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Weak lensing in Euclid: organisation
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ESS:  Survey planning 

SCS:  Instrument commanding 

QLA:  Quick look analysis 

HMS:  Scientific health monitoring 

LE1:  Level 1 processing 

VIS:  VIS image processing 

NIR:  NISP photometry image processing 

SIR:  NISP spectroscopy image processing 

EXT:  External data ingestion 

MER:  Euclid and External data merging 

SPE:  Spectroscopic redshift and spectral properties  

SHE:  Shear and weak lensing measurements 

PHZ:  Photometric redshift measurements 

LE3:  Level3 scientific processing  

SIM:  Image simulations  
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Shape measurement — instrumental effects: ghosts
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Reflection in the instrument (e.g. back-
reflection from dichroic) of bright stars, needs 
to be identified and masked.


Left: simulated ghost image, from Sylvain 
Mottet (IAP), Real ghosts are much fainter, have  
complex structure.


Create multiplicative shear bias.


For Euclid: Within if ghosts are masked with 
m>16 and flux < 5x10-6 of PSF flux

VIS simulation
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Filamentary, diffuse thermal emission and  scattered 
light from dust grains.

• spatially varying background

• increase of noise


Multiplicative bias. 
Tested with varying star density (proxy for cirrus), 
within requirements.

Martin Kilbinger, CEAGround observations for Euclid / 48

The Euclid Wide Survey
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Martin Kilbinger, CEAGround observations for Euclid / 48

The Euclid Wide Survey
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Shape measurement — galactic cirrus
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End-to-end simulations
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Catalogue-level bypass simulations. Modeling systematics on galaxy moments. 
Compare reference to perturbed scenarios.


Extention of Cropper et al. (2013).

Paykari et al. (2019), arXiv:1910.105211910.10521
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Fig. 1. The overall structure of the concept as described in the main text. The quadrupole moments Q are initiated with intrinsic
moments, and then modified by incorporating the shear, PSF and detector e↵ects. Survey characteristics such as dither pattern,
slew pattern and observation time are entered in the initial catalogue. Then a measurement process M converts the observed
moments to polarisations. The estimation of the galaxy polarisation is then made (as described in Eqs. 10 and 11). This is done
per object. Then a power spectrum for the reference and the perturbed scenarios is computed. For the perturbed line the PSF and
detector moments are drawn from distributions that represent the measurement uncertainty as described in the text. This process
is repeated for 150 random realisations for the set of galaxies that are in the input catalogue. Finally the residual power spectrum
is computed per realisation, and the statistics of each of the realisations is passed onto the Fisher matrix, from which uncertainties
and biases of dark energy parameters are calculated. White circles indicate moment space, where modifications are performed on
an object-by-object basis. Gray circles indicate ensemble average in the harmonic space. Diamonds show cosmological parameter
space.

Reference: In this scenario the systematic e↵ects that
have been included in the pipeline are perfectly known,
so that in the final measurement process their impact
can be fully accounted for and reversed. In this case the
distribution of parameter values that are used to undo
the biases are all delta-functions centred on the reference
values, i.e. there is no uncertainty in the system.

Perturbed: In this scenario systematic e↵ects that have
been included in the pipeline are not known perfectly.
As a consequence the corrections result in biased mea-
surements. In this case relevant quantities that are used
to undo the systematic e↵ects are drawn from proba-
bility distributions that represent the expected level of
uncertainty.

We can then define the elements in a pipeline for each sce-
nario. The di↵erence between the observed reference po-
larisation for a given object, and the observed perturbed
polarisation is a realisation of expected polarisation uncer-
tainty caused by a semi-realistic treatment of systematic
e↵ects in a data reduction scenario. We explain this further
using the specific example with which we are concerned in
this paper: the assessment of cosmic shear performance.

In our case, the output of the pipeline process, Eq. (5),
leads to a set of measured polarisations and sizes, that rep-
resent the true response of the system i.e. an ellipticity cata-
logue that includes the cumulative e↵ects of the individual
processes as they would have occurred in the real instru-
ment and survey. As detailed in M13, we can compute how
PSF and detector e↵ects change the polarisation and size

of a galaxy2:

�obs,i = �ini,i + �shr,i
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where �obs,i is the observed polarisation, �ini,i is the intrin-
sic/unlensed polarisation, �shr,i is the induced polarisation
caused by the applied shear �, �PSF,i is the polarisation of
the PSF, and �det,i is the detector-induced polarisation; the
same subscripts apply to the R

2 terms (R =
p

Q11 + Q22, see
Eq. 3). The relation between the applied shear, �, and the
corresponding change in polarisation, �shr, is quantified by
the shear polarisability P� so that

�shr = P�� (7)

(Kaiser et al. 1995). The shear polarisability depends on
the galaxy morphology, but it can be approximated by the
identity tensor times a real scalar P� = (2� h�2

inii)I (where I
is the identity matrix) in the case of unweighted moments
(Rhodes et al. 2000). We simplify this equation, in terms of
notation, to

�obs,i = �gal,i + fi (�PSF,i � �gal,i) + �det,i , (8)

where �gal,i = �ini,i + �shr,i (the polarisation that would be
observed given no PSF or detector e↵ects), and

fi =
R

2
PSF,i

R
2
obs,i

. (9)

These quantities are constructed from the corresponding
quadrupole moments in Eq. (5).

2 We note that this formalism does not capture non-linear ef-
fects whereby the change in moments caused by PSF or detector
e↵ects may depend on a galaxy’s intrinsic shape and brightness.
We leave a relaxation of this linearity assumption to future work.
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quadrupole moments in Eq. (5).

2 We note that this formalism does not capture non-linear ef-
fects whereby the change in moments caused by PSF or detector
e↵ects may depend on a galaxy’s intrinsic shape and brightness.
We leave a relaxation of this linearity assumption to future work.
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2.4. Comparison to previous work

To compare to previous work, in M13 generic non-
parametric realisations of �C(`) were generated and used to
place conservative limits on a multiplicative and additive fit
to such realisations �C(`) =MC

R(`) +A, where M and A
are constant so that biases in the dark energy parameters,
using Fisher matrix predictions, were below an acceptable
value. This represents a worst case, because the residual
power spectra are assumed to be proportional to the cosmo-
logical signal (apart from the additive o↵set). In Kitching
et al. (2016), simple models for systematic e↵ects were used
to create simplified but realistic �C(`) values. In Taylor &
Kitching (2018), the constant multiplicative and additive
formulation was generalised to include the propagation of
real-space multiplicative e↵ects into power spectra as a con-
volution. In Kitching et al. (2019) the full expression for
the analytic propagation of constant and scale-dependent
multiplicative and additive biases is derived. This reveals
that the analytic propagation of biases into cosmic shear
power spectra involves second- and third-order terms that
result in an intractable calculation for high-` modes. Our
approach, therefore, di↵ers from the earlier works in that it
captures any general scale and redshift dependence on an
object-by-object level, and, very importantly, creates �C(`)
values that correctly incorporate the uncertainty in the sys-
tem. This procedure enables a complete evaluation of the
performance, that di↵ers from a true end-to-end evaluation
only in that we do not use the images and image-analysis
algorithms that will be used to analyse the real data.

