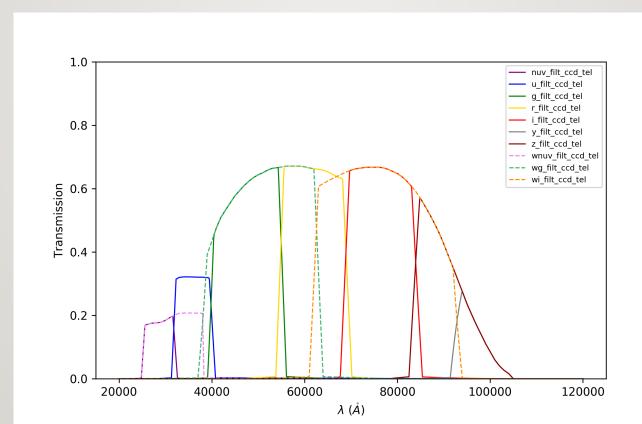
CSS-OS FILTERS AND PHOTO-Z ACCURACY IMPROVING

XIANMIN MENG

NAOC

2019/11/04@ISSI-BJ


TWO FILTER SCHEMES

Preset (solid line)

NUV(4), u(2), g(2), r(2), i(2), z(2), y(4)

Alternative

NUV(2), u(2), g(2), r(2), i(2), z(2), WNUV(2), Wg(2), Wi(2)

IMAGE SIMULATION - DATA

- COSMOS ACS 2.0 Mosaic
- F814W (broad I) band
- Select 4×4 tiles for image simulation
- 507s×4 exposure, drizzled to have
 0.03" pixel scale
- limiting depth AB=27.2 (point, 5σ)
- 0.095" PSF width

109	110	111	112	113	114	115	<u>116</u>	117
<u>097</u>	098	099	<u>100</u>	101	102	103	104	105
<u>085</u>	086	087	088	089	090	<u>091</u>	092	093
<u>073</u>	074	<u>075</u>	<u>076</u>	077	078	<u>079</u>	080	<u>081</u>
<u>061</u>	<u>062</u>	063	<u>064</u>	<u>065</u>	066	<u>067</u>	<u>068</u>	<u>069</u>
049	<u>050</u>	<u>051</u>	052	<u>053</u>	<u>054</u>	<u>055</u>	<u>056</u>	<u>057</u>
037	038	039	<u>040</u>	<u>041</u>	042	<u>043</u>	044	<u>045</u>
025	026	027	028	029	030	031	032	033
013	014	<u>015</u>	<u>016</u>	017	018	019	020	<u>021</u>

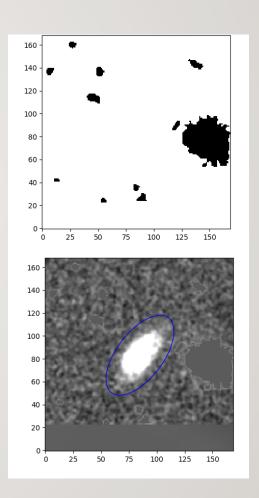
IMAGE SIMULATION - CSSOS

- Use HST ACS F814W image to simulate all CSSOS bands images
- Scale F814W count rate to match galaxy model SEDs

Model SED:

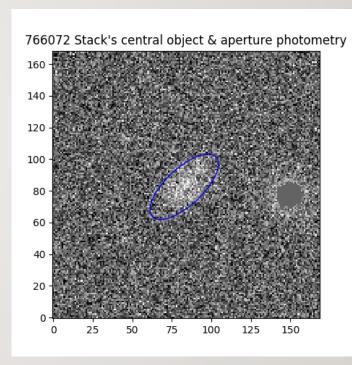
Re-Fitted SED using Ilbert et al (2009)'s multi-band data, fixing its photo-z

