“Life on Miller’s Planet: The Habitability Zone Around Supermassive Black Holes” with Jeremy D. Schnittman (NASA, GSFC, USA)

In the blockbuster science fiction movie “Interstellar” (Warning: spoiler alert!), a team of intrepid astronauts set out to explore a system of planets orbiting a supermassive black hole named Gargantua, searching for a world that may be conducive to hosting human life. With Kip Thorne as science advisor, the film legitimately boasts a relatively high level of scientific accuracy, yet is still restricted by Hollywood sensitivities and limitations. In this talk, we will discuss a number of additional effects that may be important in determining the (un)inhabitable environment of a planet orbiting close to a giant, accreting black hole like Gargantua. In doing so, we hope to reach a greater understanding of the fascinating physics governing accretion, relativity, astrobiology, dark matter, and yes, even gravitational waves.

Jeremy D. Schnittman joined the Astrophysics Science Division at NASA Goddard in 2010 following postdoctoral fellowships at the University of Maryland and Johns Hopkins University. His research interests include theoretical and computational modeling of black hole accretion flows, X-ray polarimetry, black hole binaries, gravitational wave sources, gravitational microlensing, dark matter annihilation, planetary dynamics, resonance dynamics, and exoplanet atmospheres. He has been described as a “general-purpose astrophysics theorist”, which he regards as quite a compliment.

Webinar was recorded on March 30, 2023