These catalogue-level simulations have the major advan-
tage that they are much faster than full end-to-end image
simulations, allowing for realisations of systematic e↵ects to
be computed so that a full probability distribution of the
e↵ect on the cosmological performance of the experiment
can be determined. This allows us to explore various survey
strategies and other trade-o↵ considerations, whilst captur-
ing most of the complexities of the full image-based analy-
sis. The catalogue-level simulations include survey-specific
features, such as the detector layout, survey tiling and PSF
pattern (see §3.2). It also allows for foreground sky models
to be included to account for variations in Galactic extinc-
tion, star density and Zodiacal background. Calibration un-
certainties can be incorporated by adjusting the probability
density distributions of the relevant parameters accordingly.

2.5. Propagation to cosmological parameter estimation

To assess the impact of the power spectrum residuals on
cosmological parameter inference, we use the Fisher ma-
trix, and bias formalism (Kitching et al. 2008; Amara &
Réfrégier 2008; Taylor & Kitching 2018). Here we provide
a short summary of the Fisher matrix formalism used in
those papers.

In general, a change in the power spectrum caused by
a residual systematic e↵ect can influence the size of the
confidence region about any parameter as well as the maxi-
mum likelihood location. In this paper we only consider the
change in the maximum likelihood position.

The expected confidence regions for the cosmological
parameters can be expressed using the Fisher matrix, which

is given by

F↵� =
X

jk,`

F jk(`)
@C jk(`)
@↵

@C jk(`)
@�

, (18)

where m, n are redshift bin pairs and the Greek letters de-
note cosmological parameter pairs. Fmn(`) is given by (Hu
1999)

F jk(`) =
fsky (2` + 1)

2[C jk(`) + Njk(`)]2 , (19)

where fsky is the fraction of the sky observed and C jk the
cross power spectrum between redshift slices j and k. The
noise power spectrum is defined as Njk(`) = �2

�ini
� jk/Ng, j,

where Ng, j is the total number of galaxies in bin j for full
sky observation and � jk is a Kronecker delta. The intrin-
sic shape noise is quantified by ��ini = 0.3, the dispersion
per ellipticity component. The signal power spectrum in
the denominator is C

R
jk

(`) in the reference case and C
P
jk

(`)
for each realisation n of the perturbed case. This can be
used to compute the expected marginalised, cosmological
parameter uncertainties �↵ = [(F�1)↵↵]1/2.

The changes in the maximum likelihood locations of the
cosmology parameters (i.e. biases) caused by a change in the
power spectrum can also be computed for parameter ↵ as

b↵ = �
X

�

(F�1)↵� B� , (20)

where the vector B for each parameter � is given by

B� =
X

jk,`

F jk(`) �C jk(`)
@C jk(`)
@�

. (21)

We note that the biases computed here are the one-
parameter, marginalised biases and that this may result
in optimistic assessments for multi-dimensional parameter
constraints. For a multi-dimensional constraint may be bi-
ased by more than 1-sigma along a particular degenerate
direction, and yet the marginalised biases may both be less
than 1-sigma.

The fiducial cosmology we have used in the Fisher
and bias calculations is a flat w0waCDM cosmology with
a redshift-dependent dark energy equation of state, de-
fined by the set of parameters ⌦m, ⌦b, �8, w0, wa, h, ns;
these are the matter density parameter; baryon density pa-
rameter; the amplitude of matter fluctuations on 8h

�1Mpc
scales – a normalisation of the power spectrum of matter
perturbations; the dark energy equation of state parame-
terised by w(z) = w0 + waz/(1 + z); the Hubble parameter
H0 = 100h km s�1 Mpc�1; and the scalar spectral index of
initial matter perturbations, respectively. The fiducial val-
ues are taken from the Planck maximum likelihood values
(Planck Collaboration et al. 2014). The uncertainties and
biases we quote on individual dark energy parameters are
marginalised over all other parameters in this set. The sur-
vey characteristics we use are based on a Euclid -like wide
survey (Laureijs et al. 2011) that has an area of 15 000
deg2, a median redshift of zmed = 0.9, and a galaxy num-
ber density of 30 arcmin�2. Throughout we use an ` range
10  `  4000. We use the weak lensing only Fisher matrix
from the Euclid Inter Science Taskforce (IST) forecasting
paper (Euclid Collaboration et al. 2019a), where further
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a redshift-dependent dark energy equation of state, de-
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Réfrégier 2008; Taylor & Kitching 2018). Here we provide
a short summary of the Fisher matrix formalism used in
those papers.

In general, a change in the power spectrum caused by
a residual systematic e↵ect can influence the size of the
confidence region about any parameter as well as the maxi-
mum likelihood location. In this paper we only consider the
change in the maximum likelihood position.

The expected confidence regions for the cosmological
parameters can be expressed using the Fisher matrix, which

is given by

F↵� =
X

jk,`

F jk(`)
@C jk(`)
@↵

@C jk(`)
@�

, (18)

where m, n are redshift bin pairs and the Greek letters de-
note cosmological parameter pairs. Fmn(`) is given by (Hu
1999)

F jk(`) =
fsky (2` + 1)

2[C jk(`) + Njk(`)]2 , (19)

where fsky is the fraction of the sky observed and C jk the
cross power spectrum between redshift slices j and k. The
noise power spectrum is defined as Njk(`) = �2

�ini
� jk/Ng, j,

where Ng, j is the total number of galaxies in bin j for full
sky observation and � jk is a Kronecker delta. The intrin-
sic shape noise is quantified by ��ini = 0.3, the dispersion
per ellipticity component. The signal power spectrum in
the denominator is C

R
jk

(`) in the reference case and C
P
jk

(`)
for each realisation n of the perturbed case. This can be
used to compute the expected marginalised, cosmological
parameter uncertainties �↵ = [(F�1)↵↵]1/2.

The changes in the maximum likelihood locations of the
cosmology parameters (i.e. biases) caused by a change in the
power spectrum can also be computed for parameter ↵ as

b↵ = �
X

�

(F�1)↵� B� , (20)

where the vector B for each parameter � is given by

B� =
X

jk,`

F jk(`) �C jk(`)
@C jk(`)
@�

. (21)

We note that the biases computed here are the one-
parameter, marginalised biases and that this may result
in optimistic assessments for multi-dimensional parameter
constraints. For a multi-dimensional constraint may be bi-
ased by more than 1-sigma along a particular degenerate
direction, and yet the marginalised biases may both be less
than 1-sigma.

