below 0.2 $\ensuremath{\mathsf{R}_{\text{LC}}}$

$$\mathbf{v} = \left(\frac{\mathbf{E} \times \mathbf{B}}{B^2 + E_0^2} + f\frac{\mathbf{B}}{B}\right)c$$

Polar cap pair cascades

Pair cascades above the PC are necessary for coherent radio emission Cascades are time-varying Timokhin 2010, Timokhin & Arons 2013

Use Timokhin & Harding (2019) estimate of particle energy from non-steady gaps

$$\gamma_{
m gap} \simeq 3.2 \, imes \, 10^7 \, P^{-1/7} \, B_{12}^{-1/7} \,
ho_{c,7}^{4/7}$$

Weakly dependent on P and B Sensitive to ρ_{c}

Pair cascades multiplicity

$$M_{\pm}$$
~10³ - 3×10⁵

Timokhin & Harding 2015

Pair multiplicity

Timokhin & Harding 2019

Curvature radiation plus resonant inverse Compton

Polar cap pair spectra

Resonant absorption of radio photons

Resonance condition

$$B' = \gamma \varepsilon_0 \left(1 - \beta \mu_0 \right) \qquad \gamma_R = 2.8 \times 10^5 \frac{B_8}{\varepsilon_{0,\text{GHz}} \left(1 - \beta \mu_0 \right)}$$

Resonant absorption rate

$$\left(\frac{dp_{\perp}}{dt}\right)^{\text{abs}} = D\frac{\gamma^{\nu}}{p_{\perp}} + \frac{p_{\perp}\gamma}{\gamma^2 - 1} \left(\frac{d\gamma}{dt}\right)^{\text{abs}}, \quad \gamma < \gamma_R$$
$$\frac{d\gamma}{dt} = \frac{eE_{\parallel}}{mc} - \frac{2e^4}{3m^3c^5}B^2 p_{\perp}^2$$
$$- \frac{2e^2\gamma^4}{3\rho_c^2} + \left(\frac{d\gamma}{dt}\right)^{\text{abs}} - \left(\frac{d\gamma}{dt}\right)^{\text{SSC}}$$
$$\frac{dp_{\perp}}{dt} = -\frac{3}{2}\frac{c}{r}p_{\perp} - \frac{2e^4}{3m^3c^5}B^2 \frac{p_{\perp}^3}{\gamma} + \left(\frac{dp_{\perp}(\gamma)}{dt}\right)^{\text{abs}}$$

Spectral energy distribution of the Vela pulsar

Modeling TeV+ emission from Vela

Near force-free magnetosphere

- PC pairs produce synchrotron radiation (SR) optical/UV at lower altitude
- Primary particles (mostly positrons) produce synchrocurvature (SC) and scatter optical/UV to produce 10 TeV ICS emission
- Pairs scatter optical/UV to produce SSC hard X-ray emission

Force-free current density

Source and model parameters

Pulsar	P (s)	d (kpc)	Radio Flux (mJy)	α	$\frac{R_{\rm acc}^{\rm low}}{({\rm cm}^{-1})}$	$R_{\rm acc}^{\rm high}$ (cm ⁻¹)	$J/J_{ m GJ}$	M_+	$r_{\rm radio}$ ($R_{\rm LC}$)
Vela	0.089	0.25	5000	75°	0.04	0.2	18	6×10^3	0.1/0.2
Crab	0.033	2.0	700	45°	0.04	0.4	5.0	3×10^5	>0.8
B1706-44	0.102	2.3	25	$45^{\circ}/30^{\circ}$	0.04	0.2	20	6×10^4	0.08
Geminga	0.237	0.25	1000	75°	0.04	0.15	10	$2 imes 10^4$	0.1
J0218+4232	0.0023	3.1	100	60°	0.5	5.0	150	$3 imes 10^5$	0.38
					L				
$R_{ m acc}^{ m low} = eE_{\parallel}^{ m low}/mc^2$			$R < R_{LC}$		Adjusted to match hard X- ray and Fermi SED		Adjusted to match optical/soft X-ray SED		
$R_{ m acc}^{ m high}$	$= eE_{\parallel}^{\text{high}}$	$/mc^2$	R > R _{LC}						

Crab: constant pitch angle ψ = 10⁻³ for pairs, ψ = 10⁻⁵ for primaries at r > 0.8 R_{LC}

All others: pitch angle determined by resonant absorption of radio cone beam at r_{radio}

Particle injection

 $r_{ovc} = 0.8 - 0.9$ $r_{ovc} = 0.88 - 0.91$, Crab

Injection for $j/j_{GJ} < 0$ $l_{ovc} = 1.5 - 4.78$

Initial γ from PC pair spectra Initial $\psi = 0$

Primaries

 $r_{ovc} = 0.9 - 0.96$ $r_{ovc} = 0.91 - 0.94$, Crab

Initial $\gamma = 200$ Initial $\psi = 0$

Modeling TeV+ emission from Vela

Harding, Venter & Kalapotharakos 2021 (same as Harding et al. 2018)

Modeling TeV+ emission from Vela

Vela model light curves

Vela model light curves

Energy vs. phase

Vela P1 and P2 spectra

Vela P1/P2 evolution with energy

Harding, Venter & Kalapotharakos 2021

Lorentz factor of particles in curvature radiation-reaction limit:

$$\gamma_{CRR} = \left(\frac{3E_{||}\rho_c^2}{2e}\right)^{1/4}$$

High energy cutoff

$$E_{CR} \propto E_{||}^{3/4} \rho_c^{1/2}$$

Maximum curvature radius of particle trajectory is higher for P2 allowing particles and photons at higher energy

R-dependent spectra

TeV+ emission from Crab pulsar

SR from pairs near current sheet

- Synchro-curvature from primaries in current sheet
- SSC from pairs up • to ~1 TeV
- ICS from primaries • scattering pair SR up to ~30 TeV

attenuation

Crab model light curves

Geminga model light curves

Energy vs. phase

TeV+ emission from B1706-44

P = 0.102 s, B_0 = 6.2 x 10¹² G, d = 2.3 kpc Pair M₊ = 6 x 10⁴

Harding, Venter & Kalapotharakos 2021

B1706-44 model light curves light curves

TeV+ emission from MSP J0218+4232

P = 0.0023 s, B₀ = 8 x 10⁸ G, d = 3.1 kpc

$$\alpha$$
 = 60⁰, ζ = 65⁰, pair M₊ = 3 x 10⁵

Harding, Venter & Kalapotharakos 2021 Acciari et al. 2021 (MAGIC/Fermi paper)

GeV/VHE emission

GeV emission

- Recent PIC simulations point to particle acceleration and emission in current sheet
- Curvature radiation explains P1/P2 decrease and most spectra above 50 GeV

TeV+ emission from primary IC:

- Particle energies at least 10 TeV -> GeV emission in curvature radiation regime
- High flux of optical/UV emission
- 20-30 TeV particles produce both Fermi HE cutoff from CR and > 20 TeV IC emission

SSC emission from pairs:

- High pair multiplicity
- High B_{LC} mostly Crab-like pulsars
- Lower pair energies SR SED peak below 1 MeV to avoid KN reduction

Future modeling and outstanding questions

- Variation of E_{||} radial and azimuthal dependence from MHD and PIC simulations
- Pair spectra from 2D time-dependent PC cascades
- More accurate photon-photon attenuation of TeV+ emission
- Does emission above 10 TeV necessarily imply particle Lorentz factors > 10⁷?
- Can SR or IC produce P1/P2 decrease with energy?