PSF match

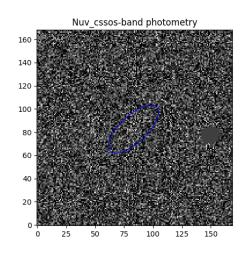

HST ACS $0.095'' \rightarrow$

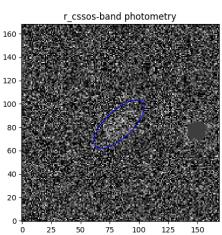
CSSOS z-band 0.165" (80% energy enclosure radius) & stability 0.017" ($I\sigma$)

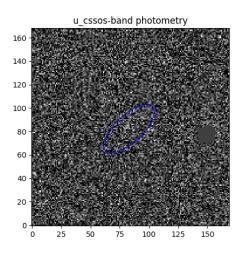
IMAGE SIMULATION - CSSOS

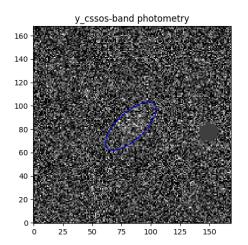

- SED match
 - cut a stamp image for each object
 - segmentation, background subtraction (iteratively)
 - photometry (mask other objects), Ne_cntrate
 - Ne_model for each band: $N \downarrow e = t \cdot Area \cdot \int \lambda \downarrow 1 \uparrow \lambda \downarrow 2 = f \downarrow \lambda \cdot T(\lambda) \cdot d\lambda / hv$

Scale stamp image to match SED by *Ne/Ne_cntrate

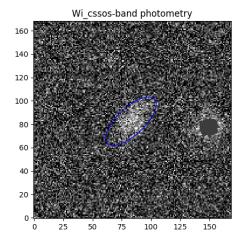


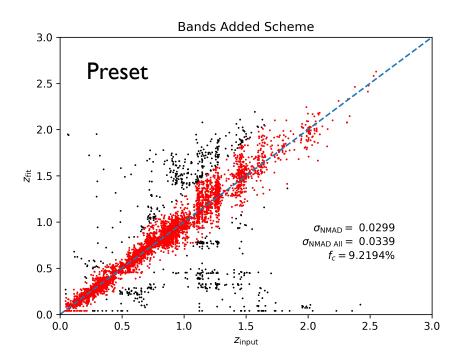

PHOTOMETRY


- Add additional noises:
 - sky background, dark current, photon shooting noises
 - readout noises
- Gain
- Stack NUV, u, g, r, i, z, y bands images as detection image Dimg
- calculate Kron radius on stacked image
- Force photometry:
 - Use aperture defined on stacked image
 - · measure fluxes inside aperture



PHOTOMETRY




GALAXY DENSITY

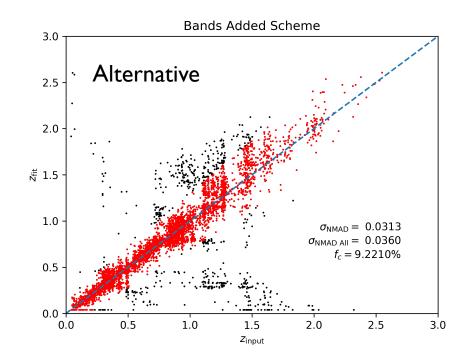
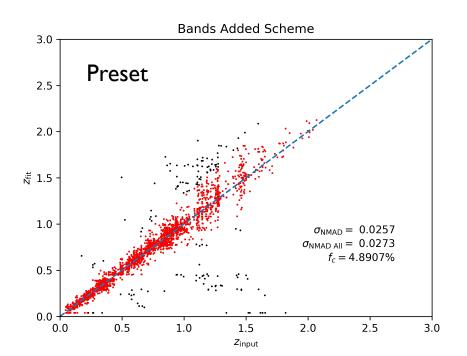

- Sample Selection:
 - SNRg ≥ 5 & SNRr ≥ 5 & SNRi ≥ 5 & SNRz ≥ 5
 - SNRr ≥ 7 & SNRi ≥ 7
 - SNRg ≥ 10
 - SNRr ≥ 10
 - SNRi ≥ 10
 - SNRz ≥ 10
 - Galaxy density: 36 gal / arcmin²