The fiducial cosmology we have used in the Fisher
and bias calculations is a flat w0waCDM cosmology with
a redshift-dependent dark energy equation of state, de-
fined by the set of parameters ⌦m, ⌦b, �8, w0, wa, h, ns;
these are the matter density parameter; baryon density pa-
rameter; the amplitude of matter fluctuations on 8h

�1Mpc
scales – a normalisation of the power spectrum of matter
perturbations; the dark energy equation of state parame-
terised by w(z) = w0 + waz/(1 + z); the Hubble parameter
H0 = 100h km s�1 Mpc�1; and the scalar spectral index of
initial matter perturbations, respectively. The fiducial val-
ues are taken from the Planck maximum likelihood values
(Planck Collaboration et al. 2014). The uncertainties and
biases we quote on individual dark energy parameters are
marginalised over all other parameters in this set. The sur-
vey characteristics we use are based on a Euclid -like wide
survey (Laureijs et al. 2011) that has an area of 15 000
deg2, a median redshift of zmed = 0.9, and a galaxy num-
ber density of 30 arcmin�2. Throughout we use an ` range
10  `  4000. We use the weak lensing only Fisher matrix
from the Euclid Inter Science Taskforce (IST) forecasting
paper (Euclid Collaboration et al. 2019a), where further
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2.4. Comparison to previous work

To compare to previous work, in M13 generic non-
parametric realisations of �C(`) were generated and used to
place conservative limits on a multiplicative and additive fit
to such realisations �C(`) =MC

R(`) +A, where M and A
are constant so that biases in the dark energy parameters,
using Fisher matrix predictions, were below an acceptable
value. This represents a worst case, because the residual
power spectra are assumed to be proportional to the cosmo-
logical signal (apart from the additive o↵set). In Kitching
et al. (2016), simple models for systematic e↵ects were used
to create simplified but realistic �C(`) values. In Taylor &
Kitching (2018), the constant multiplicative and additive
formulation was generalised to include the propagation of
real-space multiplicative e↵ects into power spectra as a con-
volution. In Kitching et al. (2019) the full expression for
the analytic propagation of constant and scale-dependent
multiplicative and additive biases is derived. This reveals
that the analytic propagation of biases into cosmic shear
power spectra involves second- and third-order terms that
result in an intractable calculation for high-` modes. Our
approach, therefore, di↵ers from the earlier works in that it
captures any general scale and redshift dependence on an
object-by-object level, and, very importantly, creates �C(`)
values that correctly incorporate the uncertainty in the sys-
tem. This procedure enables a complete evaluation of the
performance, that di↵ers from a true end-to-end evaluation
only in that we do not use the images and image-analysis
algorithms that will be used to analyse the real data.

These catalogue-level simulations have the major advan-
tage that they are much faster than full end-to-end image
simulations, allowing for realisations of systematic e↵ects to
be computed so that a full probability distribution of the
e↵ect on the cosmological performance of the experiment
can be determined. This allows us to explore various survey
strategies and other trade-o↵ considerations, whilst captur-
ing most of the complexities of the full image-based analy-
sis. The catalogue-level simulations include survey-specific
features, such as the detector layout, survey tiling and PSF
pattern (see §3.2). It also allows for foreground sky models
to be included to account for variations in Galactic extinc-
tion, star density and Zodiacal background. Calibration un-
certainties can be incorporated by adjusting the probability
density distributions of the relevant parameters accordingly.

2.5. Propagation to cosmological parameter estimation

To assess the impact of the power spectrum residuals on
cosmological parameter inference, we use the Fisher ma-
trix, and bias formalism (Kitching et al. 2008; Amara &
Réfrégier 2008; Taylor & Kitching 2018). Here we provide
a short summary of the Fisher matrix formalism used in
those papers.

In general, a change in the power spectrum caused by
a residual systematic e↵ect can influence the size of the
confidence region about any parameter as well as the maxi-
mum likelihood location. In this paper we only consider the
change in the maximum likelihood position.

The expected confidence regions for the cosmological
parameters can be expressed using the Fisher matrix, which

is given by

F↵� =
X

jk,`

F jk(`)
@C jk(`)
@↵

@C jk(`)
@�

, (18)

where m, n are redshift bin pairs and the Greek letters de-
note cosmological parameter pairs. Fmn(`) is given by (Hu
1999)

F jk(`) =
fsky (2` + 1)

2[C jk(`) + Njk(`)]2 , (19)

where fsky is the fraction of the sky observed and C jk the
cross power spectrum between redshift slices j and k. The
noise power spectrum is defined as Njk(`) = �2

�ini
� jk/Ng, j,

where Ng, j is the total number of galaxies in bin j for full
sky observation and � jk is a Kronecker delta. The intrin-
sic shape noise is quantified by ��ini = 0.3, the dispersion
per ellipticity component. The signal power spectrum in
the denominator is C

R
jk

(`) in the reference case and C
P
jk

(`)
for each realisation n of the perturbed case. This can be
used to compute the expected marginalised, cosmological
parameter uncertainties �↵ = [(F�1)↵↵]1/2.

The changes in the maximum likelihood locations of the
cosmology parameters (i.e. biases) caused by a change in the
power spectrum can also be computed for parameter ↵ as

b↵ = �
X

�

(F�1)↵� B� , (20)

where the vector B for each parameter � is given by

B� =
X

jk,`

F jk(`) �C jk(`)
@C jk(`)
@�

. (21)

We note that the biases computed here are the one-
parameter, marginalised biases and that this may result
in optimistic assessments for multi-dimensional parameter
constraints. For a multi-dimensional constraint may be bi-
ased by more than 1-sigma along a particular degenerate
direction, and yet the marginalised biases may both be less
than 1-sigma.

The fiducial cosmology we have used in the Fisher
and bias calculations is a flat w0waCDM cosmology with
a redshift-dependent dark energy equation of state, de-
fined by the set of parameters ⌦m, ⌦b, �8, w0, wa, h, ns;
these are the matter density parameter; baryon density pa-
rameter; the amplitude of matter fluctuations on 8h

�1Mpc
scales – a normalisation of the power spectrum of matter
perturbations; the dark energy equation of state parame-
terised by w(z) = w0 + waz/(1 + z); the Hubble parameter
H0 = 100h km s�1 Mpc�1; and the scalar spectral index of
initial matter perturbations, respectively. The fiducial val-
ues are taken from the Planck maximum likelihood values
(Planck Collaboration et al. 2014). The uncertainties and
biases we quote on individual dark energy parameters are
marginalised over all other parameters in this set. The sur-
vey characteristics we use are based on a Euclid -like wide
survey (Laureijs et al. 2011) that has an area of 15 000
deg2, a median redshift of zmed = 0.9, and a galaxy num-
ber density of 30 arcmin�2. Throughout we use an ` range
10  `  4000. We use the weak lensing only Fisher matrix
from the Euclid Inter Science Taskforce (IST) forecasting
paper (Euclid Collaboration et al. 2019a), where further
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available catalogue of best-fit Sérsic model parameters for
COSMOS galaxies as our training sample (Gri�th et al.
2012). The catalogue consists of structural parameters such
as Sérsic indices, half-light radii, and polarisation prior to
the PSF convolution (this is done in that paper by mod-
elling the PSF at each galaxy position), in addition to mag-
nitudes and photometric redshifts for about 470 000 galax-
ies.

