Particle pusher in ultra-strong electromagnetic fields

Jérôme Pétri
Observatoire astronomique de Strasbourg, France

ISSI'22-12th September 2022

Outline

(1) Objectives \& Methods
(2) An ultra-relativistic pusher for the Lorentz force
(3) Acceleration in a spherical wave
(4) Application to a rotating dipole

(1) Objectives \& Methods

2 An ultra-relativistic pusher for the Lorentz force

(3) Acceleration in a spherical wave

4 Application to a rotating dipole
(5) Conclusions

Objectives \& Methods

Physical challenges

- compute particle acceleration and radiation reaction in a realistic environment.
- evaluate the impact of radiation reaction on particle acceleration efficiency.
- follow accurately particle trajectories.

Methods

- design a particle pusher for ultra-strong fields based on analytical solutions of the reduced Landau-Lifshitz approximation (LLR, i.e. \vec{E} and \vec{B} constant). (Heintzmann \& Schrüfer, 1973; Boghosian, 1987; Li et al., 2021)
- long term task : a fully electromagnetic Particle-In-Cell (PIC) code for ultra-strong fields and ultra-relativistic particles.

Exact solutions of Landau-Lifshitz equation

- The Landau-Lifshitz equation with 4 -velocity u^{i}, electromagnetic tensor $F^{i k}$, particle charge and mass q, m, proper time τ

$$
\frac{d u^{i}}{d \tau}=\frac{q}{m} F^{i k} u_{k}+\frac{q \tau_{m}}{m} \partial_{\ell} F^{i k} u_{k} u^{\ell}+\frac{q^{2} \tau_{m}}{m^{2}}\left[F^{i k} F_{k \ell} u^{\ell}+\left(F^{\ell m} u_{m}\right)\left(F_{\ell k} u^{k}\right) \frac{u^{i}}{c^{2}}\right]
$$

with the radiation damping time scale (for electrons)

$$
\tau_{m}=\frac{q^{2}}{6 \pi \varepsilon_{0} m c^{3}}=\frac{2}{3} \frac{r_{e}}{c} \approx 6,26 \cdot 10^{-24} \mathrm{~s}
$$

Two important parameters of the problem

- strength parameter

$$
a=\frac{\omega_{\mathrm{B}}}{\Omega} \gg 1
$$

- radiation damping parameter

$$
b=\Omega \tau_{m} \ll 1
$$

- Exact solutions for u^{i} are known
- in plane electromagnetic waves. (Piazza, 2008; Hadad et al., 2010)
- in constant \vec{E} and \vec{B}. (Heintzmann \& Schrüfer, 1973; Boghosian, 1987;
Li et al., 2021)

(1) Objectives \& Methods

(2) An ultra-relativistic pusher for the Lorentz force

(3) Acceleration in a spherical wave

4 Application to a rotating dipole

The central idea for the Lorentz pusher

- analytical solution are simple in the frame where \vec{E} and \vec{B} are parallel

$$
\frac{d u^{i}}{d \tau}=\frac{q}{m} F^{i k} u_{k}
$$

- in the Cartesian coordinate system, the electromagnetic field tensor is anti-diagonal and given by (along e_{z})

$$
F^{i k}=\left(\begin{array}{cccc}
0 & 0 & 0 & -E / c \\
0 & 0 & -B & 0 \\
0 & B & 0 & 0 \\
E / C & 0 & 0 & 0
\end{array}\right)
$$

- the 4 -velocity evolution given in terms of the proper time τ according to

$$
\begin{aligned}
& u^{0}(\tau)=\gamma_{0} c\left[\operatorname{ch}\left(\omega_{E} \tau\right)+\beta_{0}^{z} \operatorname{sh}\left(\omega_{E} \tau\right)\right] \\
& u^{3}(\tau)=\gamma_{0} c\left[\operatorname{sh}\left(\omega_{E} \tau\right)+\beta_{0}^{z} \operatorname{ch}\left(\omega_{E} \tau\right)\right] \\
& u^{1}(\tau)=\gamma_{0} c\left[\beta_{0}^{X} \cos \left(\omega_{B} \tau\right)+\beta_{0}^{y} \sin \left(\omega_{B} \tau\right)\right] \\
& u^{2}(\tau)=\gamma_{0} c\left[-\beta_{0}^{X} \sin \left(\omega_{B} \tau\right)+\beta_{0}^{y} \cos \left(\omega_{B} \tau\right)\right] .
\end{aligned}
$$

- integrate with respect to the proper time to find the trajectory of the particle.

