

Weak lensing Study in VOICE Survey (VST Optical maging of the CDFS and ES1 fields)

Liping Fu

Shanghai Normal University

Collaborated with:

- -- Zuhui FAN (PKU&YNU), Dezi LIU (YNU), Xiangkun LIU (YNU), Chuzhong PAN (PKU);
- -- Giovanni Covone (Univ. Napoli Federico II), Mattia Vaccari (Univ. Western Cap), Mario Radovich (INAF-Padova) Alino Grado (INAF-Napoli), Lance Miller (Univ. Oxford) + VOICE-SUDARE team

Dec 18-21, 2018, ISSI, Bern

- I. VOICE shear catalog (Fu+ 2018)
 - ✓ Data selections
 - ✓ Shear measurement
 - Systematic checking
 - Cosmological application

II. VOICE imaging simulation (Liu, Fu+ 2018)

- Simulation build
- ✓ Shear bias calibration

III. Voice photometric redshift estimation (Amaro+ in preparation)

- ✓ BPZ
- METAPHOR (Machine-learning Estimation Tool for Accurate Photometric Redshifts)

I. VOICE (VST Optical Imaging of the CDFS and ES1 fields)

co-Pls: Giovanni Covone & Mattia Vaccari

-- GTO program of VLT Survey Telescope @ Chile;

ES1

CDFS

I. VOICE (VST Optical Imaging of the CDFS and ES1 fields)

co-PIs: Giovanni Covone & Mattia Vaccari

-- Together with SUDARE, uniform & deep optical (ugri) coverage: CDFS & ES1; Spitzer SWIRE (IR), VISTA-VIDEO (NIR), Spitzer-SERVS (MIR), Herschel-HerME (FIR), GALEX (UV) and ATLAS(radio).

- \rightarrow Custers detection (high z) \leftarrow weak lensing & color + photo-z
- → Mass distributions ← weak lensing

VOICE vs KiDS

- -- Kilo Degree Survey @ VST (VLT survey telescope): 1500 deg2, r_{lim} = 24.9
- -- Same instrument (u, g, r, i)
- -- KiDS: each pointing, one epoch (5 consecutive exposures);
- -- VOICE: multiple-epoch observations (> 100 exposures, r band, over 4 years);
- -- $r_{lim} = 26.1$ (point source, 5 σ) $\rightarrow \sim 1.2$ magnitude deeper than KiDS.

Shear catalog

Weak lensing Study in VOICE Survey I: Shear Measurement

Liping Fu^{1*}, Dezi Liu^{2,3,1}, Mario Radovich⁴, Xiangkun Liu³, Chuzhong Pan² Zuhui Fan^{3,2}, Giovanni Covone^{5,6,7}, Mattia Vaccari^{8,9}, Maria Teresa Botticella⁷, Massimo Capaccioli⁵, Enrico Cappellaro⁴, Demetra De Cicco⁵, Aniello Grado⁷, Lance Miller¹⁰, Nicola Napolitano⁷, Maurizio Paolillo⁵, Giuliano Pignata¹¹

⁶INFN, Sezione di Napoli, Napoli 80126, Italy

¹Shanghai Key Lab for Astrophysics, Shanghai Normal University, Shanghai 200234, China

²Department of Astronomy, Peking University, Beijing 100871, China

³ South-Western Institute for Astronomy Research, Yumnan University, Kumming 650500, Yunnan, China

⁴ INAF - Osservatorio Astronomico di Padova, via dellOsservatorio 5, I-35122 Padova, Italy

⁵Diparámento di Fisica "E. Pancini", Università degli Studi Federico II, Napoli 80126, Italy

⁷INAF–Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, Napoli 80131, Italy

⁸Department of Physics & Astronomy, University of the Western Cape, Robert Sobukwe Road, 7535 Bellville, Cape Town, South Africa

⁹INAF - Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy

¹⁰Department of Physics, Oxford University, Keble Road, Oxford OXI 3RH, UK

¹¹Departemento de Ciencias Fisicas, Universidad Andres Bello, Santiago, Chile

Weak lensing selection criteria

Astrometric calibration

Mask

- -- GAIA
- smaller intrinsic astrometric uncertainties
- more matched stars with respect to 2MASS.