We model the 6-dimensional multivariate distribution
of magnitude, redshift, polarisation, half-light radius and
Sérsic index using a mixture of 6D Gaussians. A gener-
ative model such as this one has the advantage that we
can generate arbitrarily large mock catalogues that are sta-
tistically similar to the catalogue we begin with, without
having to repeat the values in the original catalogue. We
find that with 100 Gaussian components, we are able to
recover the 1-dimensional and 2-dimensional marginal dis-
tributions very well. We obtain a mock catalogue, sampled
from the Gaussian mixture model, with three times as many
entries as the MICE catalogues have. We remove from the
mock catalogue any unrealistic values (such as polarisation
above 1 or redshift less than 0), caused by over-extension of
the model into unrealistic regimes. We then find the clos-
est neighbour for each galaxy in the MICE catalogues in
magnitude-redshift space using a kd-tree and assign the
corresponding polarisations. The orientations of the galax-
ies are random and uncorrelated with any other parameter,
thus any coherent, intrinsic alignment among the galaxies
is ignored. The model is hence too simplistic to capture the
environmental dependencies on shapes and sizes.

Using the knowledge of circularised half-light radii along
with their Sérsic indices, the R

2 = Q11 +Q22 values assigned
to the galaxies are second radial moments computed an-
alytically for their corresponding Sérsic model. Addition-
ally, with the knowledge of polarisation and position an-
gle, which are in turn obtained from the best-fit Sérsic
model, we obtain all three unweighted quadrupole moments
(Q11,Q22,Q12).

3.2. Survey

A key feature of our approach is that survey characteris-
tics are readily incorporated. Having assigned the galaxy
properties, we simulate a 10⇥ 10 deg2 survey with a simple
scanning strategy. We tile the VIS focal plane following the
current design, see Sect. 3.3.2.

To fill the gaps between its CCDs, Euclid will observe
in a sequence of four overlapping exposures that are o↵-
set (or ‘dithered’) with respect to each other; a re-pointing
between the sets of overlapping exposures, i.e. dither, is
called a ‘slew’. The nominal pattern of o↵sets for exposures
i = 1, . . . , 4 creates an ‘S’-shaped pattern (see Markovič
et al. 2017, for more details), where the angular shifts
with respect to the previous field positions are: (�x1,�y1) =
(50, 100); (�x2,�y2) = (0, 100); (�x3,�y3) = (50, 100) in arc-
sec. The code uses Mangle (Swanson et al. 2008) to create
the corresponding weight map and tiles this map across the
survey patch (the code is flexible enough to incorporate any
dither pattern). The weight map for a pointing with four
dithers is shown in Fig. 2.

The propagation of the PSF and CTI stages of the
pipeline, and the inverse relations described in Eqs. (10)
and (11), are performed on a per exposure basis. The re-
sulting polarisations are then averaged over all of the expo-

Fig. 2. Coverage of a single slew by VIS. The de-
fault dither pattern in Euclid is ‘S’-shaped (shown as the
black lines in the lower left corner) with displacements
(�x,�y)=(0,0; 50,100; 0,100; 50,100)00. The weights show the
number of times an area has been observed. In each field of
view there are 6⇥ 6 non-square CCDs, with asymmetric spacing
between them in the vertical and horizaontal driections, which
results in a non-square field of view.

sures that each galaxy receives, subject to the dither pat-
tern (some areas of sky have fewer than four exposures, and
this is captured by the dither pattern described here).

We also simulate a simple scanning strategy by order-
ing the tiling of the survey area in row (right ascension)
order followed by column (declination) order, i.e. a rectilin-
ear scanning strategy (see Kitching et al. 2016). In future
implementations this will be generalised to match the full
Euclid reference survey scanning strategy (Scaramella et al.,
in prep).

In this first implementation and presentation of the code
we do not include uncertainties in the spatial variation
of foreground sources of emission or extinction. However,
given the pipeline infrastructure these can be readily in-
cluded and will be investigated further in future studies.

3.3. Instrumental e↵ects

We limit our analysis to the two main sources of instrumen-
tal bias, namely uncertainties in the PSF caused by focus
variations and the impact of an imperfect correction for
CTI.

3.3.1. Point Spread Function (PSF)

Correcting the observed shapes to account for their convo-
lution by the PSF is an important step in any weak lensing
measurement pipeline, and much e↵ort has been spent on
the development of algorithms to achieve this. A critical in-
gredient for the correction is an accurate model of the PSF
itself (Hoekstra 2004). Current cosmic shear studies take
a purely empirical approach where the spatial variation of
the PSF is captured by simple interpolation functions that
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Fig. 5. Left panel: ratio of the bias in w0 and the 1� uncertainty in this parameter for PSF-only (cyan), CTI-only with resetting
on (blue) and both PSF and CTI with resetting on (red) scenarios. Right panel: ratio of the bias in wa and the 1� uncertainty in
this parameter. Although the distributions are wide in some scenarios, we find that they are well within limits set in C13 – also
see Table 1.

Statistics 90% Confidence Interval
E↵ect(s) (b/�)w0 (b/�)wa

(b/�)w0 (b/�)wa

PSF 0.006 ± 0.002(0.029) �0.018 ± 0.005(0.064) (�0.024, 0.033) (�0.042, 0.015)
CTI (Reset O↵) �0.045 ± 0.030(0.370) 0.045 ± 0.027(0.330) (�0.328, 0.077) (�0.054, 0.281)
CTI (Reset On) �0.049 ± 0.007(0.083) �0.038 ± 0.006(0.068) (�0.078, 0.152) (�0.121, 0.067)
PSF & CTI (Reset On) 0.056 ± 0.006(0.078) �0.050 ± 0.005(0.066) (�0.046, 0.144) (�0.124, 0.032)

Table 1. Summary of bias changes for the di↵erent case studies. The column labelled ‘Statistics’ shows the mean and 68% error
on the mean for our 150 realisations. The numbers in brackets are the standard deviation of the distributions. The column labelled
‘90% Confidence Interval’ shows the 90% confidence regions in our distributions.

blending e↵ects both of which will be included in future
studies.

These e↵ects were propagated through to residual cos-
mic shear power spectra and cosmological parameters to
estimate the expected biases in the parameters w0 and wa.
Compared to requirements based on a more restricted flow-
down approach by C13 we find that the biases on the dark
energy parameters from our more realistic performance es-
timates are well within the requirements. Even for the com-
bined scenario of CTI and PSF we find the biases on dark
energy parameters are well within the required tolerances.