The algorithm for the Lorentz pusher

- the idea is to switch to the frame where \vec{E} and \vec{B} are parallel by a Lorentz boost (primed frame).

$$
\mathbf{V}=\frac{\mathbf{E} \wedge \mathbf{B}}{E_{0}^{2} / c^{2}+B^{2}} \quad ; \quad E^{2}-c^{2} B^{2}=E_{0}^{2}-c^{2} B_{0}^{2} \quad ; \quad \mathbf{E} \cdot \mathbf{B}=E_{0} B_{0} .
$$

- this is always possible if the field is not null-like
\Rightarrow special case to be treated separately.
- the field must be constant within one time step Δt.
- the analytical solution is simple in the new frame where $\vec{E}^{\prime} \| \vec{B}^{\prime}$, assumed to be along z^{\prime}.
- it requires several Lorentz boosts and spatial rotations to bring the common axis along z^{\prime}.
- straightforward extension to include radiation reaction by adding a prefactor to the 4 -velocity components for the magnetic part and the electric part.
- need to solve a non-linear equation for imposing $\Delta \tau$ from Δt.
(Pétri, 2020)

Some time-dependent tests of the ultra-relativistic Lorentz pusher

A charge -q orbiting around a fixed charge q.

Fig. - Relativistic Kepler problem.

Periodic Lorentz factor variation with phase $\xi=k^{i} x_{i}=\omega t-k x$

$$
\begin{gathered}
\gamma(t)=1+a^{2}(1-\cos \xi) \\
\gamma_{\max }=1+2 a^{2}
\end{gathered}
$$

Fig. - Lorentz factor for circularly polarized plane wave.

- Full details and more tests in (Pétri, 2020).
- See (Tomczak \& Pétri, 2020) for applications to neutron stars.
- The pusher works remarkably for test particles but what about full plasma simulations?
\Rightarrow design of a 1D fully relativistic electromagnetic PIC code as a proof of concept.

1D electromagnetic PIC implementation

A simple 1D shock problem with bulk Lorentz factor Γ and strong magnetization

$$
\sigma=\frac{B^{2}}{\mu_{0} \Gamma n m c^{2}}
$$

Fig. - Relativistic two-stream instability.

Fig. - Ultra-relativistic strongly magnetized shock with $\Gamma \approx 70$ and $\sigma \approx 70$.

- not yet satisfactory because we need to include radiation reaction damping.
\Rightarrow use the reduced Landau-Lifshitz prescription à la (Heintzmann \& Schrüfer, 1973).

Straightforward radiation reaction implementation

- Exact solution are easily construct in the frame where \mathbf{E} and \mathbf{B} are parallel.
- simply add a factor for the 4 -velocity component associated to E and B.
- Lorentz force pusher straightforwardly modified.
- the exact solutions are for non null-like fields (Laue \& Thielheim, 1986)

