

Euclid

- Tim Schrabback (AifA Bonn)
- ISSI meeting, Bern, Dec. 18th, 2018

Euclid (Artist impression, ESA)

Euclid: Context & science goals

- ESA M-Klasse mission (M2) from the "Cosmic Vision" programme
- Official mission goal: "Study the geometry of the dark universe":
 - **Constrain the nature of dark energy** via: Gravitational lensing, galaxy clusters, BAOs, Redshift space distortions
 - Distribution of dark matter
 - Constrain the sum of the neutrino masses
 - Constrain initial conditions (non-Gaussianity etc.)

	Modified Gravity	Dark Matter	Initial Conditions	Dark Energy		
Parameter	Y	m√eV	$f_{\scriptscriptstyle NL}$	w _p	Wa	FoM
Euclid Primary	0.010	0.027	5.5	0.015	0.150	430
Euclid All	0.009	0.020	2.0	0.013	0.048	1540
Euclid+Planck	0.007	0.019	2.0	0.007	0.035	4020
Current	0.200	0.580	100	0.100	1.500	~10
Improvement Factor	30	30	50	>10	>50	>300

Euclid: Mission overview

- Should be launched onboard of a Soyuz-2 from Kourou (French-Guiana) under control of ESA
- Halo orbit around the 2nd Sun-Earth Lagrange point (L2)
- Mission duration: 6.25 years
- Total mass: 2,100 kg, Payload: 855 kg
- Length: 4.5m, Diameter: 3.1m
- Telescope: 1.2m Korsch, Silicon-Carbide mirror

Liftoff of Soyuz flight VS01 on 22.10.2011 (Source: ESA)

L2 (Source: ESA)

Euclid

Solar shield + Solar panels

Telescope

Service-Module + Instruments

Euclid (Artist impression, ESA)

Euclid: Hardware

Satellite & Service module

- Main contractor: Thales Alenia Space
- Includes: Engine, Pointing control, sun shield, solar panels, energy supply, communication, thermal control

Payload module

- Main contractor: **Airbus Defence and Space division** (previously called Astrium)
- Includes: Telescope, Optics, Fine Guidance sensors, thermal control of the PLM

Instruments

- Mainly responsible for the construction: Euclid Consortium, to a large fraction funded via national space agencies
- VIS: Optical Camera; NISP: NIR camera & slitless spectrograph

Euclid Artist Impression (Source: ESA)

Euclid: Instruments

Field of view: ~ 0.7 deg x 0.7 deg

Visible (VIS) instrument:

- 6×6 e2v CCDs with 4096×4096 pixels (~570 Mpix)
- Pixel size: 0.1"x0.1"
- Broad optical band pass: 550-900 nm
- PSF FWHM: ~0.16-0.18"
- Primary aim: WL shape measurements down to VIS~24.5 AB mag (10sigma)

Near Infrared Spectrometer and Photometer (NISP):

- 4×4 Teledyne TIS H2RG detectors with 2000×2000 pixels
- Pixel size: 0.3"x0.3"
- NIR Y, J, H photometry to ~24.0 AB mag (5sigma) → Photometric redshifts
- Slitless NIR spectroscopy \rightarrow Spec-zs for BAO

Source: Euclid Consortium

Source: Euclid Consortium

Advantages for WL measurements

- Space-based resolution (~0.2")
- Large field of view (144x HST/ACS): 0.7 deg x 0.7 deg
- Excellent thermal stability (solar aspect angle~90 deg)
 → Very good PSF stability
- Deep NIR photometry \rightarrow accurate photo-zs

Source:: Euclid Redbook

Euclid: Surveys

Wide Survey:

- 15.000 deg², avoiding low ecliptic and low galactic latitudes
- 4 exposures per pointing , VIS+NISP-Spectra in parallel
- Depth: VIS=24.5mag (10σ), NIR: Y,J,H= 24.0mag (5σ)
 - → WL shape measurements for \sim 1.5 x 10⁹ galaxies
- NISP: Spec-zs for about 50 x 10⁶ galaxies (0.7<z<2)
- A lot of legacy science (galaxy evolution, galactic halo stars, etc.)

Deep Survey:

- 40 deg², probably 3 fields including NEP & near SEP
- 40x the exposure time of the Wide Survey \rightarrow 2 mag deeper
- Needed for the WL noise bias calibration
- Further legacy, e.g. targets for JWST

+ further calibration fields (PSF, spec-z+HST calibration fields, etc.)

Optical photometry for Euclid

 South: DES, potentially LSST

• North:

https://oajweb.cefca.es/news/show/135

○ PS : i+z

Needed for

- Photo-zs
- Galaxy+stellar SED estimates for the PSF modelling + correction (e.g.Cypriano et al. 2010; Duncan et al. in prep)

Some of the further ingredients

Spectroscopic calibration:

- Calibrate the true redshift distribution in colour cells (Masters et al. 2015; 2017):
- Large spectroscopic programmes with Keck+VLT

Spectrophotometry of stars:

- Needed for the PSF modelling (Eriksen & Hoekstra 2018; Duncan et al. in prep.)
- Default plan to establish this through GAIA data (limited to relatively bright stars)

Archival HST data:

- Input to image simulations, initial training data for shape measurement methods
- Statistical correction for the impact of color gradients

Statistical correction for the impact of colour gradients

- Need a correction as function of redshift and galaxy properties
- Plan to revise the analysis using more & deeper HST stacks & actual Euclid shape measurement techniques

See also Voigt et al. 2012; Semboloni et al. 2013

Galaxy shape distribution

- Measurement of the intrinsic galaxy ellipticity dispersion based on our initial reduction of CANDELS V606W+F814W images
- For the first time showed that this is clearly magnitude and band-pass dependent

Schrabback, Applegate et al. 2018, MNRAS 474, 2635

Correction for charge transfer inefficieny

- Massey et al. 2010; 2014
- Israel et al. 2015

The Euclid Consortium: >1200 members

- Instrument building + support
- Science working groups
- Ground segment

• Euclid PI and Consortium Lead: Yannick Mellier

More than 120 institutes/institutions...

UiO : Institute of Theoretical Astrophysics University of Oslo

Euclid Science ground segment

OU coordinator

OU deputy coordinator

Some possible synergies for Euclid+CSS-OS

Photometry:

- Stable Near-UV to NIR photometry, well matched in depth
- All at similar resolution → Much lower impact of blends on shapes+photo-z (especially useful to separate blends at different redshifts)

Colour gradient correction:

CSS-OS could provide colour gradient corrections for Euclid for individual galaxies

Euclid PSF modelling:

• Could the CSS-OS slitless optical spectra provide well-calibrated spectrophotometry for stars to fainter magnitudes than GAIA?

Some further Euclid-related technical WL papers

- Euclid WL requirement flow-down: Cropper et al. 2012; Massey et al. 2013
- Impact of faint sources: Hoekstra 2017; Martinet et al. (in prep.)
- Machine learning shape estimation: Tewes et al. 2018
- Bayesian Fourier Domain method: Bernstein et al. 2016
- Empricial PSF modelling: Schmitz et al. (in prep.)