This paper presents the first step towards a more com-
prehensive study of the performance of a Euclid cosmic
shear survey. The same approach, however, can also be
readily applied to other cosmic shear surveys. In future
work we will introduce more complexity in the PSF and
detector systematic e↵ects, so that the resulting redshift
dependencies of these e↵ects can be assessed. As alluded to
earlier, CTI is dependent on flux and morphology, which
implies it will change with redshift. Other systematic ef-
fects, such as shape measurement uncertainties, will also
be implemented in the pipeline. These improvements will
enable us to examine the impact of systematic e↵ects on an
increasingly realistic tomographic analysis.
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Appendix A: Details of PSF modelling

In this section, we describe the propagation of uncertainties
which result from inaccuracies in the PSF model, using the
broadband parametric phase retrieval method from Dun-
can et al. (in prep). In this method, the PSF variation is
modelled in the wavefront domain. The corresponding real-
space optical PSF is obtained as the modulus squared of
the Fourier transform of the wavefront at the exit pupil,
including the e↵ect of telescope distortion, integrated over
the bandpass. In the present application, a simple Gaussian
model for the distribution of telescope guiding accuracy is
used, linear detector e↵ects (including pixelisation and lin-
ear charge di↵usion) are included, and it is assumed that
the detectors lie precisely in the focal plane. More realistic
guiding and detector e↵ects will be included in the future.

The wavefront at the exit pupil of the telescope describes
the coherent perturbations in the optical path di↵erences of
infalling photons, caused by the design and alignment of the
telescope optical elements. The wavefront can be split into
two parts: an amplitude component, which describes where
the light is vignetted by structures in the telescope, and a
phase component, which describes the variation of the opti-
cal path di↵erences. Both change with position in the focal
plane. To capture the amplitude variation, we use a geo-
metric model that describes the projection of intervening
structures in the telescope (i.e. the secondary mirror M2
and its struts) at the focal plane. To model the phase vari-
ation, we use a suite of simulated wavefronts obtained with
the optical design program ZEMAX6, configured to the spec-
ifications of Euclid. Each phase map was fitted by a sum of
Zernike polynomials, and the variation of the corresponding
Zernike coe�cients with focal plane position was captured
by a set of polynomials. Several optical elements in the tele-
scope design were displaced or deformed by turn, and the
corresponding e↵ects on the phase maps were captured by
so-called telescope modes. As a result, the wavefront can
be predicted for any telescope set-up, with a realistic focal
plane variation. Given a model wavefront, the real-space
PSF is then computed for a range of densely sampled wave-
lengths. The final PSF is obtained by integrating over the
spectral telescope response, weighted by the spectral energy
distribution (SED) of the source, with additional convolu-
tion e↵ects of guiding and CCD pixel response included.
In this application of the model, detector o↵set and high
frequency contributions such as those arising from surface
errors are not included.

As the Euclid VIS PSF model is jointly fitted to stars
in the entire field of view, PSF errors are correlated across
that field. In order to capture this, we investigate the e↵ect
of varying one of the principal model parameters, the wave-
front error associated with defocus of the telescope. Higher-
order wavefront errors are also expected to contribute to
the PSF uncertainty, but the PSF variations of this mode
should be a realistic representation of the actual correlated
PSF errors (in the absence of possible e↵ects at cryogenic
temperatures that could cause deformation in the y-axis
displacement of M2 rather than the z-axis). We model the
e↵ect of a shift in the focus position resulting in an opti-
cal defocus for a given source SED. We choose the source
SED to be the template spiral Sbc galaxy of Coleman et al.
(1980), with redshift of 1.
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Fig. A.1. The change in the quadrupole moments in units of
Euclid pixels squared, for focus position shifts of �z = �1.35 µm
(left columns) and �z = 1.35 µm (right columns), for Q11 (top
panels), Q12 (middle panels) and Q22 (bottom panels) as a func-
tion of field-of-view position (in degrees).

Fig. A.2. Stick plot describing the variation in polarisation
across the field-of-view (in degrees) for the nominal focus (z = 0).
All values shown here are taken from the training data, not the
fit.

We assume a nominal o↵set focus position that is
drawn at random from a normal distribution whose vari-
ance matches the expected �z ' 0.5 µm uncertainty in this
model parameter, that can be obtained from fitting the tele-
scope model to the stars that appear in each survey field.
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Appendix A: Details of PSF modelling

In this section, we describe the propagation of uncertainties
which result from inaccuracies in the PSF model, using the
broadband parametric phase retrieval method from Dun-
can et al. (in prep). In this method, the PSF variation is
modelled in the wavefront domain. The corresponding real-
space optical PSF is obtained as the modulus squared of
the Fourier transform of the wavefront at the exit pupil,
including the e↵ect of telescope distortion, integrated over
the bandpass. In the present application, a simple Gaussian
model for the distribution of telescope guiding accuracy is
used, linear detector e↵ects (including pixelisation and lin-
ear charge di↵usion) are included, and it is assumed that
the detectors lie precisely in the focal plane. More realistic
guiding and detector e↵ects will be included in the future.

The wavefront at the exit pupil of the telescope describes
the coherent perturbations in the optical path di↵erences of
infalling photons, caused by the design and alignment of the
telescope optical elements. The wavefront can be split into
two parts: an amplitude component, which describes where
the light is vignetted by structures in the telescope, and a
phase component, which describes the variation of the opti-
cal path di↵erences. Both change with position in the focal
plane. To capture the amplitude variation, we use a geo-
metric model that describes the projection of intervening
structures in the telescope (i.e. the secondary mirror M2
and its struts) at the focal plane. To model the phase vari-
ation, we use a suite of simulated wavefronts obtained with
the optical design program ZEMAX6, configured to the spec-
ifications of Euclid. Each phase map was fitted by a sum of
Zernike polynomials, and the variation of the corresponding
Zernike coe�cients with focal plane position was captured
by a set of polynomials. Several optical elements in the tele-
scope design were displaced or deformed by turn, and the
corresponding e↵ects on the phase maps were captured by
so-called telescope modes. As a result, the wavefront can
be predicted for any telescope set-up, with a realistic focal
plane variation. Given a model wavefront, the real-space
PSF is then computed for a range of densely sampled wave-
lengths. The final PSF is obtained by integrating over the
spectral telescope response, weighted by the spectral energy
distribution (SED) of the source, with additional convolu-
tion e↵ects of guiding and CCD pixel response included.
In this application of the model, detector o↵set and high
frequency contributions such as those arising from surface
errors are not included.