$$
\begin{aligned}
& u^{0}(\tau)=\frac{1}{\sqrt{A+B e^{-2 \tau_{0}\left(\lambda_{E}^{2}+\lambda_{B}^{2}\right) \tau}} \gamma_{0} c\left[\operatorname{ch}\left(\omega_{E} \tau\right)+\beta_{0}^{z} \operatorname{sh}\left(\omega_{E} \tau\right)\right]} \\
& u^{3}(\tau)=\frac{1}{\sqrt{A+B e^{-2 \tau_{0}\left(\lambda_{E}^{2}+\lambda_{B}^{2}\right) \tau}}} \gamma_{0} c\left[\operatorname{sh}\left(\omega_{E} \tau\right)+\beta_{0}^{z} \operatorname{ch}\left(\omega_{E} \tau\right)\right] \\
& u^{1}(\tau)=\frac{1}{\sqrt{B+A e^{+2 \tau_{0}\left(\lambda_{E}^{2}+\lambda_{B}^{2}\right) \tau}}} \gamma_{0} c\left[\beta_{0}^{\chi} \cos \left(\omega_{B} \tau\right)+\beta_{0}^{y} \sin \left(\omega_{B} \tau\right)\right] \\
& u^{2}(\tau)=\frac{1}{\sqrt{B+A e^{+2 \tau_{0}\left(\lambda_{E}^{2}+\lambda_{B}^{2}\right) \tau}}} \gamma_{0} c\left[-\beta_{0}^{\chi} \sin \left(\omega_{B} \tau\right)+\beta_{0}^{y} \cos \left(\omega_{B} \tau\right)\right] .
\end{aligned}
$$

λ_{E}^{2} and λ_{B}^{2} eigenvalues of F_{i}^{k} and A, B are the initial conditions for the 4 -velocity.

(1) Objectives \& Methods

2 An ultra-relativistic pusher for the Lorentz force

(3) Acceleration in a spherical wave

4 Application to a rotating dipole

Numerical implementation of the solutions

- 2 versions of the pusher from (Hadad et al., 2010)

1. full time-dependent solutions.
2. time-independent solutions assuming E and B constant.

- valid only for null-like fields i.e. vanishing electromagnetic invariants:

$$
\vec{E} \cdot \vec{B}=0 \quad ; \quad E^{2}-c^{2} B^{2}=0 .
$$

- many tests of the code performed for analytical situations (Pétri, 2021).
- linear, circular, elliptical polarized wave.

Fig. - Plane wave.

- particle starting at rest or with initial ultra-relativistic speed.
- different initial phase of the wave.
- with and without radiation reaction.
\Rightarrow constant E and B algorithm as good as time-dependent solver.
- we applied it to astrophysical situations for spherical waves with amplitude decreasing like $E, B \propto 1 / r$ comparing the two versions for any polarization : circular, linear, elliptical.

Fig. - Spherical wave.

- the strength parameter of the wave decreases with radius

$$
a(r)=a_{0} \frac{r_{\mathrm{L}}}{r}
$$

Problem set up

- injection of particles at the light-cylinder or beyond at different colatitudes.
- evolving in circular, linear or elliptical spherical waves.
- with and without initial speed.
- with and without radiation reaction.

Particle starting at rest at light-cylinder

Fig. - Evolution of the Lorentz factor for a circularly, elliptically and linearly polarized wave respectively in solid, dotted and dashed line.

Fig. - Final Lorentz factor for a circularly, elliptically and linearly polarized wave. The law in Eq. (3) is shown in red solid line.

- In a spherical wave, the max Lorentz factor does not scale with $1+a^{2}$ but only as

$$
\begin{equation*}
\gamma_{\mathrm{fin}} \approx 2(a / \pi)^{2 / 3} \tag{3}
\end{equation*}
$$

- for linear polarization, the Lorentz factor increase is much slower and leads to weaker acceleration.
- radiation reaction does not impact these results.

Particle starting at rest at large distances

Fig. - Evolution of the Lorentz factor.

Fig. - Maximum Lorentz factor.

- the larger the initial position, the weaker the final Lorentz factor.
- linear polarization is always less efficient than circular or elliptical.
- radiation reaction does not impact these results.

Particle injected at relativistic speed at the light-cylinder

Leptons can be created close to the light-cylinder moving at relativistic speed and entering the wave at high Lorentz factor.

