

An Overview of the Chinese Space Station Optical Survey

Hu Zhan National Astronomical Observatories of China & Peking University

ISSI Program: Weak Gravitational Lensing Studies from Space Missions Bern, Dec 18, 2018

Optical Module for Survey

China Manned Space Station completion c. 2022

Serviceable 2m telescope (Optical Module, ~2024). Currently in preliminary design & key tech dev phase.

Milestones

- Science case: 2009, suggestion of a telescope for astronomy on the Chinese space station (CSS); 4/2010, 1st meeting about astronomy with a large-aperture telescope on the CSS; 12/2010, 1st version of science goals; concept of a large-scale multiband imaging & slitless spectroscopy survey was well received by the CSS Space Application System and by China Manned Space Agency.
- Telescope: 2011, feasibility review; 2012, CSS applications selection; 2013, down-selection of design, budget review, & approval; 2014, man-tended free flyer concept; 2015-, preliminary design & technology development.
- Camera: 2015, NAOC & IOE design selected; preliminary design & technology development.

Survey Specs

- 17500□° imaging : 255-1000nm, ≥6 filters, avg ≥25.5^m (5σ, point source, AB mag);
- 17500□° slitless spect: 255-1000nm, R≥200, ≥20-21^m/res;
- 400□° deep imaging & spect: at least 1^m deeper.

Imaging & Slitless Spectrum Survey |b|>=20deg Ultral Deep Survey Imaging & Slitless Spectrum Survey 15=<|b|<20 deg

Ecliptic Coord. Deep fields will be finalized later; sim results for demo only.

Science

Cosmology: dark energy, dark matter, gravity, large-scale structure, neutrinos, primordial non-Gaussianity...

AGNs: high-z AGNs, clustering, dual AGNs, variability, UV excess, host galaxies...

Galaxies: formation & evolution, mergers, high-zs, dwarfs, LSBs, near field, halos properties...

Milky Way: structure, satellites, dust, extinction... Stellar science: formation, dwarfs, metal poor... Solar system (high inclination): TNO NEA... Astrometry: reference frame, star clusters...

Optical Design & Camera

Design PSF @ one corner

R_{EE80}≤0.15" @ 632.8nm e_{avg}≤0.05, e_{max}≤0.15

Designed PSF R_{EE80}<0.11" @ 620nm

Cryo cooling test

Camera Technology Demonstration

cryocooler

4.6k×11k CCD

NAC

Mock focal plane


```
Test Dewar
```


Shutter (1.5M+ ops)

Comparison with Other Surveys

Project	Site/	Launch	FoV	R _{EE80}	Num pixels	Area	Wavelength	Num	Spect
	orbit	Тор	deg ²	"	10 ⁹	deg ²	nm	Filters	
CSS-OS	LEO	~2024	1.1	0.15 0.074/pix	2.5	17500	<mark>255</mark> —1000	≥6	yes
Euclid	L2	2022	0.56 0.55	>0.2 pix lmt	0.6 0.07	15000	550—920 1000—2000	1 3	no yes
WFIRST	L2	>2025	0.28	>0.2	0.3	~2000	927—2000	4	yes
LSST	Chile	2022	9.6	~0.5	3.2	18000	320—1050	6	no

R_{EE80}: radius encircling 80% energy

	CSS-OS	HST/ACS WFC	Euclid	WFIRST
R_{EE50}	0.1"	0.06"	0.13"	0.12"
R _{EE80}	0.15"	0.12"	~0.23"	~0.24"

Dynamic sims: R_{EE80} ~0.13"

Filters & Limiting Mags

	Exp.	NUV	u	g	r	i	Z	у
17500□°	2×150s	25.4	25.4	26.3	26.0	25.9	25.2	24.4
400□°	8×250s	26.7	26.7	27.5	27.2	27.0	26.4	25.7

NUV:u:g:r:i:z:y=2:1:1:1:1:2

Gratings & Limiting Mags

Operations Conditions

- ► LOS to Sun ≥50°
- ► LOS to Moon ≥40°
- ► LOS to Earth limbs ≥70°/30°
- Field stitching
- Electricity balance
- Slew rate & settling time
- SAA standby, relay tracking, engineering down time, orbital adjust., docking for
 maintenance, ...