As the Euclid VIS PSF model is jointly fitted to stars
in the entire field of view, PSF errors are correlated across
that field. In order to capture this, we investigate the e↵ect
of varying one of the principal model parameters, the wave-
front error associated with defocus of the telescope. Higher-
order wavefront errors are also expected to contribute to
the PSF uncertainty, but the PSF variations of this mode
should be a realistic representation of the actual correlated
PSF errors (in the absence of possible e↵ects at cryogenic
temperatures that could cause deformation in the y-axis
displacement of M2 rather than the z-axis). We model the
e↵ect of a shift in the focus position resulting in an opti-
cal defocus for a given source SED. We choose the source
SED to be the template spiral Sbc galaxy of Coleman et al.
(1980), with redshift of 1.
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Fig. A.2. Stick plot describing the variation in polarisation
across the field-of-view (in degrees) for the nominal focus (z = 0).
All values shown here are taken from the training data, not the
fit.

We assume a nominal o↵set focus position that is
drawn at random from a normal distribution whose vari-
ance matches the expected �z ' 0.5 µm uncertainty in this
model parameter, that can be obtained from fitting the tele-
scope model to the stars that appear in each survey field.
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diation dose) at each point in time. Since all our galaxies
have the same flux, we introduce model parameter errors in
traps’ assumed density �⇢i and release time �⌧i. In addition
to errors from back-clocking the RON, as in the reference
case, Israel et al. (2015) found that model parameter errors
introduce a bias

�⌘per =
NTr

N
max
Tr

X

i

⇢i f
res(⌧i) (B.2)

+
NTr

N
max
Tr

X

i

h
⇢i f

deg(⌧i) � (⇢i + �⇢i) f
deg(⌧i + �⌧i)

i
, (B.3)

where the function f
deg provides the change (‘degradation’)

in shape parameters because of CTI, without mitigation, as
a function of the model parameters. Its functional form is
shown in Eq. (14) of Israel et al. (2015) and it uses coe�-
cients listed in rows 3 and 4 of Table 1 in Israel et al. (2015).
The di↵erence of this function evaluated at (⇢+�⇢, ⌧+�⌧)
from the same function at (⇢,⌧) in Eq. (B.3) is a reflection
of how the iterative mitigation of CTI is, at its root, equiv-
alent to an additional degradation of the images, similar
to that caused by CTI, but applied in the opposite sense
(hence the name back-clocking). We note that Eq. (B.3) is
equal to Eq. (17) in Israel et al. (2015). Half-way through
the mission, both terms account for roughly equal levels of
residual.

To assign values to the biases in model parameters, we
adopt a constant bias �⌧i = 1% in the release time parame-
ters, and �⇢i drawn from a Gaussian distribution with zero
mean (average bias is zero in this parameter) and standard
deviation of 1% (over the true value of ⇢ at each time).
They are both conservative, in the sense that they could be
derived from Euclid calibration each day (Nightingale et al.
in prep.), but ⌧i are likely to be constant for the entire mis-
sion and ⇢i smoothly increasing, so errors could be reduced
by iterative calibration. They therefore do not necessarily
reflect the ultimately achievable uncertainty in the model
parameters, but are useful as reference values.

Fig. B.1 shows the pattern of induced biases due to im-
perfect CTI mitigation for a random selection of galaxies in
one FoV.

Fig. B.1. A random selection of galaxies are shown representing
the pattern of the induced polarisations owing to imperfect CTI
mitigation in one field of view. The biases are larger with dis-
tance from the readout nodes on either side of the CCDs. Note
that we have considered biases only in the serial direction.

Article number, page 18 of 18

VIS field with dithers PSF moments

PSF variation across FoV CTI effect on galaxies
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Shear calibration  - simulationsShear calibration
MK, Arnau Pujol, Axel Guinot, Jérôme Bobin, Florent Sureau

Shear calibration from simulations.

Pujol, Kilbinger, Sureau & Bobin (2019)

Deep Neural Network Regression.

Supervised training on 32 input 
properties (of galaxies, PSF, noise, 
…) & true shear bias

4 hidden layers à 30 units, output 
are shear bias mi, ci.

Pujol et al. in prep.

Shear calibration
MK, Arnau Pujol, Axel Guinot, Jérôme Bobin, Florent Sureau

Shear calibration from simulations.

Pujol, Kilbinger, Sureau & Bobin (2019)

Deep Neural Network Regression.

Supervised training on 32 input 
properties (of galaxies, PSF, noise, 
…) & true shear bias

4 hidden layers à 30 units, output 
are shear bias mi, ci.

Pujol et al. in prep.



Shear estimation methods
Several methods are being implemented in Euclid ground segment:


• LensMC 
Lance Miller, Guiseppe Congedo 
Model-fitting, lensfit extension, 3D galaxy models, MCMC sampling


• MomentsML 
Malte Tewes 
Machine-learning 

• KSB 
Moment-based


• ReGauss 
Rachel Mandelbaum, moment-based


• BFD 
Gary Bernstein 
Bayseian Fourier-Domain, shear estimate without individual galaxy ellipticities

!8
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Overview of MomentsML (in case this is new to somebody)

• Supervised machine learning, 
trained on image simulations, to 
predict a shear estimate for each 
source galaxy 

• Features: measurement of 
moments of the galaxy image, 
PSF, colours, …

• Noise propagation and complex bias effects are 
integrated via the training simulations  

• Accuracy: calibrates as much as possible on a 
galaxy-by-galaxy basis, reducing conditional bias, 
i.e., the dependence on ensemble properties. 

• Very fast runtime per galaxy (few ms)

GALAXY

PSF ~g

Motivations

�2

Detailed description: Tewes et al. (2019), 
see also Euclid prep. IV / Martinet et al. (2019) From Malte Tewes
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Algorithm: status as implemented in SC456

• Adaptive moments (HSM) 
of galaxy, from single 
exposure

• Local background noise 
estimate

• Per-galaxy PSF 
information is currently not 
used: the training was 
done with a static PSF. 
Full algorithm will use 
moments (& colour) of the 
PSF, and train with diverse 
VIS PSFs (see Tewes et 
al. 2019).

• Ensembles of NNs 
trained with cost 
functions penalizing 
bias of the weighted 
shear estimates.

• Still same own NN 
library (based on 
numpy). 

• Training not 
parallelized, done 
externally.

• Tensorflow in EDEN 
now needed!

• Point estimate and weight for 
each shear component, 
currently averaged over 
exposures.

• Keep pt-estimates and 
weights for SC8? (And focus 
on more comprehensive 
input features, using 
Tensorflow, and maybe 
tomographic bins instead?) 
Adding other outputs (PDF 
or uncertainty estimates) and 
training for 2-pt fct: after 
analysis of needs & decision.

