Particle pusher in ultra-strong electromagnetic fields

Jérôme Pétri

Observatoire astronomique de Strasbourg, France

ISSI'22 - 12th September 2022

Outline

Dobjectives & Methods

- 2 An ultra-relativistic pusher for the Lorentz force
- Acceleration in a spherical wave
- Application to a rotating dipole

Jérôme Pétri (Observatoire astronomique de Strasbou Particle acceleration in SEMW

2 An ultra-relativistic pusher for the Lorentz force

3 Acceleration in a spherical wave

Application to a rotating dipole

5 Conclusions

Physical challenges

- compute particle acceleration and radiation reaction in a realistic environment.
- > evaluate the impact of radiation reaction on particle acceleration efficiency.
- ► follow accurately particle trajectories.

Methods

- design a particle pusher for ultra-strong fields based on analytical solutions of the reduced Landau-Lifshitz approximation (LLR, i.e. *E* and *B* constant).
 (Heintzmann & Schrüfer, 1973; Boghosian, 1987; Li et al., 2021)
- long term task : a fully electromagnetic Particle-In-Cell (PIC) code for ultra-strong fields and ultra-relativistic particles.

Exact solutions of Landau-Lifshitz equation

► The Landau-Lifshitz equation with 4-velocity u^i , electromagnetic tensor F^{ik} , particle charge and mass q, m, proper time τ

$$\frac{du^{i}}{d\tau} = \frac{q}{m} F^{ik} u_{k} + \frac{q \tau_{m}}{m} \partial_{\ell} F^{ik} u_{k} u^{\ell} + \frac{q^{2} \tau_{m}}{m^{2}} \left[F^{ik} F_{k\ell} u^{\ell} + (F^{\ell m} u_{m}) (F_{\ell k} u^{k}) \frac{u^{i}}{c^{2}} \right]$$

with the radiation damping time scale (for electrons)

$$au_m = rac{q^2}{6 \, \pi \, arepsilon_0 \, m \, c^3} = rac{2}{3} \, rac{r_e}{c} pprox 6.26 \cdot 10^{-24} \, \mathrm{s}.$$

Two important parameters of the problem

strength parameter

$$a = \frac{\omega_{\rm B}}{\Omega} \gg 1$$

radiation damping parameter

$$b = \Omega \tau_m \ll 1$$

- Exact solutions for uⁱ are known
 - ▶ in plane electromagnetic waves. (Piazza, 2008; Hadad et al., 2010)
 - ▶ in constant *E* and *B*. (Heintzmann & Schrüfer, 1973; Boghosian, 1987; Li et al., 2021)

2 An ultra-relativistic pusher for the Lorentz force

Acceleration in a spherical wave

Application to a rotating dipole

The central idea for the Lorentz pusher

▶ analytical solution are simple in the frame where \vec{E} and \vec{B} are parallel

$$\frac{du^i}{d\tau} = \frac{q}{m} F^{ik} u_k$$

► in the Cartesian coordinate system, the electromagnetic field tensor is anti-diagonal and given by (along e_z)

$$F^{ik} = \begin{pmatrix} 0 & 0 & 0 & -E/c \\ 0 & 0 & -B & 0 \\ 0 & B & 0 & 0 \\ E/c & 0 & 0 & 0 \end{pmatrix}$$

the 4-velocity evolution given in terms of the proper time \(\tau\) according to

$$u^{0}(\tau) = \gamma_{0} c \left[ch(\omega_{E} \tau) + \beta_{0}^{z} sh(\omega_{E} \tau) \right]$$

$$u^{3}(\tau) = \gamma_{0} c \left[sh(\omega_{E} \tau) + \beta_{0}^{z} ch(\omega_{E} \tau) \right]$$

$$u^{1}(\tau) = \gamma_{0} c \left[\beta_{0}^{x} cos(\omega_{B} \tau) + \beta_{0}^{y} sin(\omega_{B} \tau) \right]$$

$$u^{2}(\tau) = \gamma_{0} c \left[-\beta_{0}^{x} sin(\omega_{B} \tau) + \beta_{0}^{y} cos(\omega_{B} \tau) \right]$$

integrate with respect to the proper time to find the trajectory of the particle.

► the idea is to switch to the frame where *E* and *B* are parallel by a Lorentz boost (primed frame).

$$\mathbf{V} = rac{\mathbf{E} \wedge \mathbf{B}}{E_0^2/c^2 + B^2}$$
; $E^2 - c^2 B^2 = E_0^2 - c^2 B_0^2$; $\mathbf{E} \cdot \mathbf{B} = E_0 B_0$.

