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Objectives & Methods

Physical challenges

» compute particle acceleration and radiation reaction in a realistic environment.
» evaluate the impact of radiation reaction on particle acceleration efficiency.
» follow accurately particle trajectories.

Methods

» design a particle pusher for ultra-strong fields based on analytical solutions of the
reduced Landau-Lifshitz approximation (LLR, i.e. E and B constant).

(Heintzmann & Schriifer, 1973; Boghosian, 1987; Li et al.,
2021)

» long term task : a fully electromagnetic Particle-In-Cell (PIC) code for ultra-strong
fields and ultra-relativistic particles.
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Exact solutions of Landau-Lifshitz equation

» The Landau-Lifshitz equation with 4-velocity v/, electromagnetic tensor F*,
particle charge and mass q, m, proper time

ddu’ . i U
—_— = q F’kFMU£+(FémUm)(F[kUk)?

ar

qu q Tm

F’k U+ 9, F % gy b+ 710

with the radiation damping time scale (for electrons)
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Two important parameters of the problem
» strength parameter

wB
a= — 1
Q >
» radiation damping parameter
b=Q ™™ <K 1

» Exact solutions for v’ are known
» in plane electromagnetic waves. (Piazza, 2008; Hadad et al., 2010)

» in constant £ and B. (Heintzmann & Schriifer, 1973; Boghosian, 1987;
Li et al., 2021)
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e An ultra-relativistic pusher for the Lorentz force
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The central idea for the Lorentz pusher

» analytical solution are simple in the frame where E and B are parallel

a' _ q i
= _ A F
dr m Uk
» in the Cartesian coordinate system, the electromagnetic field tensor is
anti-diagonal and given by (along e;)

0 0 0 -E/c
ik 0 0 -B 0
= 0 B 0 0

E/c 0 O 0

» the 4-velocity evolution given in terms of the proper time 7 according to

L(r)=yc [ch(we T) + B5 sh(we )]
u¥(1) = o € [sh(we ) + 5§ ch(we 7))
u'(r)=vc [Bs cos(ws T) + By sin(wsT)]
() =vc [—B5 sin(ws T) + B3 cos(ws T)].

» integrate with respect to the proper time to find the trajectory of the particle.
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The algorithm for the Lorentz pusher

» the idea is to switch to the frame where E and B are parallel by a Lorentz boost
(primed frame).

EAB

__EAB 2 222 2p2 B —
_EOZ/C2+BZ ; E c B Ey—c°By ; E-B=EB,.

this is always possible if the field is not null-like
special case to be treated separately.

the field must be constant within one time step At.

vv | v

the analytical solution is simple in the new frame where E’ || B, assumed to be
along Z'.

» it requires several Lorentz boosts and spatial rotations to bring the common axis
along Z'.

» straightforward extension to include radiation reaction by adding a prefactor to the
4-velocity components for the magnetic part and the electric part.

» need to solve a non-linear equation for imposing A7 from At.
(Pétri, 2020)
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Some time-dependent tests of the ultra-relativistic Lorentz pusher

Periodic Lorentz factor variation with phase

A charge —q orbiting around a fixed tE=kKx=wt—kx
charge q.
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Fig. — Relativistic Kepler problem. UTeire

Fig. — Lorentz factor for circularly polarized plane wave.

» Full details and more tests in (Pétri, 2020).
» See (Tomczak & Pétri, 2020) for applications to neutron stars.
» The pusher works remarkably for test particles but what about full plasma
simulations ?
= design of a 1D fully relativistic electromagnetic PIC code as a proof of concept.
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1D electromagnetic PIC implementation

A simple 1D shock problem with bulk

Two counter-streaming relativistic beams Lorentz factor I and strong magnetization

with Lorentz factor each of I', = 10. B2
Linear growth rate well known analytically T Nmc?
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Fig. - Relativistic two-stream instability. XL

Fig. — Ultra-relativistic strongly magnetized shock with T = 70 and
o = 70.
@ not yet satisfactory because we need to include radiation reaction damping.

= use the reduced Landau-Lifshitz prescription ala (Heintzmann & Schriifer,
1973).
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Straightforward radiation reaction implementation

» Exact solution are easily construct in the frame where E and B are parallel.
» simply add a factor for the 4-velocity component associated to E and B.
» Lorentz force pusher straightforwardly modified.

» the exact solutions are for non null-like fields (Laue & Thielheim, 1986)

1
UO(T) = \/ — Y C [ch(wE 7) + B sh(we T)}
A + B e72 0 ()\E+AB)T
1
US(T) = Yo C [sh(wE T) + /3§ ch(we T)}
\/A +B e—270 (AZ+22) T
1 .
u'(r) = Y0 € [Bs cos(ws ) + B sin(ws )]
\/B + Aet2mo (AZ+22) T
1 .
w(r) Yo ¢ [—B5 sin(ws T) + By cos(ws T)].

\/B + Aet2m (AZ+22) T

AZ and )% eigenvalues of F¥ and A, B are the initial conditions for the 4-velocity.
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@ Acceleration in a spherical wave
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Numerical implementation of the solutions

» 2 versions of the pusher from (Hadad et al., 2010)

1. full time-dependent solutions.
2. time-independent solutions assuming E and B constant.

» valid only for null-like fields i.e. vanishing electromagnetic
invariants :

E-B=0 E2 B =0.

» many tests of the code performed for analytical situations
(Pétri, 2021).
» linear, circular, elliptical polarized wave.
» particle starting at rest or with initial ultra-relativistic speed.
» different initial phase of the wave.
» with and without radiation reaction.
= constant E and B algorithm as good as time-dependent solver.

» we applied it to astrophysical situations for spherical waves with
amplitude decreasing like E, B « 1/r comparing the two
versions for any polarization : circular, linear, elliptical.

