Strong Lensing with CSS-OS:

Ran Li (李然) NAOC

On behalf of Strong Lensing Working Group:

Ran Li, Nan Li, Huanyuan Shan, Yun Chen, Dezi Liu, GuoLiang Li, Xiaoyue Cao, Xinzhong Er, Yiping Shu, Xin Wang, Ye Cao, XiaoLei Meng, Wei Du

Expectation for CSS-OS

- ~100000 galaxy scale strong lens systems (currently ~400), Including ~1000 double lens system
- Hundreds of massive clusters with many multiple images
- Accurate photo-z for both lens and source.

Deeps fields

Main survey: 300-400 deg^2 to 27th, 10 deg^2 to 28th, MCI: 3 clusters to 30th in g band

Dark matter

COCO simulations Bose+ 2016

Li et al. 2016 arxiv 1512.06507

DM on small scales: Substructure detection

Galactic Lens Modeling

By Xiaoyue Cao with PyAUTOLENS

Power spectrum of subhalo

He et al. in prep

Self-interacting dark matter?

(Stars in) galaxies visible in optical

Galaxy cluster Abell 3827 offset is 1.62+0.47 kpc?

Massey et al. 2015

Density profile at the cluster center

Newman et al . 2012

Testing gravity

Velocity dispersion \rightarrow Dynamical mass

Gravitational mass

 $ds^{2} = -(1+2\Psi)dt^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j}$ Ψ : Newtonian dynamical potential Φ : space curvature potential

In GR, $\Phi = \Psi$

Slides by Wei Du

Cosmological constraints from double source plane strong lensing (DSPL)

n

The observable:
$$\eta = \frac{\theta_{\rm E,1}}{\theta_{\rm E,2}}$$

SLACS J0946+1006

In the ideal case of neglecting the effect of the intermediate source (source 1) on the background source (source 2):

$$\theta_{E,1} = \frac{4G}{c^2} \alpha \sigma_{(\leqslant \theta_1)}^2 \frac{D_{ls1}}{D_{s1}}$$
$$\theta_{E,2} = \frac{4G}{c^2} \alpha \sigma_{(\leqslant \theta_2)}^2 \frac{D_{ls2}}{D_{s2}}$$

The factor α depends on the **lens mass model**

$$\frac{D_{ls1}/D_{s1}}{D_{ls2}/D_{s2}} = \frac{\theta_{E,1}}{\theta_{E,2}} \frac{\sigma_{(\leqslant\theta_2)}^2}{\sigma_{(\leqslant\theta_1)}^2}$$

The factor α is cancelled out, that alleviates the dependence on the lens model to some extent.

Prediction: ~ 10³ galaxyscale DSPL systems (based on Gavazzi et al. 2008, about one lens galaxy in ~ 40 - 80 could be a DSPL)

In SIS lens model, the stellar velocity dispersion is invariable with radius, that leads to

$$\eta^{\text{SIS}} = \frac{D_{1\text{s}1}/D_{\text{s}1}}{D_{1\text{s}2}/D_{\text{s}2}} = \frac{\theta_{\text{E},1}}{\theta_{\text{E},2}}$$

Slides by Yun Chen

SL Cluster Cosmology

Slides from Huanyuan

Jullo et al. 2010

Galaxy science (SL+SSP+Kinematics)

- Galaxy mass and structure
- Dark matter fraction within galaxies and clusters
- Shape of dark matter haloes at center
- Evolution of Early type galaxies
- IMF variation of late type lenses
- Synergy with time domain surveys

Galaxy lensing as a telescope (DF, UDF)

Lensd LAEs, Shu et al. 2016

Abell 2744, magnification map by CATS team

High-redshift galaxies

Acebron et al. 2018

Slide from Huanyuan Shan

Strong lensing Road map

	А	В	С	D	E	F	G	Н
1	Science Goal	Probe	Targets	Measuremen t	CSST Impact/com paring with current and future survey	Complement ary Instruments	Complication s	ref/demo with simulation data/observa tion data
2	Distinguish dark matter models: WDM vs. CDM	subhalo/halo mass function at low mass end	Galactic Einstein ring/arc system (~100 high S/N)	Detecting the flux perturbation on the Einstein ring; require lens modelling with Pixelized source reconstructio n	Increasing the number of suitable lenses; High angular resolution imaging; accurate photoz for large sample of galactic lenses;	Ground base Laser AO imaging follow-up; spectroscopy follow-up	Distinguishin g false detection; estimating sensitivity map	
3		subhalo powerspectr um	Galactic Einstein ring/arc system	Measuring the powerspectru m of residual flux after subtracting the macro model	Increasing the number of suitable lenses; High angular resolution imaging; accurate photoz for large sample of galactic lenses;		linking power spectrum of residual to that of subhalo	
4	Dark matter Self- interaction	off-set between center of distribution of galaxies and dark matter mass center	Coliding clusters	Constructing dark matter mass map of cluster	Hudreds of coliding clusters with high resolution imaging; accurate photo-z for source galaxies; weak lensing at large scales	X-rays; MCI follow-up to 27 mag	Accurate measuremen t of dark matter centre from limited multi-image systems	
5		Core of dark matter at centre of clusters	relaxed clusters	Constructing mass map of cluster at ~kpc	Increasing the number of clusters with strong lensing multi-images	IFS measuremen t of velocity map of central galaxy; weak lensing at larger scale; X-rays	AGN feedback effect; Dry merger effect; Accury of dynamical analysis	

Mining more than 10000 lenses from one billion objects

Lens search: ML

Training Phase

27 simulated cluster lenses using the data of C-Eagle clusters (left); hundreds of simulated cluster lenses based on a semi-analytic model named CosmoDC2 (right). Include both Strong and Weak Lensing.

By Nan Li, Dezi Liu, Ran Li

500k simulated galaxy-galaxy strong lenses based on CosmoDC2. Each image includes the flux in gri-bands, and the morphological model of the galaxies (both lens and source) is bulge + disk in the form of Sersic profile.

By Nan Li, Dezi Liu, Ran Li

Summary

- Strong gravitational lensing will be greatly benefit from CSS-OS
- Novel opportunities on different topics: dark matter identity, cosmology, galaxy formation, high redshift galaxies
- Need to model 100000 lenses fast and accurately
- A lot of work to be done. Welcome to join us!