- this is always possible if the field is not null-like
- \Rightarrow special case to be treated separately.
- the field must be constant within one time step Δt .
- ► the analytical solution is simple in the new frame where $\vec{E}' \parallel \vec{B}'$, assumed to be along z'.
- it requires several Lorentz boosts and spatial rotations to bring the common axis along z'.
- straightforward extension to include radiation reaction by adding a prefactor to the 4-velocity components for the magnetic part and the electric part.
- need to solve a non-linear equation for imposing $\Delta \tau$ from Δt .

(Pétri, 2020)

Some time-dependent tests of the ultra-relativistic Lorentz pusher

A charge -q orbiting around a fixed charge q.

Fig. - Relativistic Kepler problem.

Periodic Lorentz factor variation with phase $\xi = k^i x_i = \omega t - k x$

$$\gamma(t) = 1 + a^2 (1 - \cos \xi)$$
$$\gamma_{\text{max}} = 1 + 2 a^2$$

Fig. - Lorentz factor for circularly polarized plane wave.

- Full details and more tests in (Pétri, 2020).
- See (Tomczak & Pétri, 2020) for applications to neutron stars.
- The pusher works remarkably for test particles but what about full plasma simulations?
- design of a 1D fully relativistic electromagnetic PIC code as a proof of concept. \Rightarrow

Jérôme Pétri (Observatoire astronomique de Strasbou

Particle acceleration in SEMW

1D electromagnetic PIC implementation

Two counter-streaming relativistic beams with Lorentz factor each of $\Gamma_{\rm b} = 10$. Linear growth rate well known analytically A simple 1D shock problem with bulk Lorentz factor Γ and strong magnetization

$$\sigma = \frac{B^2}{\mu_0 \,\Gamma \,n \,m \,c^2}.$$

Fig. – Ultra-relativistic strongly magnetized shock with $\Gamma \approx 70$ and $\sigma \approx 70$.

- not yet satisfactory because we need to include radiation reaction damping.
- ⇒ use the reduced Landau-Lifshitz prescription à la (Heintzmann & Schrüfer, 1973).

Jérôme Pétri (Observatoire astronomique de Strasbou

Particle acceleration in SEMW

Straightforward radiation reaction implementation

- Exact solution are easily construct in the frame where E and B are parallel.
- simply add a factor for the 4-velocity component associated to E and B.
- Lorentz force pusher straightforwardly modified.
- the exact solutions are for non null-like fields (Laue & Thielheim, 1986)

$$u^{0}(\tau) = \frac{1}{\sqrt{A + B e^{-2\tau_{0}(\lambda_{E}^{2} + \lambda_{B}^{2})\tau}}} \gamma_{0} c \left[ch(\omega_{E} \tau) + \beta_{0}^{z} sh(\omega_{E} \tau) \right]$$
$$u^{3}(\tau) = \frac{1}{\sqrt{A + B e^{-2\tau_{0}(\lambda_{E}^{2} + \lambda_{B}^{2})\tau}}} \gamma_{0} c \left[sh(\omega_{E} \tau) + \beta_{0}^{z} ch(\omega_{E} \tau) \right]$$
$$u^{1}(\tau) = \frac{1}{\sqrt{B + A e^{+2\tau_{0}(\lambda_{E}^{2} + \lambda_{B}^{2})\tau}}} \gamma_{0} c \left[\beta_{0}^{x} cos(\omega_{B} \tau) + \beta_{0}^{y} sin(\omega_{B} \tau) \right]$$
$$u^{2}(\tau) = \frac{1}{\sqrt{B + A e^{+2\tau_{0}(\lambda_{E}^{2} + \lambda_{B}^{2})\tau}}} \gamma_{0} c \left[-\beta_{0}^{x} sin(\omega_{B} \tau) + \beta_{0}^{y} cos(\omega_{B} \tau) \right].$$

 λ_{F}^{2} and λ_{B}^{2} eigenvalues of F_{i}^{k} and A, B are the initial conditions for the 4-velocity.

An ultra-relativistic pusher for the Lorentz force

Acceleration in a spherical wave

4 Application to a rotating dipole

Conclusions

Numerical implementation of the solutions

- > 2 versions of the pusher from (Hadad et al., 2010)
 - 1. full time-dependent solutions.
 - 2. time-independent solutions assuming E and B constant.
- valid only for null-like fields i.e. vanishing electromagnetic invariants :

$$\vec{E} \cdot \vec{B} = 0$$
 ; $E^2 - c^2 B^2 = 0$.

- many tests of the code performed for analytical situations (Pétri, 2021).
 - ▶ linear, circular, elliptical polarized wave.
 - > particle starting at rest or with initial ultra-relativistic speed.
 - different initial phase of the wave.
 - with and without radiation reaction.
 - ⇒ constant E and B algorithm as good as time-dependent solver.
- ▶ we applied it to astrophysical situations for spherical waves with amplitude decreasing like $E, B \propto 1/r$ comparing the two versions for any polarization : circular, linear, elliptical.
- the strength parameter of the wave decreases with radius

$$a(r) = a_0 \frac{r_{\rm L}}{r}$$

Fig. – Plane wave

Fig. - Spherical wave.

