Weak Lensing Measurement of Stellar-to-Halo Mass Ratio with *DECaLS* Survey

Huanyuan Shan (SHAO)

Collaborators: Eric Jullo, Anna Niemiec, Kaylan Burleigh, Jean-Paul Kneib, Thomas Erben, Johan Comparat, Jean Coupon and the DECaLS team

Outline

- Background
- **DECaLS**: DECam Legacy Survey
- Preliminary results:
 - Stellar-to-Halo Mass Ratio (SHMR)
- Summary

SHMR: Stellar-to-Halo Mass Ratio

Aquarius Simulation

- SHMR: f*=M*/Mhalo
 - M*: stellar mass
 - M_{halo}: halo mass

SHMR: Stellar-to-Halo Mass Ratio

- Abundance matching
- Galaxy clustering
- Satellite kinematics
- Galaxy-galaxy lensing

Aquarius Simulation

- Galaxy-galaxy lensing (GGL)
 - Measure DM halo mass directly
 - Reduce the noise (LSSs, shape noise, substructures, variation...)
 - Weak signal that is difficult to measure

SHMR from GGL only

SHMR of high-mass halos

SHMR of high-mass halos: Large scatters More constraints from GGL: Larger WL surveys!

DECaLS: DECam Legacy Survey

- Image *SDSS* footprint
 - Total area: ~6700 deg²
 - 3 bands: *g*, *r*, *z*
 - -~1-2 mag deeper than *SDSS* (g~24.7, r~23.9, z~23.0)
 - Overlapping with the BOSS/eBOSS/DESI project

- Fov: 3 deg²
- 97554 bricks with the size 0.25*0.25 deg²
- Pixel size: 0.262"
- Mean seeing: 1.05"

Scientific Benefits

- GGL:
 - Massive spectroscopy of the BOSS/eBOSS/DESI project
 - Different samples: LOWZ/CMASS, LRG, ELG, QSO

Shape Measurement

- Data reduction: *Tractor (Lang & Hogg)*
- PSF modelling using *PSFEx* on each individual exposure
- Tracter shape measurement: PSF, SIMP, De Vaucouleur, exponential models are adjusted to every Sextractor source

- De Vaucouleur and exponential profiles are decomposed in Mixture of Gaussians (MoG)

- Pixelized PSF are convolved in Fourier Space

Morphological classification

Number of Sources	Туре
478,918,959	Objects in a Primary brick
271,437,526	PSF
121,505,252	SIMP
63,568,420	EXP
20,141,591	DEV
2,266,170	COMP

Shape calibration

We bin the galaxies in mag_z and r_{g_z} . For each bin we compute

$$\chi^2 = \sum_i rac{1}{\sigma_\gamma^2} \left(ar\gamma_i^{
m obs} - \left[1 + {
m m}(
u_{
m SN},r)
ight]ar\gamma_i^{
m true} - {
m c}(
u_{
m SN},r)
ight)^2$$

and adjust the functions (1+m) and c as $\epsilon = (1 + m)\epsilon^{\text{true}} + c$

$$l+m(mag_z,r_g)=a_0\exp(-a_1 r_g mag_z)/\log_{10}(mag_z)$$

This is done for SIMP, EXP, DEV and COMP types

- Image simulation
- CS82 shear-calibrated data as the true values

- m correction: 10 magnitude bins & 10 galaxy size bins

- c1, c2 correction (c=b0+b1*r_g+b2*r_g²) - No obvious trends above a few 10-4 as a function of magnitude and half light radius

Image simulation:

- galaxy model+PSF+observation conditions
- DECaLS Legacy pipeline on simulated image

Similar m & c as comparison method

Photometric redshift

- We use the *GAZPAR* webservice provided by LAM to compute the *z*-phot of DECaLS galaxies using *grzW* bands
- We compare to CS82 zphots
- → No particular systematic error, but a *large scatter*

• Galaxy selection:

 $19.0 < mag_g < 24.65 \& 18.0 < mag_r < 23.61 \& 17.0 < mag_z < 21.0 \& 0.65 < r_g < 3.0$

• **n(z)** from *COSMOS*

DECaLS: Lensing Status

- DECaLS DR3: 4300 deg² in g-band, 4600 deg² in r-band, 8100 deg² in z-band
- 4200 deg² have been observed in 3 bands

- About 56 million galaxies useful for lensing
- Lensing galaxy density about 4 arcmin⁻²

Shear correlation function

Tangential shear

φ

10²

ф

10¹

 $\theta[\operatorname{arcmin}]$

10-5

10-6

0.1

1

 θ [arcmin]

10³

GGL: Stellar mass+NFW halo+satellite+2-halo

GGL: Stellar mass+NFW halo+Mis-centering+2-halo

SHMR of central galaxies

• Fixed stellar mass (Maraston et al. 2013, BOSS)

Summary

- DECaLS
- Massive spectroscopy of the BOSS/eBOSS/DESI projects
- Measurement
- *Tractor*: shear catalog
- COSMOS: redshift distribution
- Preliminary results:
- GGL signals of LOWZ/redMaPPer
- SHMR