- -- Pullecenella (Zhuoyi Huang)
- -- Effective area fraction 84%

PSF example

2012-08-10,FWHM=0.80"

2012-10-21,FWHM=0.52"

Shear measurement: Lensfit (CFHTLenS, KiDS, Miller+ 13)

- Bayesian model fitting code;
- Galaxy model fit (position, flux, scale-length, bulge-to-disc ratio, ellipticity);
- PSF and galaxy model on single exposure;
- Multiple exposures joint fit \rightarrow Likelihoods of each galaxy;
- Lensfit first time applied on few tens exposures ← calibrated from VOICE imaging simulation.
- $3x10^5$ galaxy (weight > 0) $\rightarrow n_{eff}=16.4$ gal/arcmin² ~ twice of KiDS';

	CDFS1	CDFS2	CDFS3	CDFS4
$egin{arr} & \mathrm{N_{star}} & \mathrm{N_{gal}} & \mathrm{N_{shear}} & \end{array}$	2878	2807	2851	2774
	129505	125032	126360	125295
	84406	83425	78445	77499
${ m N_{exclude}} { m N_{wzero}}$	24686	22946	25830	23914
	20413	18661	22085	23882

Photometric redshift catalog

-- Z_spec: 23638

10

Sanity checks

1. Star-galaxy correlations \rightarrow check PSF correction

2.Tomography check

		Ngal	δz
8-band photo- z	all low-z high-z	23638 19389 4069	$-0.008 \\ -0.012 \\ 0.022$

High-z: $z \ge z_{median} (0.83);$ Low-z: $z < z_{median} (0.83);$

3. Blending check

5 arcsec

Blender: separation < 3"

-- 8% of shear catalog (weight > 0)

3. Blending check

5 arcsec

-- Minor effects on two-point correlations

Cosmological application using $\langle M^2_{ m ap} \rangle$

- -- No-systematics (no baryons, no photo-z err., no Intrinsic Alignment)
- -- Weak lensing most sensitive to:

Small-scale density-fluctuations amplitude σ_8 Total matter density Ω_m

Flat ACDM

Photo-z using optical bands only (ugri)

Cosmological application using $\langle M^2_{ m ap} angle$

-- No-systematics (no baryons, no photo-z err., no Intrinsic Alignment)

II. VOICE-like imaging simulation

Weak Lensing Study in VOICE Survey II: Shear Bias Calibrations

Dezi Liu^{1,2,3*}, Liping Fu²[†], Xiangkun Liu³, Mario Radovich⁴, Chao Wang¹, Chuzhong Pan¹, Zuhui Fan¹[‡], Giovanni Covone^{5,6,7}, Mattia Vaccari^{8,9}, Maria Teresa Botticella⁷, Massimo Capaccioli⁵, Enrico Cappellaro⁴, Demetra De Cicco⁵, Aniello Grado⁷, Lance Miller¹⁰, Nicola Napolitano⁷, Maurizio Paolillo⁵, Giuliano Pignata¹¹

¹Department of Astronomy, School of Physics, Peking University, Beijing 100871, China

²The Shanghai Key Lab for Astrophysics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China

³South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500, China

⁴INAF–Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, Padova 35122, Italy

⁵Dipartimento di Fisica "E. Pancini", Università degli Studi Federico II, Napoli 80126, Italy

⁶INFN, Sezione di Napoli, Napoli 80126, Italy

⁷INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, Napoli 80131, Italy

⁸Department of Physics & Astronomy, University of the Western Cape, Robert Sobukwe Road, 7535 Bellville, Cape