- injection of particles at the light-cylinder or beyond at different colatitudes.
- evolving in circular, linear or elliptical spherical waves.
- with and without initial speed.
- with and without radiation reaction.

Particle starting at rest at light-cylinder

Final Lorentz factor

Fig. – Evolution of the Lorentz factor for a circularly, elliptically and linearly polarized wave respectively in solid, dotted and dashed line.

Fig. – Final Lorentz factor for a circularly, elliptically and linearly polarized wave. The law in Eq. (3) is shown in red solid line.

▶ In a spherical wave, the max Lorentz factor does not scale with $1 + a^2$ but only as

$$\gamma_{\rm fin} \approx 2 \left(a/\pi \right)^{2/3} \tag{3}$$

- for linear polarization, the Lorentz factor increase is much slower and leads to weaker acceleration.
- radiation reaction does not impact these results.

Particle starting at rest at large distances

- the larger the initial position, the weaker the final Lorentz factor.
- Inear polarization is always less efficient than circular or elliptical.
- radiation reaction does not impact these results.

Particle injected at relativistic speed at the light-cylinder

Leptons can be created close to the light-cylinder moving at relativistic speed and entering the wave at high Lorentz factor.

Fig. – Evolution of the Lorentz factor for a linearly polarized wave ($\alpha=0.5$) with $a=10^9$, initial Lorentz factor log $\gamma_0=\{0,1,2,3\}$ and varying initial phases, $\xi_0=0$ in dashed lines, $\xi_0=\pi/4$ in dotted lines and $\xi_0=\pi/2$ in solid lines.

Fig. – Evolution of the Lorentz factor for a circularly polarized wave with $a=10^9,$ initial Lorentz factor log $\gamma_0=\{0,1,2,3\}$. The curves are insensitive to the initial phase ξ_0 .

- particles injected at high Lorentz factor in the node of a linear polarized wave are not easily accelerated.
- ▶ the initial phase of linear polarization strongly impacts on the time evolution.
- circular polarization is insensitive to initial phase (rotational symmetry).
- In all cases, radiation reaction negligible far from the star
- but becomes dominant close to its surface.

Jérôme Pétri (Observatoire astronomique de Strasbou Particle acceleration in SEMW 14/22

Head on collision

A particle from infinity enters the wave at ultra-relativistic speed and is reflected by the wave.

Fig. - Evolution of the Lorentz factor for a linearly polarized wave with $a = 10^9$

Fig. - Same as Fig. 14 but for circular polarization.

- final Lorentz factor after bounce $\gamma_{\rm fin}=\gamma_0+3\,\sqrt{\gamma_0^2-1}\approx 4\,\gamma_0.$
- minimal approach distance log $(r_{\rm min}/r_{\rm L}) \approx (8.7)_{\rm circ}/(8.5)_{\rm lin} \log \gamma_0$
- from simple physical arguments we expect

$$\gamma_0 pprox rac{\omega_{
m B}}{\omega} = a = a_0 rac{r_{
m L}}{r_{
m min}}$$

in good agreement with the simulations.

Numerical scheme for constant fields

- ▶ assume that all quantities $(\vec{u}, \vec{x}, \vec{E}, \vec{B})$ are known at the time step τ^n .
- ▶ analytical solution for u^i known according to $\vec{u}^{n+1} = L(\Delta \tau, \vec{u}_0, \vec{E}, \vec{B})$.
- update in particle position performed by the velocity-Verlet algorithm

$$egin{aligned} ec{u}^{n+1/2} &= ec{L}(\Delta au/2, ec{u}^n, ec{E}(ec{x}^n), ec{B}(ec{x}^n)) \ ec{x}^{n+1} &= ec{x}^n + ec{u}^{n+1/2} \, \Delta au \ ec{u}^{n+1} &= ec{L}(\Delta au/2, ec{u}^{n+1/2}, ec{E}(ec{x}^{n+1}), ec{B}(ec{x}^{n+1})). \end{aligned}$$

- algorithm second order in proper time.
- extensively tested in electromagnetic field configurations with known analytical solutions.

Objectives & Methods

2 An ultra-relativistic pusher for the Lorentz force

Acceleration in a spherical wave

Application to a rotating dipole

5 Conclusions

Particle tracking around neutron stars

inject charged particles and let them evolve under LLR

- electron
- proton
- ▶ iron.
- in the electromagnetic field of a neutron star
 - millisecond pulsar

 $B \sim 10^5 T$ and $a \sim 10^{13}$

normal pulsar

 $B \sim 10^8 T$ and $a \sim 10^{18}$

▶ magnetar

 $B \sim 10^{11} T$ and $a \sim 10^{21}$

Fig. - Particle injection in the dipole field.