Fig. - Evolution of the Lorentz factor for a linearly polarized wave ($\alpha=0.5$) with $a=10^{9}$, initial Lorentz factor $\log \gamma_{0}=\{0,1,2,3\}$ and varying initial phases, $\xi_{0}=0$ in dashed lines, $\xi_{0}=\pi / 4$ in dotted lines and $\xi_{0}=\pi / 2$ in solid lines.

Fig. - Evolution of the Lorentz factor for a circularly polarized wave with $a=10^{9}$, initial Lorentz factor $\log \gamma_{0}=\{0,1,2,3\}$. The curves are insensitive to the initial phase ξ_{0}.

- particles injected at high Lorentz factor in the node of a linear polarized wave are not easily accelerated.
- the initial phase of linear polarization strongly impacts on the time evolution.
- circular polarization is insensitive to initial phase (rotational symmetry).
- In all cases, radiation reaction negligible far from the star
- but becomes dominant close to its surface.

Head on collision

A particle from infinity enters the wave at ultra-relativistic speed and is reflected by the wave.

Fig. - Evolution of the Lorentz factor for a linearly polarized wave with $a=10^{9}$.

Fig. - Same as Fig. 14 but for circular polarization.

- final Lorentz factor after bounce $\gamma_{\text {fin }}=\gamma_{0}+3 \sqrt{\gamma_{0}^{2}-1} \approx 4 \gamma_{0}$.
- minimal approach distance $\log \left(r_{\text {min }} / r_{\mathrm{L}}\right) \approx(8.7)_{\text {circ }} /(8.5)_{\operatorname{lin}}-\log \gamma_{0}$
- from simple physical arguments we expect

$$
\gamma_{0} \approx \frac{\omega_{\mathrm{B}}}{\omega}=a=a_{0} \frac{r_{\mathrm{L}}}{r_{\min }} .
$$

\Rightarrow in good agreement with the simulations.

Numerical scheme for constant fields

- assume that all quantities $(\vec{u}, \vec{x}, \vec{E}, \vec{B})$ are known at the time step τ^{n}.
- analytical solution for u^{i} known according to $\vec{u}^{n+1}=L\left(\Delta \tau, \vec{u}_{0}, \vec{E}, \vec{B}\right)$.
- update in particle position performed by the velocity-Verlet algorithm

$$
\begin{aligned}
\vec{u}^{n+1 / 2} & =\vec{L}\left(\Delta \tau / 2, \vec{u}^{n}, \vec{E}\left(\vec{x}^{n}\right), \vec{B}\left(\vec{x}^{n}\right)\right) \\
\vec{x}^{n+1} & =\vec{x}^{n}+\vec{u}^{n+1 / 2} \Delta \tau \\
\vec{u}^{n+1} & =\vec{L}\left(\Delta \tau / 2, \vec{u}^{n+1 / 2}, \vec{E}\left(\vec{x}^{n+1}\right), \vec{B}\left(\vec{x}^{n+1}\right)\right) .
\end{aligned}
$$

- algorithm second order in proper time.
- extensively tested in electromagnetic field configurations with known analytical solutions.

(1) Objectives \& Methods

(2) An ultra-relativistic pusher for the Lorentz force
(3) Acceleration in a spherical wave

4 Application to a rotating dipole

Particle tracking around neutron stars

- inject charged particles and let them evolve under LLR
- electron
- proton
- iron.
- in the electromagnetic field of a neutron star
- millisecond pulsar

$$
B \sim 10^{5} \mathrm{~T} \quad \text { and } \quad a \sim 10^{13}
$$

- normal pulsar

$$
B \sim 10^{8} T \quad \text { and } \quad a \sim 10^{18}
$$

- magnetar

$$
B \sim 10^{11} \mathrm{~T} \quad \text { and } \quad a \sim 10^{21}
$$

Fig. - Particle injection in the dipole field.

- three kind of motion
- trapped
- crashed
- escaped.
(Pétri, 2022) http ://arxiv.org/abs/2207.00624

Particles escaping and crashing around neutron stars

Fig. - Final Lorentz factor for electrons, protons and irons with RR.

Fig. - Final Lorentz factor for electrons, protons and irons with RR.