⁹INAF - Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy

¹⁰Department of Physics, Oxford University, Keble Road, Oxford OX1 3RH, UK

¹¹Departemento de Ciencias Fisicas, Universidad Andres Bello, Santiago, Chile

Goal

- Build "realistic" simulation for Deep image: deblending, dithering, complex PSF
- Optimize parameters of Lensfit
- Estimate and calibrate shear bias
- Impact of blending galaxies
- Impact of galaxies below detection limit

Simulation toolkit: Galsim (Rowe et al, 2015)

- S/G catalog: from observation (numbers, positions)
- Star (PSF) model: spatially varied PSF from observation (PSFEx)
- Galaxy model: exponential disc + De Vaucouleurs bulge
- Assign scale-length, ellipticity and shear components to every individual galaxy
- Weak lensing signal predicted by power spectrum
- Apply Gaussian noise with observed sigma of individual CCD
- Simulate for each individual exposure of VOICE

- Real S/G position
- Real PSF
- Same noise level

Distributions

Residual of PSF model

Stars

22

21

Two sets of images with orthogonal ellipticity;

$$g = 0.04;$$

(g1, g2) = (±0.0283, ±0.0283); (+0.0153, -0.0370); (-0.0370, +0.0153)

III. VOICE photo-z estimation

METAPHOR

Machine-learning Estimation Tool for Accurate Photometric Redshifts Multi Layer neural network

+Collaboration with: V. Amaro, S. Cavuoti, M. Brescia, C. Vellucci, G. Longo

VOICE: photo-z vs spec-z

-- ~23000 spec-z, up to 1.6

-- BPZ, shear cat & spec-z matching: 1 arcs \rightarrow ~13000 objects

- -- METAPHOR:
- feature selection: optimize of parameter space (photometry, colors, morphology);
- require all bands detection

RELIABLE ESTIMATES

METAPHOR unreliable objects

RELIABLE PLUS UNRELIABLE ESTIMATES

METAPHOR unreliable objects

RELIABLE PLUS UNRELIABLE ESTIMATES

METAPHOR vs BPZ

Estimato r	Reliable (#11,997) zspec<=1.6		unreliable (#286) zspec<=1.6		unreliable (#48) zspec>1.6	
	METAPHOR	BPZ	METAPHOR	BPZ	METAPHOR	BPZ
bias	0.001	0.015	0.030	0.025	0.570	0.275
sigma	0.065	0.154	0.136	0.253	0.118	0.083
NMAD	0.027	0.053	0.075	0.047	0.083	0.189
Skew	-3.7	-9.9	-6.3	-7.1	-1.3	0.5
Kurtosis	44.5	142.1	71.8	55.3	0.6	-1.5
out_nor m>0.15	2.8 %	6.4%	14.3%	5.6%	100%	41.7%

METAPHOR next steps

- Missing bands of photometry \rightarrow losing objects
 - -- down weight of missing bands? Fake value from neighbor galaxies?
- The up limit of spec-z \rightarrow the up limit of photo-z
 - -- high z spectrum \rightarrow training sample
- For current deep survey,
 - -- METAPHOR (z < zspect & reliable) + BPZ (z > zspect & unreliable)
 - -- How to combine them? Systematics?

Summary

- Cosmic shear is measured using VOICE deep survey (CDFS 4 deg²),
 n_{eff}=16.4/arcmin², r_{lim}=26.1, 3x10⁵ galaxies with shear + photo-z;
- The reliability of Lensfit applied on deep image is optimized using VOICE imaging simulations;
- The shear signal has been calibrated using simulations;
- The shear two-point correlations have passed a few nulling systematic checks.
- Next step:
- ✓ cosmological analysis + systematics + intrinsic alignment;
- ✓ cluster searching: color-photoz;
- ✓ lensing mass map;
- ✓ tomographic lensing;
- ✓ peak statistics...