- three kind of motion
 - trapped
 - crashed
 - escaped.

(Pétri, 2022) http://arxiv.org/abs/2207.00624

Particles escaping and crashing around neutron stars

Fig. – Final Lorentz factor for electrons, protons and irons with RR. electron proton iron

Fig. - Final Lorentz factor for electrons, protons and irons with RR.

Fig. - Final Lorentz factor for electrons, protons and irons without RR.

🔲 electron 📕 proton 🔳 iron

Fig. - Final Lorentz factor for electrons, protons and irons without RR.

Particle acceleration in SEMW 18/22

Particles trapped around neutron stars

Fig. - Final Lorentz factor for electrons, protons and irons with RR.

Fig. - Final Lorentz factor for electrons, protons and irons without RR.

Fig. - Schematic 2D view of Earth Van Allen radiation belt.

Jérôme Pétri (Observatoire astronomique de Strasbou

Particle acceleration in SEMW 19/22 ISSI'22 - 12th September 2022 19/22

An alternative approach

- solving LLR is very time consuming computationally.
- when the Lorentz force is exactly balanced by radiation reaction

 $\mathbf{E} + \mathbf{v} \wedge \mathbf{B} \approx \pm K \, \mathbf{v}$

▶ in a strong radiation reaction limit (RRL) regime in can be approximated by

$$\mathbf{v}_{\pm} = rac{\mathbf{E}\wedge\mathbf{B}\pm(E_0\,\mathbf{E}/c+c\,B_0\,\mathbf{B})}{E_0^2/c^2+B^2}$$

assuming particles moving at the speed of light $\|\mathbf{v}_{\pm}\| = c$.

- ▶ invariants $\mathbf{E}^2 c^2 \mathbf{B}^2 = E_0^2 c^2 B_0^2$ and $\mathbf{E} \cdot \mathbf{B} = E_0 B_0$ with $K = E_0/c \ge 0$.
- meaning = there exist a frame where E' and B' are parallel and the particle moves at the speed of light along the common direction.
- \Rightarrow not possible when both invariants vanish (null like fields, $E_0 = B_0 = 0$).
- RRL gives accurate results without integrating the full equation of motion in time !

Comparison of particle trajectories in LLR and RRL approximations

Jérôme Pétri (Observatoire astronomique de Strasbou

Particle acceleration in SEMW

Objectives & Methods

2 An ultra-relativistic pusher for the Lorentz force

3 Acceleration in a spherical wave

4 Application to a rotating dipole

Conclusions

- ▶ neutron stars are very efficient particle accelerators (UHE cosmic rays?).
- ► realistic physical parameters required to avoid artificial down-scaling.
- ► algorithm to solve analytically for the equation of motion in LLR approximation.
- RRL regime gives very similar results at low computational cost.
- applied it to a rotating neutron star with particle Lorentz factors up to 10¹².
- efficiency of radiation damping depending on stellar magnetic fields strength, period and damping parameter.

Bibliography

- Boghosian B. M., 1987, PhD thesis, publication Title : Ph.D. Thesis ADS Bibcode : 1987PhDT......197B
- Eliezer C. J., 1948, Proc. R. Soc. Lond. Series A, 194, 543
- Ford G. W., O'Connell R. F., 1991, Physics Letters A, 157, 217
- Hadad Y., Labun L., Rafelski J., Elkina N., Klier C., Ruhl H., 2010, Phys. Rev. D, 82, 096012
- Heintzmann H., Schrüfer E., 1973, Physics Letters A, 43, 287
- Laue H., Thielheim K. O., 1986, ApJS, 61, 465
- Li F., Decyk V. K., Miller K. G., Tableman A., Tsung F. S., Vranic M., Fonseca R. A., Mori W. B., 2021, Journal of Computational Physics, 438, 110367
- Mignani R. P., Testa V., González Caniulef D., Taverna R., Turolla R., Zane S., Wu K., 2017, Mon Not R Astron Soc, 465, 492
- Piazza A. D., 2008, Lett Math Phys, 83, 305
- Pétri J., 2020, J. Plasma Phys., 86, 825860402, publisher : Cambridge University Press
- Pétri J., 2021, Monthly Notices of the Royal Astronomical Society, 503, 2123
- Pétri J., 2022, number : arXiv :2207.00624 arXiv :2207.00624 [astro-ph, physics :hep-ph]
- Tomczak I., Pétri J., 2020, J. Plasma Phys., 86, 825860401, publisher : Cambridge University Press