Fig. - Final Lorentz factor for electrons, protons and irons without RR.
\square electron \square proton \square iron

Fig. - Final Lorentz factor for electrons, protons and irons without RR.

Particles trapped around neutron stars

Fig. - Final Lorentz factor for electrons, protons and irons with RR.

Fig. - Final Lorentz factor for electrons, protons and irons without RR.

Fig. - Schematic 2D view of Earth Van Allen radiation belt.

An alternative approach

- solving LLR is very time consuming computationally.
- when the Lorentz force is exactly balanced by radiation reaction

$$
\mathbf{E}+\mathbf{v} \wedge \mathbf{B} \approx \pm K \mathbf{v}
$$

- in a strong radiation reaction limit (RRL) regime in can be approximated by

$$
\mathbf{v}_{ \pm}=\frac{\mathbf{E} \wedge \mathbf{B} \pm\left(E_{0} \mathbf{E} / c+c B_{0} \mathbf{B}\right)}{E_{0}^{2} / c^{2}+B^{2}}
$$

assuming particles moving at the speed of light $\left\|\mathbf{v}_{ \pm}\right\|=c$.

- invariants $\mathbf{E}^{2}-c^{2} \mathbf{B}^{2}=E_{0}^{2}-c^{2} B_{0}^{2}$ and $\mathbf{E} \cdot \mathbf{B}=E_{0} B_{0}$ with $K=E_{0} / c \geq 0$.
- meaning = there exist a frame where \mathbf{E}^{\prime} and \mathbf{B}^{\prime} are parallel and the particle moves at the speed of light along the common direction.
\Rightarrow not possible when both invariants vanish (null like fields, $E_{0}=B_{0}=0$).
- RRL gives accurate results without integrating the full equation of motion in time!

Comparison of particle trajectories in LLR and RRL approximations

(1) Objectives \& Methods

(2) An ultra-relativistic pusher for the Lorentz force
(3) Acceleration in a spherical wave

4 Application to a rotating dipole

(5) Conclusions

Conclusions

- neutron stars are very efficient particle accelerators (UHE cosmic rays?).
- realistic physical parameters required to avoid artificial down-scaling.
- algorithm to solve analytically for the equation of motion in LLR approximation.
- RRL regime gives very similar results at low computational cost.
- applied it to a rotating neutron star with particle Lorentz factors up to 10^{12}.
- efficiency of radiation damping depending on stellar magnetic fields strength, period and damping parameter.

Bibliography

Boghosian B. M., 1987, PhD thesis, publication Title : Ph.D. Thesis ADS Bibcode : 1987PhDT.......197B
Eliezer C. J., 1948, Proc. R. Soc. Lond. Series A, 194, 543
Ford G. W., O'Connell R. F., 1991, Physics Letters A, 157, 217
Hadad Y., Labun L., Rafelski J., Elkina N., Klier C., Ruhl H., 2010, Phys. Rev. D, 82, 096012
Heintzmann H., Schrüfer E., 1973, Physics Letters A, 43, 287
Laue H., Thielheim K. O., 1986, ApJS, 61, 465
Li F., Decyk V. K., Miller K. G., Tableman A., Tsung F. S., Vranic M., Fonseca R. A., Mori W. B., 2021, Journal of Computational Physics, 438, 110367
Mignani R. P., Testa V., González Caniulef D., Taverna R., Turolla R., Zane S., Wu K., 2017, Mon Not R Astron Soc, 465, 492
Piazza A. D., 2008, Lett Math Phys, 83, 305
Pétri J., 2020, J. Plasma Phys., 86, 825860402, publisher : Cambridge University Press
Pétri J., 2021, Monthly Notices of the Royal Astronomical Society, 503, 2123
Pétri J., 2022, number : arXiv :2207.00624 arXiv :2207.00624 [astro-ph, physics :hep-ph] Tomczak I., Pétri J., 2020, J. Plasma Phys., 86, 825860401, publisher : Cambridge University Press