Tiling of the Sky

- 10" overlap b/w fields of each chip
- If one chip covers the whole sky, all other chips will also cover the whole sky.
- # of pieces of each type of filters = # of visits

Operations Simulations

Baseline: 63% orbital time for survey

The Galactic plane & ecliptic plane can be observed! Wide-Field: 17540 deg^2 Ultra-Deep: 408 deg^2

Operations Simulations

Time between two visits, regardless the filter.

Given that the CSS-OS is an LEO mission for large-area survey, it is difficult to schedule visits at a fixed cadence without impacting the survey efficiency. However, it has some time-domain capability, especially for investigations that are insensitive to color.

Complementary Observations

NAC

New Study of Filter Trade-offs

NUV, u, g, r, I, z, WU,WG, & WI, two pieces each. Deeper imaging, more galaxies, better photo-zs, potential improvement for stellar science, & redundancy.

UDF Using Simulations Image

Galaxies from Imaging

Photo-z Estimates

-0.4

0

1

Galaxy dN/dz of a high-S/N mock sample (17.5/ \Box ', σ_{z0} =0.024) for the CSS-OS based on COSMOS. If σ_{z0} is relaxed to 0.05, galaxy density ~ 29/ \Box '.

Y. Cao, Y. Gong et al. 2018 arXiv:1706.09586

 z_{input}

3

4

2

Amounts to several hundred million low-resolution galaxy spectra!

620-1000nm, 6000×4800pix (45 🗌 ') 3.9/□' with brightest 4 pixels S/N≥5 8.5/□' with whole spectrum S/N≥10

Galaxies from Spectroscopy

Checking against HST PEARS Survey

120/□', 550-1050nm, R \simeq 69-131, i_{AB} \lesssim 28^m

New instruments recommended

- 1. Multi-channel imager (MCI)
- 2. Integral field spectrograph (IFS)
- 3. Exoplanet Imaging Coronagraph (EPIC)

Time allocation for the first 10 years

- Survey: ~70% (best case)
- Service: ~10%
- All others: ~20% unless able to observe in parallel with the survey camera

Multi-Channel Imager

ZHENG Zhenya, JIANG Linhua, et al. (SHAO, SITP)

MCI conceptual design

 NUV to optical 3-channel simultaneous observation: CU, CG, CR 0.25-0.41, 0.43-0.70, 0.72-1.10 μm

- 20+ filters to select
- 9Kx9K e2v CCDs, 0.05"/pix, FOV 7.8' x 7.8'
- Might use a corner of the survey FOV to work in parallel with the survey camera.
- High Precision Photometry (~0.1%) with HST Standards, calibration for the survey.

Multi-Channel Imager

ZHENG Zhenya, JIANG Linhua, et al. (SHAO, PKU,

Science With (3-filter simultaneous) CSST Super Deep Fields:

- SN Ia Cosmology and Highest-z SN
- Completeness of Galaxies used for WL, Clustering, etc.
- Galaxy & BH Co-Evolution

Integral Field Spectrograph

HAO Lei et al. (SHAO, SITP)

laking spectra of different parts of the source simultaneously reimage 9

SpecificationsSpatial Resolution0.2"Spatial Elements30x30Field-of-view6"x6"Filling factors100%

0.35-1.0um

0.175nm/pixel, R≥ 1000

Sciences

Wavelength Coverage

Spectral resolution

 $(\triangle \mathsf{lambda})$

- Super-massive black holes and its surroundings
 - Measuring the BH masses
 - Feeding and feedback of BHs
 - Star clusters and star-formation around the BHs
 - Tidal-disruption events
- Star-formation of galaxies
 - Mergers, BCDs, Lyman-Break Analogs
- Many others

Exoplanet Imaging Coronagraph

DOU Jiangpei et al. (NIAOT, XIOMP)

Optics layout

- Wavelength: 0.6µm-1.7µm
- **Bandwidth**: 5~20% (0.661, 0.883, 0.721,

0.94, 1.25, 1.65µm)

- FOV: 2.5"x2.5" (working) 12.5"x12.5" (for targeting)
- IWA: $2 \sim 4 \lambda / D$ ($0.26'' @ 0.6 \mu m$)
- Contrast: 10⁻⁹

Off-axis system: no central obstruction and spider, optimized for high-contrast imaging

Vacuum chamber test reaching 10⁻⁹ contrast

Thank you!