ML input ML algorithm  ML output  

Comments

From Malte Tewes
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LensMC

28th Jan 2019 SHE-LE3 meeting, Nice 4

Challenges in the 
shear measurement

Besides, we expect a number of real-data 
systematics:

 PSF spatial and colour variation (galaxies 
at resolution limit)

 Cosmic rays (see stripes)

 Star ghosts (sometimes affecting object 
detection and hence feeding through 
shear)

 Blending and meta-blending (anything that 
is not spatially separable from a galaxy will 
feed through shear)

 Star-galaxy separation (false positives and 
false negatives feeding through shear)

 Selection biases (e.g. any catalogue cut 
that correlates with shear)

 And surely more, see Andy’s talk

A LensMC custom-made segmentation map 
of a Euclid CCD image (out of 36 making a 
single exposure) from SC3

28th Jan 2019 SHE-LE3 meeting, Nice 7

What LensMC is

Noisy image Best model

Residuals ~ 
noise The beauty of MCMC:

directly returns p(e
1
,e

2
) marginalised over all 

other parameters as per requirements

colour coded to show the 
sampling probability

Model-fit to image, marginalised ellipticity samples 
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PSF modeling I

!12

PSF modelling

See Morgan Schmitz’ talk later this morning.

OU-SHE progress since Pasadena
careful implementation of FFT method of 
generation to replace old DFT  method (accurate 
but slow) 
CODEEN implementation of PSF generator and 
basic phase retrieval
extension to joint fit to multiple regions and multiple 
stars
ability to include (exit pupil) zonal phase errors
implementation of generic phase retrieval 
optimisation framework
develop code to propagate surface errors onto 
wavefront exit pupil
investigate effects of surface errors
ongoing investigation of effect of coating phase 
errors
SPV propagation of PSF errors into cosmology

PSF from telescope system physical model.zonal phase errors
zonal phase errors caused by mirror manufacturing errors 
- can now specify errors on individual mirror surfaces and propagate 

through exit pupil to PSF (currently being implemented by OU-SHE)
- strongly depends on footprint of beam on each surface

Model-independent PSF from data.

FFT of wave-front at exit pupil.
SPV2 propagation of PSF errors.
Complex model: chromatic response of
reflecting elements, fov variation of
wavefront errors, CCD under-
sampling, AOCS guiding

TBD:
Develop code to propagate surface
errors. Shutter opening/closing
effects. Zonal phase errors from
mirror manufacturing errors,
depends on fov, need
lab and in-orbit calibration.

Lead: Lance Miller
With Sam Farrens, Morgan Schmitz, Jean-Luc Starck. 

Lance Miller, Chris Duncan, 
Corentin Schreiber



Martin Kilbinger - Euclid shear measurement

PSF modeling II

!13

16/21

Introduction PSF estimation Impact on shape measurement

Simulation set-up
Stars and PSF models

Estimate PSF: "known", RCA+RBF, PSFex
Apply actual shape measurement method with all three

Morgan A. Schmitz CosmoStat, Astrophysics Dept., CEA Saclay

16/21

Introduction PSF estimation Impact on shape measurement

Simulation set-up
Stars and PSF models

Estimate PSF: "known", RCA+RBF, PSFex
Apply actual shape measurement method with all three

Morgan A. Schmitz CosmoStat, Astrophysics Dept., CEA Saclay

Morgan Schmitz, Fred Ngolé, Tobias Liaudat, 
Jean-Luc Starck (CEA) 

•RCA (Resolved Component Analysis). 
Super-resolution via sparsity constraints. 

•Wavelength interpolation using optimal transport 

•Spatial interpolation using graph constraints 
 
Ngolé et al. (2016),  
Schmitz et al. (2017, 2019)



Martin Kilbinger - Euclid shear measurement!14

𝑷 𝒖, 𝒗, 𝝀

𝑢

𝑣
𝜆

𝒑𝒔𝒇 𝑿, 𝒀, 𝝀

𝑌

𝑋
𝜆

𝑷𝑺𝑭∗ 𝑿, 𝒀

𝑌

𝑋
෫𝑷𝑺𝑭∗ 𝑿, 𝒀

𝑌

𝑋
෫𝑷𝑺𝑭∗ 𝑿𝒌, 𝒀𝒌

𝑌𝑘

𝑋𝑘

Enseignement d'approfondissement - 15/10/2019 - P-A Frugier
From Pierre-Antoine Frugier (CEA)
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From Pierre-Antoine Frugier (CEA)

•
�

�
𝑒1 𝑒2 𝑒 = 𝑒12 + 𝑒22

Enseignement d'approfondissement - 15/10/2019 - P-A Frugier

•
�

�
𝑒1 𝑒2 𝑒 = 𝑒12 + 𝑒22

Enseignement d'approfondissement - 15/10/2019 - P-A Frugier

polishing errors

•
•

� → → →
→

�

⊗ =

Enseignement d'approfondissement - 15/10/2019 - P-A Frugier

jitter

•
•
•

�

�

Enseignement d'approfondissement - 15/10/2019 - P-A Frugier

chromatic diffraction

dichroic coating

Simulating the VIS PSF
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Lensing estimators

!16

4 M. Kilbinger et al.

Figure 3. The Dark Energy Task Force (DETF) figure of merit
(FoM) as a function of the non-linear cut-o↵ scale kmax. The
upper (lower) panel shows the results for a threshold ratio of 0.8
(0.95).

Figure 4. The Dark Energy Task Force (DETF) figure of merit
(FoM) as a function of the smallest angular distance #min. The
blue circles are without cuts, for the green squares (red dia-
monds), bins in angular distance and redshift were excluded from
the Fisher matrix for which the contribution from 3D scales
k > k0 = 10h/Mpc (1h/ Mpc) is greater than 5%.

 1e-09
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 0.0001

 0.001
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Δ ξ+
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Figure 5. Example of the amplitude of the correlation function
bias �⇠+ compared to the rms (square root of the covariance
diagonal).

Figure 6. Relative paramer biases �p↵ with respect to the
marginalised Fisher-matrix 1� error �↵. The reference open-angle
threshold is ↵ref

tr = 0.005, we plot the biases from three cases of
larger thresholds ↵tr = 0.01, 0.02, 0.03 and 0.05.

c� 2009 RAS, MNRAS 000, 1–2

Shape Measurement Benchmarking for Weak Lensing Analysis
Pipeline

Keywords – Astrophysics - Cosmology - Image Processing

Context

Upcoming astrophysical surveys such as CFIS
1
and Euclid

2
aim to constrain cosmological parameters using

properties derived from galaxy images, in particular their shapes via weak gravitational lensing. However,

various shape measurement techniques are currently available each with di↵erent strengths and weaknesses.

The CosmoStat group is currently developing a weak lensing analysis pipeline in order to process currently

available CFIS images. A crucial part of this project will be to benchmark the best possible shape measurement

technique and to see what impact this has on the weak lensing analysis.