» the strength parameter of the wave decreases with radius
n
a(r)=ap —
(r)=ao-
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Problem set up

Nebula
v 9
RNS~105cm : E RLC~IOch RWT~1017cm

Fig. - Set up geometry.
» injection of particles at the light-cylinder or beyond at different colatitudes.
» evolving in circular, linear or elliptical spherical waves.
» with and without initial speed.

» with and without radiation reaction.
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Particle starting at rest at light-cylinder
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Final Lorentz factor
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Fig. — Evolution of the Lorentz factor for a circularly, elliptically and i _ Final | orentz factor for a circularly, elliptically and linearly
linearly polarized wave respectively in solid, dotted and dashed polarized wave. The law in Eq. (3) is shown in red solid line.

line.
» In a spherical wave, the max Lorentz factor does not scale with 1 + & but only as
i ~ 2 (a/m)?/° )
» for linear polarization, the Lorentz factor increase is much slower and leads to
weaker acceleration.
» radiation reaction does not impact these results.
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Particle starting at rest at large distances
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Fig. — Maximum Lorentz factor.

Fig. — Evolution of the Lorentz factor.

» the larger the initial position, the weaker the final Lorentz factor.
» linear polarization is always less efficient than circular or elliptical.

» radiation reaction does not impact these results.
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Particle injected at relativistic speed at the light-cylinder

Leptons can be created close to the light-cylinder moving at relativistic speed and
entering the wave at high Lorentz factor.
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Fig. — Evolution of the Lorentz factor for a linearly polarized wave (o« = 0.5)
witha = 109, initial Lorentz factor log vy = {0, 1, 2, 3} and varying initial
phases, £y = 0 in dashed lines, £q = 7 /4 in dotted lines and £ = = /2
in solid lines.

Fig. — Evolution of the Lorentz factor for a circularly polarized wave with

a = 10°, initial Lorentz factorlog ~vo = {0, 1,2, 3}. The curves are
insensitive to the initial phase &.

» particles injected at high Lorentz factor in the node of a linear polarized wave are
not easily accelerated.

» the initial phase of linear polarization strongly impacts on the time evolution.
» circular polarization is insensitive to initial phase (rotational symmetry).

» In all cases, radiation reaction negligible far from the star

» but becomes dominant close to its surface.
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Head on collision

A particle from infinity enters the wave at ultra-relativistic speed and is reflected by the
wave.
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Fig. — Evolution of the Lorentz factor for a linearly polarized wave with . , . -
2= 109 Fig. — Same as Fig. 14 but for circular polarization.

» final Lorentz factor after bounce v = o + 3 4/72 — 1 = 4.

» minimal approach distance log (fmin/1.) & (8.7 )circ/(8.5)iin — log Yo
» from simple physical arguments we expect

= in good agreement with the simulations.
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Numerical scheme for constant fields

» assume that all quantities (, X, £, B) are known at the time step 7"
» analytical solution for u’ known according to i"' = L(AT, Uy, E, B).

» update in particle position performed by the velocity-Verlet algorithm

02— Z(AT/z &', E(3"), B(%")

X3 g2 Ar

i;n—k1 _ [.(ZX’7'/227 i}n—k1 /27 E;( -»n—k1 ) E§( =n+1 ))

» algorithm second order in proper time.

» extensively tested in electromagnetic field configurations with known analytical
solutions.
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0 Application to a rotating dipole
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Particle tracking around neutron stars

» inject charged particles and let them evolve under LLR

»
» proton
» iron.

» in the electromagnetic field of a neutron star
» millisecond pulsar

B~10°T and a~ 10"

» normal pulsar

B~108T and a~10'®

» magnetar

B - 1 01 1 T an d an~ 1 021 Fig. — Particle injection in the dipole field.

» three kind of motion

» trapped
» crashed
» escaped.

(Pétri, 2022) http ://arxiv.org/abs/2207.00624
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Particles escaping and crashing around neutron stars
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Fig. — Final Lorentz factor for electrons, protons and irons with RR. Fig. — Final Lorentz factor for electrons, protons and irons without RR.
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Fig. — Final Lorentz factor for electrons, protons and irons with RR. Fig. — Final Lorentz factor for electrons, protons and irons without RR.
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Particles trapped around neutron stars

[ electron M proton M iron

with RR

Trapped millisecon

Fig. — Final Lorentz factor for electrons, protons and irons with RR.
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Fig. — Schematic 2D view of Earth Van Allen radiation belt.
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An alternative approach

» solving LLR is very time consuming computationally.
» when the Lorentz force is exactly balanced by radiation reaction

E+vAB=~+Kv

» in a strong radiation reaction limit (RRL) regime in can be approximated by

_ EAB=+(EE/c+cByB)
- EZ/c + B2

assuming particles moving at the speed of light ||v+ || = c.
» invariants E2 — ¢?B? = EZ — ¢® B and E-B = Ey B, with K = Ey/c > 0.

» meaning = there exist a frame where E’ and B’ are parallel and the particle moves
at the speed of light along the common direction.

= not possible when both invariants vanish (null like fields, Eo = By = 0).

» RRL gives accurate results without integrating the full equation of motion in time !
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Comparison of particle trajectories in LLR and RRL approximations
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e Conclusions
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Conclusions

» neutron stars are very efficient particle accelerators (UHE cosmic rays ?).

» realistic physical parameters required to avoid artificial down-scaling.

» algorithm to solve analytically for the equation of motion in LLR approximation.

» RRL regime gives very similar results at low computational cost.

» applied it to a rotating neutron star with particle Lorentz factors up to 10'2.

» efficiency of radiation damping depending on stellar magnetic fields strength,
period and damping parameter.
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