PHOTO-Z COMPARISON

- Photo-z fitting using LePhare code
- number of sample
 - ~6700 galaxies have all Preset bands SNR>1
 - compare their photo-z directly to the alternative
 - no significance difference is found


$$\sigma_{\text{NMAD}} = 1.48 \times \text{median} \left(\left| \frac{\Delta z - \text{median}(\Delta z)}{1 + z_{\text{input}}} \right| \right)$$

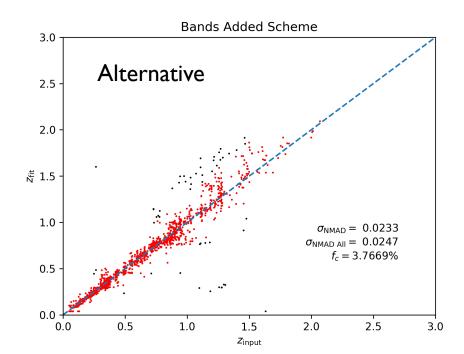
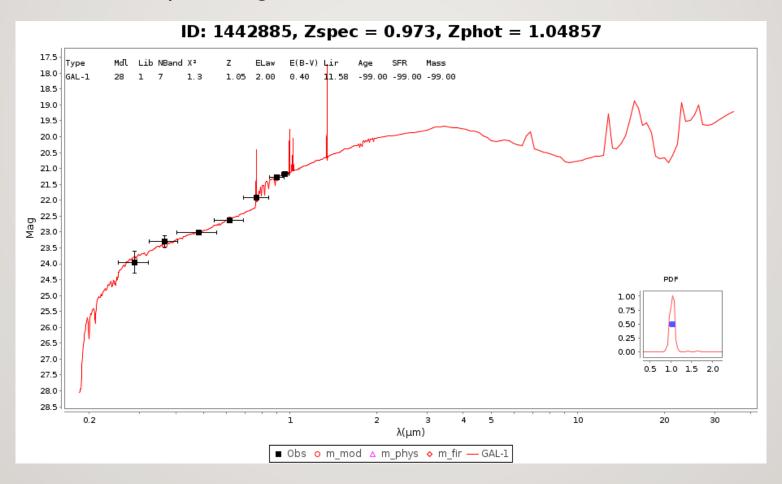
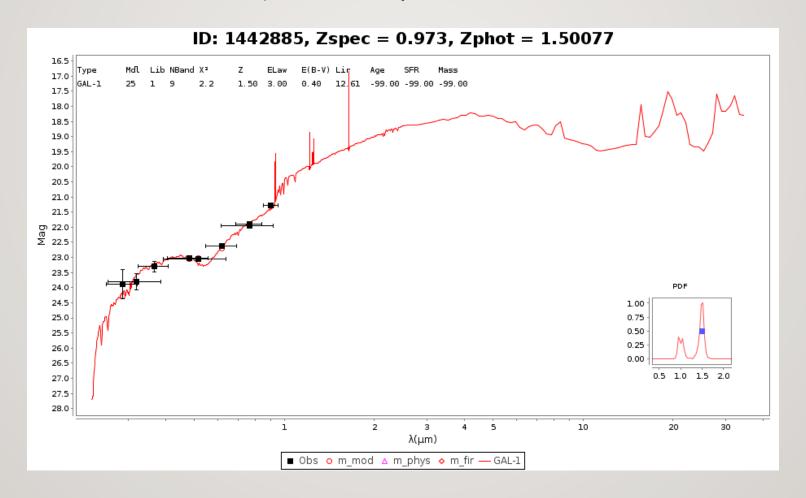


PHOTO-Z COMPARISON


- all detection sample
 - Detection: 1.2σ threshold and minimal 10 pixel connected (implies > 3σ)
 - ~2700 galaxies have all Preset bands detection
 - ~1500 galaxies have all Alternative bands detection


EXAMPLE FITTING

Preset, example fitting

EXAMPLE FITTING

Alternative, same object, catastrophic case

NEXT TO DO

- Include no detection bands data in photo-z calculation
- Improve the simulation and Reconsider the sample
- Include Euclid Y, J, H band data for photo-z improving

THANKS FOR YOUR ATTENTION