Outline of project objectives

The internship will essentially be comprised of the following tasks and objectives:

1. Get familiarised with the various galaxy shape measurement techniques currently available.

2. Implement these techniques in the weak lensing pipeline.

3. Interact with other members in CosmoStat to gauge the performance of each technique.

Candidate

The candidate should be a Master 2 (or equivalent) student with background in either physics/astrophysics

or applied maths/signal processing/data science. Experience with Python is not required, but would be

advantageous.

Internship

The internship will take place in the CosmoStat laboratory, under the supervision of Samuel Farrens and

Martin Kilbinger.

• Deadline for applications: February 28th, 2019.

• Contact: Samuel Farrens (samuel.farrens@cea.fr) and Martin Kilbinger (martin.kilbinger@cea.fr).

• Duration: 4-6 months.

1http://www.cfht.hawaii.edu/Science/CFIS/
2https://www.euclid-ec.org/

Martin Kilbinger - 3x2pt requirements

Correlation function: efficient computation

!8
Martin KilbingerReal-space correlation & masking / 08

WL-2PCF runs

 3

• 25 logarithmic bins from 1.2” to 5 deg, spherical coordinates. 
• Open angle threshold αtr between 0.01 and 0.03: 

Correlate entire nodes (store np, 1 x np, 2) if open angle < αtr.

open
angle

Compromise	between accuracy and	performance

Dev	Workshop	IV	– Trieste	– 10-12	Oct	2017 26

IntroductionChallengeQualityLanguageLibraryDesignInfrastructure

• How	reducing the	number of	correlations to	do	?	:

• Computation	of	the	open	angle	between two nodes

• Open	angle	threshold is a	way to	evaluate how	a	node can see another node

• A	user	has	to	intialized an	open	angle	threshold (oath)
• When the	user	open	angle	threshold is greater than the	open	angle	computed the	

correlations between these nodes and	their offsprings will be ignored.	

Science

• Question	to	be resolved by	the	SWG	:	

• What is the	acceptable	oath ?	(beyond no	correlation)

• What is the	greatest distance	between two nodes ?	(Beyond	no	correlation).

tree code: Split catalogue(s) into 2d tree. Pair count from N2 to N log N.

= node size

Requirements for observables: 2-point correlation function, shear power spectrum, 
E-/B-mode estimators. Implemented by OU-LE3.
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Lensing estimators

!17

Kilbinger, Joachimi et al. in prep.

tree-code “smoothing” parameter

Propagation of LE3 algorithmic errors to cosmological parameters
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Lensing estimators

!18

Estimators WP
Missing requirement for LE3 PFs.

● Accuracy of shear-shear 2PCF. In principle exact computation possible 
with brute-force pair correlations, but in practise tree code with open angle 
threshold, requirement (from Fisher matrix) ath=0.01.
Using flask simulations of two z-bins, (roughly) required relative (absolute) 
accuracy = 7 x 10-3 (3 x 10-8).

relative errors
absolute errors

LE3 uncertainties for accuracy requirements
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Lensing estimators

!19

Estimator WP
Number of random objects for position-position
correlations, with Landay-Szalay estimator:

Poisson noise from <DD>, <DR>, <RR>. Random cat
noise dominated by <DR>
[<RR> noise can be reduced
by splitting into sub-cats,
Keihänen et al. (2019)].

For <DR> contribution <= 10%:
NR / ND >= 16.

[cf. 3D clustering NR / ND = 50]

Position-position correlation function (2D clustering) as part of WL LE3 output
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UNIONS/CFIS

Ultraviolet 
Near-
Infrared 
Optical 
Northern 
Survey

Canada-
France 
Imaging 
Survey
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UNIONS/CFIS
Best wide-field imager on CFHT ever.

Improvements (2011 - 2014)

UNIONS is basically a static LSST in the North, not likely to be outdone any time soon. 
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CFIS weak-lensing results

Guinot Axel

ShapePipe architecture
Presentation of ShapePipe, First results on CFIS/UNIONS

Stacks process

Single exposures process
Multi-Epoch process

Guinot et al. in prep.
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CFIS weak-lensing results

Guinot et al. in prep.

Guinot Axel

Star selection

: 0.76 arcsec
17 < MAG < 21.5

mode(FWHM) ± 0.2 pixels

Presentation of ShapePipe, First results on CFIS/UNIONS

Guinot Axel

Galaxy selection

Presentation of ShapePipe, First results on CFIS/UNIONS

Stars

Galaxies

G : galaxy model

p : object

Φ : PSF model

(Ref : SExtractor, E. Bertin)
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CFIS weak-lensing results

Guinot et al. in prep.

Guinot Axel

Some numbers :

•Current process ~1000 deg2

• ~8000 single exposures and ~6000 tiles


• 50 stars on average per CCD.     (2 500 stars/deg2)

•Around 32M galaxies.      (8 galaxies/arcmin2)

Presentation of ShapePipe, First results on CFIS/UNIONS

Guinot Axel

Magnitude distribution

Presentation of ShapePipe, First results on CFIS/UNIONS
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CFIS weak-lensing results

Guinot et al. in prep.
Guinot Axel

PSF model validation

Presentation of ShapePipe, First results on CFIS/UNIONS

Comparison with LensFit
ShapePipe LensFit

Guinot Axel

PSF model validation

Presentation of ShapePipe, First results on CFIS/UNIONS

Comparison with LensFit
ShapePipe LensFit
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CFIS weak-lensing results

Guinot et al. in prep.

Guinot Axel

Cluster profile

~14,000 SDSS clusters 
(Ref : Wen, Han & Liu 2012)

Presentation of ShapePipe, First results on CFIS/UNIONS

Guinot Axel

Mass mapping

Presentation of ShapePipe, First results on CFIS/UNIONS
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Blended galaxies detection 
with deep learning

!27

Deblending and deep learning

❖ Based on Galsim software
➢ Parametric model using COSMOS 

parameters :
➢ De Vaucouleur + Exponential
➢ Sersic

❖ PSF model :
➢ Moffat for the optical component based on 

MegaCam
➢ Kolmogorov for the atmospheric 

component
❖ Gaussian noise with a constant sigma

Simulations

Deblending and deep learning

VGG-16

Deblending and deep learning

VGG-16

From Sam Farrens
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Open positions @ CEA CosmoStat

!28

•PostDoc, 2 years,  Deep learning and weak lensing 
with MK, Samuel Farrens, part of ANR AstroDeep (PI Eric Aubourg), 
develop methods for Euclid and LSST


•PhD positions


•Euclid + CSST (+ UNIONS/CFIS), GW targets, weak gravitational lensing, 
funding from Chinese Science Council? 
[GW as standard sirens with host redshift → H0] 
MK, Samuel Farrens


•Euclid + DESI + eBOSS, cross-correlation cosmology, modified gravity 
Valeria Pettorino, MK 

•Open postdoc in China? Let me know. 
My (very good) student Axel Guinot is entering the job market…


 

www.cosmostat.org/jobs

http://www.cosmostat.org/jobs

